bitsandbytes-rocm/bitsandbytes/nn/modules.py

519 lines
20 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional, TypeVar, Union, overload
import warnings
import torch
import torch.nn.functional as F
from torch import Tensor, device, dtype, nn
import bitsandbytes as bnb
import bitsandbytes.functional
from bitsandbytes.autograd._functions import undo_layout, get_tile_inds
from bitsandbytes.optim import GlobalOptimManager
from bitsandbytes.utils import OutlierTracer, find_outlier_dims
T = TypeVar("T", bound="torch.nn.Module")
class StableEmbedding(torch.nn.Embedding):
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
device=None,
dtype=None,
) -> None:
super().__init__(
num_embeddings,
embedding_dim,
padding_idx,
max_norm,
norm_type,
scale_grad_by_freq,
sparse,
_weight,
device,
dtype,
)
self.norm = torch.nn.LayerNorm(embedding_dim, device=device)
GlobalOptimManager.get_instance().register_module_override(
self, "weight", {"optim_bits": 32}
)
def reset_parameters(self) -> None:
torch.nn.init.xavier_uniform_(self.weight)
self._fill_padding_idx_with_zero()
""" !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding
to make the Layer compatible with Pytorch < 1.9.
This means that if this changes in future PyTorch releases this need to change too
which is cumbersome. However, with this we can ensure compatibility with previous
PyTorch releases.
"""
def _fill_padding_idx_with_zero(self) -> None:
if self.padding_idx is not None:
with torch.no_grad():
self.weight[self.padding_idx].fill_(0)
def forward(self, input: Tensor) -> Tensor:
emb = F.embedding(
input,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
# always apply layer norm in full precision
emb = emb.to(torch.get_default_dtype())
return self.norm(emb).to(self.weight.dtype)
class Embedding(torch.nn.Embedding):
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
device: Optional[device] = None,
) -> None:
super().__init__(
num_embeddings,
embedding_dim,
padding_idx,
max_norm,
norm_type,
scale_grad_by_freq,
sparse,
_weight,
device=device
)
GlobalOptimManager.get_instance().register_module_override(
self, "weight", {"optim_bits": 32}
)
def reset_parameters(self) -> None:
torch.nn.init.xavier_uniform_(self.weight)
self._fill_padding_idx_with_zero()
""" !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding
to make the Layer compatible with Pytorch < 1.9.
This means that if this changes in future PyTorch releases this need to change too
which is cumbersome. However, with this we can ensure compatibility with previous
PyTorch releases.
"""
def _fill_padding_idx_with_zero(self) -> None:
if self.padding_idx is not None:
with torch.no_grad():
self.weight[self.padding_idx].fill_(0)
def forward(self, input: Tensor) -> Tensor:
emb = F.embedding(
input,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
return emb
class Params4bit(torch.nn.Parameter):
def __new__(cls, data=None, requires_grad=True, quant_state=None, blocksize=64, compress_statistics=True, quant_type='fp4'):
if data is None:
data = torch.empty(0)
self = torch.Tensor._make_subclass(cls, data, requires_grad)
self.blocksize = blocksize
self.compress_statistics = compress_statistics
self.quant_type = quant_type
self.quant_state = quant_state
self.data = data
return self
def cuda(self, device):
w = self.data.contiguous().half().cuda(device)
w_4bit, quant_state = bnb.functional.quantize_4bit(w, blocksize=self.blocksize, compress_statistics=self.compress_statistics, quant_type=self.quant_type)
self.data = w_4bit
self.quant_state = quant_state
return self
@overload
def to(self: T, device: Optional[Union[int, device]] = ..., dtype: Optional[Union[dtype, str]] = ..., non_blocking: bool = ...,) -> T:
...
@overload
def to(self: T, dtype: Union[dtype, str], non_blocking: bool = ...) -> T:
...
@overload
def to(self: T, tensor: Tensor, non_blocking: bool = ...) -> T:
...
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
if (device is not None and device.type == "cuda" and self.data.device.type == "cpu"):
return self.cuda(device)
else:
s = self.quant_state
if s is not None:
# make sure the quantization state is on the right device
s[0] = s[0].to(device)
if self.compress_statistics:
# TODO: refactor this. This is a nightmare
# for 4-bit:
# state = [qabsmax, input_shape, A.dtype, blocksize, [offset, state2], quant_type]
# state2 = [absmax, input_shape, A.dtype, blocksize, None, quant_type]
#s[-2][0] = s[-2][0].to(device) # offset
#s[-2][1][0] = s[-2][1][0].to(device) # nested absmax
# for 8-bit
s[-3][0] = s[-3][0].to(device) # offset
s[-3][1][0] = s[-3][1][0].to(device) # nested quantiation state statitics
s[-3][1][1] = s[-3][1][1].to(device) # nested quantiation codebook
new_param = Params4bit(super().to(device=device, dtype=dtype, non_blocking=non_blocking),
requires_grad=self.requires_grad, quant_state=self.quant_state,
blocksize=self.blocksize, compress_statistics=self.compress_statistics,
quant_type=self.quant_type)
return new_param
class Linear4bit(nn.Linear):
def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True, quant_type='fp4',device=None):
super().__init__(input_features, output_features, bias, device)
self.weight = Params4bit(self.weight.data, requires_grad=False, compress_statistics=compress_statistics, quant_type=quant_type)
self.compute_dtype = compute_dtype
self.compute_type_is_set = False
def set_compute_type(self, x):
if x.dtype in [torch.float32, torch.bfloat16]:
# the input is in a dtype that is safe to compute in, we switch
# to this type for speed and stability
self.compute_dtype = x.dtype
elif x.dtype == torch.float16:
# we take the compoute dtype passed into the layer
if self.compute_dtype == torch.float32 and (x.numel() == x.shape[-1]):
# single batch inference with input torch.float16 and compute_dtype float32 -> slow inference when it could be fast
# warn the user about this
warnings.warn(f'Input type into Linear4bit is torch.float16, but bnb_4bit_compute_type=torch.float32 (default). This will lead to slow inference.')
warnings.filterwarnings('ignore', message='.*inference.')
if self.compute_dtype == torch.float32 and (x.numel() != x.shape[-1]):
warnings.warn(f'Input type into Linear4bit is torch.float16, but bnb_4bit_compute_type=torch.float32 (default). This will lead to slow inference or training speed.')
warnings.filterwarnings('ignore', message='.*inference or training')
def forward(self, x: torch.Tensor):
# weights are cast automatically as Int8Params, but the bias has to be cast manually
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
if getattr(self.weight, 'quant_state', None) is None:
print('FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first.')
if not self.compute_type_is_set:
self.set_compute_type(x)
self.compute_type_is_set = True
inp_dtype = x.dtype
if self.compute_dtype is not None:
x = x.to(self.compute_dtype)
bias = None if self.bias is None else self.bias.to(self.compute_dtype)
out = bnb.matmul_4bit(x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state)
out = out.to(inp_dtype)
return out
class LinearFP4(Linear4bit):
def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True,device=None):
super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'fp4', device)
class LinearNF4(Linear4bit):
''' Implements the NF4 data type.
Constructs a quantization data type where each bin has equal area under a standard normal distribution N(0, 1) that
is normalized into the range [-1, 1].
For more information read the paper: QLoRA: Efficient Finetuning of Quantized LLMs (https://arxiv.org/abs/2305.14314)
Implementation of the NF4 data type in bitsandbytes can be found in the `create_normal_map` function in
the `functional.py` file: https://github.com/TimDettmers/bitsandbytes/blob/main/bitsandbytes/functional.py#L236.
'''
def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True,device=None):
super().__init__(input_features, output_features, bias, compute_dtype, compress_statistics, 'nf4', device)
class Int8Params(torch.nn.Parameter):
def __new__(
cls,
data=None,
requires_grad=True,
has_fp16_weights=False,
CB=None,
SCB=None,
):
cls.has_fp16_weights = has_fp16_weights
cls.CB = None
cls.SCB = None
if data is None:
data = torch.empty(0)
return torch.Tensor._make_subclass(cls, data, requires_grad)
def cuda(self, device):
if self.has_fp16_weights:
return super().cuda(device)
else:
# we store the 8-bit rows-major weight
# we convert this weight to the turning/ampere weight during the first inference pass
B = self.data.contiguous().half().cuda(device)
CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
del CBt
del SCBt
self.data = CB
setattr(self, "CB", CB)
setattr(self, "SCB", SCB)
return self
@overload
def to(
self: T,
device: Optional[Union[int, device]] = ...,
dtype: Optional[Union[dtype, str]] = ...,
non_blocking: bool = ...,
) -> T:
...
@overload
def to(self: T, dtype: Union[dtype, str], non_blocking: bool = ...) -> T:
...
@overload
def to(self: T, tensor: Tensor, non_blocking: bool = ...) -> T:
...
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
*args, **kwargs
)
if (
device is not None
and device.type == "cuda"
and self.data.device.type == "cpu"
):
return self.cuda(device)
else:
new_param = Int8Params(
super().to(
device=device, dtype=dtype, non_blocking=non_blocking
),
requires_grad=self.requires_grad,
has_fp16_weights=self.has_fp16_weights,
)
new_param.CB = self.CB
new_param.SCB = self.SCB
return new_param
def maybe_rearrange_weight(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
weight = state_dict.get(f"{prefix}weight")
if weight is None:
# if the state dict has no weights for this layer (e.g., LoRA finetuning), do nothing
return
weight_format = state_dict.pop(f"{prefix}weight_format", "row")
if weight_format != "row":
tile_indices = get_tile_inds(weight_format, weight.device)
state_dict[f"{prefix}weight"] = undo_layout(weight, tile_indices)
class Linear8bitLt(nn.Linear):
def __init__(self, input_features, output_features, bias=True, has_fp16_weights=True,
memory_efficient_backward=False, threshold=0.0, index=None, device=None):
super().__init__(input_features, output_features, bias, device)
assert not memory_efficient_backward, "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
self.state = bnb.MatmulLtState()
self.index = index
self.state.threshold = threshold
self.state.has_fp16_weights = has_fp16_weights
self.state.memory_efficient_backward = memory_efficient_backward
if threshold > 0.0 and not has_fp16_weights:
self.state.use_pool = True
self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights)
self._register_load_state_dict_pre_hook(maybe_rearrange_weight)
def _save_to_state_dict(self, destination, prefix, keep_vars):
super()._save_to_state_dict(destination, prefix, keep_vars)
# we only need to save SCB as extra data, because CB for quantized weights is already stored in weight.data
scb_name = "SCB"
# case 1: .cuda was called, SCB is in self.weight
param_from_weight = getattr(self.weight, scb_name)
# case 2: self.init_8bit_state was called, SCB is in self.state
param_from_state = getattr(self.state, scb_name)
# case 3: SCB is in self.state, weight layout reordered after first forward()
layout_reordered = self.state.CxB is not None
key_name = prefix + f"{scb_name}"
format_name = prefix + "weight_format"
if not self.state.has_fp16_weights:
if param_from_weight is not None:
destination[key_name] = param_from_weight if keep_vars else param_from_weight.detach()
destination[format_name] = "row"
elif param_from_state is not None and not layout_reordered:
destination[key_name] = param_from_state if keep_vars else param_from_state.detach()
destination[format_name] = "row"
elif param_from_state is not None:
destination[key_name] = param_from_state if keep_vars else param_from_state.detach()
destination[format_name] = self.state.formatB
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
error_msgs)
unexpected_copy = list(unexpected_keys)
for key in unexpected_copy:
input_name = key[len(prefix):]
if input_name == "SCB":
if self.weight.SCB is None:
# buffers not yet initialized, can't access them directly without quantizing first
raise RuntimeError("Loading a quantized checkpoint into non-quantized Linear8bitLt is "
"not supported. Please call module.cuda() before module.load_state_dict()")
input_param = state_dict[key]
self.weight.SCB.copy_(input_param)
if self.state.SCB is not None:
self.state.SCB = self.weight.SCB
unexpected_keys.remove(key)
def init_8bit_state(self):
self.state.CB = self.weight.CB
self.state.SCB = self.weight.SCB
self.weight.CB = None
self.weight.SCB = None
def forward(self, x: torch.Tensor):
self.state.is_training = self.training
if self.weight.CB is not None:
self.init_8bit_state()
# weights are cast automatically as Int8Params, but the bias has to be cast manually
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
if not self.state.has_fp16_weights:
if self.state.CB is not None and self.state.CxB is not None:
# we converted 8-bit row major to turing/ampere format in the first inference pass
# we no longer need the row-major weight
del self.state.CB
self.weight.data = self.state.CxB
return out
class OutlierAwareLinear(nn.Linear):
def __init__(self, input_features, output_features, bias=True, device=None):
super().__init__(input_features, output_features, bias, device)
self.outlier_dim = None
self.is_quantized = False
def forward_with_outliers(self, x, outlier_idx):
raise NotImplementedError('Please override the `forward_with_outliers(self, x, outlier_idx)` function')
def quantize_weight(self, w, outlier_idx):
raise NotImplementedError('Please override the `quantize_weights(self, w, outlier_idx)` function')
def forward(self, x):
if self.outlier_dim is None:
tracer = OutlierTracer.get_instance()
if not tracer.is_initialized():
print('Please use OutlierTracer.initialize(model) before using the OutlierAwareLinear layer')
outlier_idx = tracer.get_outliers(self.weight)
#print(outlier_idx, tracer.get_hvalue(self.weight))
self.outlier_dim = outlier_idx
if not self.is_quantized:
w = self.quantize_weight(self.weight, self.outlier_dim)
self.weight.data.copy_(w)
self.is_quantized = True
class SwitchBackLinearBnb(nn.Linear):
def __init__(
self,
input_features,
output_features,
bias=True,
has_fp16_weights=True,
memory_efficient_backward=False,
threshold=0.0,
index=None,
device=None
):
super().__init__(
input_features, output_features, bias, device
)
self.state = bnb.MatmulLtState()
self.index = index
self.state.threshold = threshold
self.state.has_fp16_weights = has_fp16_weights
self.state.memory_efficient_backward = memory_efficient_backward
if threshold > 0.0 and not has_fp16_weights:
self.state.use_pool = True
self.weight = Int8Params(
self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights
)
def init_8bit_state(self):
self.state.CB = self.weight.CB
self.state.SCB = self.weight.SCB
self.weight.CB = None
self.weight.SCB = None
def forward(self, x):
self.state.is_training = self.training
if self.weight.CB is not None:
self.init_8bit_state()
out = bnb.matmul_mixed(x.half(), self.weight.half(), bias=None, state=self.state) + self.bias