bitsandbytes-rocm/bitsandbytes/nn/modules.py
2022-07-22 14:41:05 -07:00

193 lines
7.9 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import bitsandbytes as bnb
from typing import Union, Tuple, Any, Callable, Iterator, Set, Optional, overload, TypeVar, Mapping, Dict
from torch import Tensor, device, dtype
from torch import nn
from torch.nn.parameter import Parameter
import torch.nn.functional as F
from bitsandbytes.optim import GlobalOptimManager
T = TypeVar('T', bound='torch.nn.Module')
class StableEmbedding(torch.nn.Embedding):
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None,
max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False,
sparse: bool = False, _weight: Optional[Tensor] = None) -> None:
super(StableEmbedding, self).__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight)
self.norm = torch.nn.LayerNorm(embedding_dim)
GlobalOptimManager.get_instance().register_module_override(self, 'weight', {'optim_bits': 32})
def reset_parameters(self) -> None:
torch.nn.init.xavier_uniform_(self.weight)
self._fill_padding_idx_with_zero()
''' !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding
to make the Layer compatible with Pytorch < 1.9.
This means that if this changes in future PyTorch releases this need to change too
which is cumbersome. However, with this we can ensure compatibility with previous
PyTorch releases.
'''
def _fill_padding_idx_with_zero(self) -> None:
if self.padding_idx is not None:
with torch.no_grad():
self.weight[self.padding_idx].fill_(0)
def forward(self, input: Tensor) -> Tensor:
emb = F.embedding(
input, self.weight, self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq, self.sparse)
return self.norm(emb)
class Embedding(torch.nn.Embedding):
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None,
max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False,
sparse: bool = False, _weight: Optional[Tensor] = None) -> None:
super(Embedding, self).__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight)
GlobalOptimManager.get_instance().register_module_override(self, 'weight', {'optim_bits': 32})
def reset_parameters(self) -> None:
torch.nn.init.xavier_uniform_(self.weight)
self._fill_padding_idx_with_zero()
''' !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding
to make the Layer compatible with Pytorch < 1.9.
This means that if this changes in future PyTorch releases this need to change too
which is cumbersome. However, with this we can ensure compatibility with previous
PyTorch releases.
'''
def _fill_padding_idx_with_zero(self) -> None:
if self.padding_idx is not None:
with torch.no_grad():
self.weight[self.padding_idx].fill_(0)
def forward(self, input: Tensor) -> Tensor:
emb = F.embedding(
input, self.weight, self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq, self.sparse)
return emb
class Int8Params(torch.nn.Parameter):
def __new__(cls, data=None, requires_grad=True, has_fp16_weights=False, CB=None, SCB=None):
cls.has_fp16_weights = has_fp16_weights
cls.CB = None
cls.SCB = None
if data is None:
data = torch.empty(0)
return torch.Tensor._make_subclass(cls, data, requires_grad)
def cuda(self, device):
if self.has_fp16_weights:
return super().cuda(device)
else:
# we store the 8-bit rows-major weight
# we convert this weight to the turning/ampere weight during the first inference pass
B = self.data.contiguous().half().cuda(device)
CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
del CBt
del SCBt
self.data = CB
setattr(self, 'CB', CB)
setattr(self, 'SCB', SCB)
return self
@overload
def to(self: T, device: Optional[Union[int, device]] = ..., dtype: Optional[Union[dtype, str]] = ...,
non_blocking: bool = ...) -> T:
...
@overload
def to(self: T, dtype: Union[dtype, str], non_blocking: bool = ...) -> T:
...
@overload
def to(self: T, tensor: Tensor, non_blocking: bool = ...) -> T:
...
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
if device is not None and device.type == 'cuda' and self.data.device.type == 'cpu': return self.cuda(device)
else:
new_param = Int8Params(super().to(device=device, dtype=dtype, non_blocking=non_blocking), requires_grad=self.requires_grad, has_fp16_weights=self.has_fp16_weights)
new_param.CB = self.CB
new_param.SCB = self.SCB
return new_param
class Linear8bitLt(nn.Linear):
def __init__(self, input_features, output_features, bias=True, has_fp16_weights=True, threshold=0.0, index=None):
super(Linear8bitLt, self).__init__(input_features, output_features, bias)
self.state = bnb.MatmulLtState()
self.index=index
self.state.threshold = threshold
self.state.has_fp16_weights = has_fp16_weights
if threshold > 0.0 and not has_fp16_weights:
self.state.use_pool = True
self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights)
def init_8bit_state(self):
self.state.CB = self.weight.CB
self.state.SCB = self.weight.SCB
self.weight.CB = None
self.weight.SCB = None
def forward(self, x):
self.state.is_training = self.training
if self.weight.CB is not None: self.init_8bit_state()
#assert not self.state.has_fp16_weights
#if not self.state.has_fp16_weights: assert self.state.CB is not None or self.state.CxB is not None
out = bnb.matmul(x, self.weight, state=self.state)
if self.bias is not None:
out += self.bias.unsqueeze(0).expand_as(out)
if not self.state.has_fp16_weights and self.state.CB is not None:
# we converted 8-bit row major to turing/ampere format in the first inference pass
# we no longer need the row-major weight
del self.state.CB
self.weight.data = self.state.CxB
return out
class Linear8bit(nn.Linear):
def __init__(self, input_features, output_features, bias=True, quant_type='vector', index=None, args=None, sparse_decomp=False):
super(Linear8bit, self).__init__(input_features, output_features, bias)
self.quant_type = quant_type
self.index = index
self.args = args
self.iter = 0
def forward(self, x):
self.iter += 1
if self.iter % self.args.clip_freq == 0:
with torch.no_grad():
maxval, maxidx = torch.topk(torch.abs(self.weight.flatten()), k=self.args.clip_idx)
if not dist.is_initialized() or dist.get_rank() == 0:
print('clip', maxval[-1].item())
self.weight.clip_(-maxval[-1], maxval[-1])
if self.args is not None:
out = bnb.nn.functional.sparse_decomposed_linear8bit(x, self.weight, self.bias, qval=self.args.sparse_decomp_val, quant_type=self.args.quant_type)
else:
out = bnb.nn.functional.linear8bit(x, self.weight, self.bias, quant_type=self.args.quant_type)
return out