reactphysics3d/testbed/nanogui/ext/eigen/bench/analyze-blocking-sizes.cpp

877 lines
28 KiB
C++
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Benoit Jacob <benoitjacob@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <iostream>
#include <cstdint>
#include <cstdlib>
#include <vector>
#include <algorithm>
#include <fstream>
#include <string>
#include <cmath>
#include <cassert>
#include <cstring>
#include <memory>
#include <Eigen/Core>
using namespace std;
const int default_precision = 4;
// see --only-cubic-sizes
bool only_cubic_sizes = false;
// see --dump-tables
bool dump_tables = false;
uint8_t log2_pot(size_t x) {
size_t l = 0;
while (x >>= 1) l++;
return l;
}
uint16_t compact_size_triple(size_t k, size_t m, size_t n)
{
return (log2_pot(k) << 8) | (log2_pot(m) << 4) | log2_pot(n);
}
// just a helper to store a triple of K,M,N sizes for matrix product
struct size_triple_t
{
uint16_t k, m, n;
size_triple_t() : k(0), m(0), n(0) {}
size_triple_t(size_t _k, size_t _m, size_t _n) : k(_k), m(_m), n(_n) {}
size_triple_t(const size_triple_t& o) : k(o.k), m(o.m), n(o.n) {}
size_triple_t(uint16_t compact)
{
k = 1 << ((compact & 0xf00) >> 8);
m = 1 << ((compact & 0x0f0) >> 4);
n = 1 << ((compact & 0x00f) >> 0);
}
bool is_cubic() const { return k == m && m == n; }
};
ostream& operator<<(ostream& s, const size_triple_t& t)
{
return s << "(" << t.k << ", " << t.m << ", " << t.n << ")";
}
struct inputfile_entry_t
{
uint16_t product_size;
uint16_t pot_block_size;
size_triple_t nonpot_block_size;
float gflops;
};
struct inputfile_t
{
enum class type_t {
unknown,
all_pot_sizes,
default_sizes
};
string filename;
vector<inputfile_entry_t> entries;
type_t type;
inputfile_t(const string& fname)
: filename(fname)
, type(type_t::unknown)
{
ifstream stream(filename);
if (!stream.is_open()) {
cerr << "couldn't open input file: " << filename << endl;
exit(1);
}
string line;
while (getline(stream, line)) {
if (line.empty()) continue;
if (line.find("BEGIN MEASUREMENTS ALL POT SIZES") == 0) {
if (type != type_t::unknown) {
cerr << "Input file " << filename << " contains redundant BEGIN MEASUREMENTS lines";
exit(1);
}
type = type_t::all_pot_sizes;
continue;
}
if (line.find("BEGIN MEASUREMENTS DEFAULT SIZES") == 0) {
if (type != type_t::unknown) {
cerr << "Input file " << filename << " contains redundant BEGIN MEASUREMENTS lines";
exit(1);
}
type = type_t::default_sizes;
continue;
}
if (type == type_t::unknown) {
continue;
}
switch(type) {
case type_t::all_pot_sizes: {
unsigned int product_size, block_size;
float gflops;
int sscanf_result =
sscanf(line.c_str(), "%x %x %f",
&product_size,
&block_size,
&gflops);
if (3 != sscanf_result ||
!product_size ||
product_size > 0xfff ||
!block_size ||
block_size > 0xfff ||
!isfinite(gflops))
{
cerr << "ill-formed input file: " << filename << endl;
cerr << "offending line:" << endl << line << endl;
exit(1);
}
if (only_cubic_sizes && !size_triple_t(product_size).is_cubic()) {
continue;
}
inputfile_entry_t entry;
entry.product_size = uint16_t(product_size);
entry.pot_block_size = uint16_t(block_size);
entry.gflops = gflops;
entries.push_back(entry);
break;
}
case type_t::default_sizes: {
unsigned int product_size;
float gflops;
int bk, bm, bn;
int sscanf_result =
sscanf(line.c_str(), "%x default(%d, %d, %d) %f",
&product_size,
&bk, &bm, &bn,
&gflops);
if (5 != sscanf_result ||
!product_size ||
product_size > 0xfff ||
!isfinite(gflops))
{
cerr << "ill-formed input file: " << filename << endl;
cerr << "offending line:" << endl << line << endl;
exit(1);
}
if (only_cubic_sizes && !size_triple_t(product_size).is_cubic()) {
continue;
}
inputfile_entry_t entry;
entry.product_size = uint16_t(product_size);
entry.pot_block_size = 0;
entry.nonpot_block_size = size_triple_t(bk, bm, bn);
entry.gflops = gflops;
entries.push_back(entry);
break;
}
default:
break;
}
}
stream.close();
if (type == type_t::unknown) {
cerr << "Unrecognized input file " << filename << endl;
exit(1);
}
if (entries.empty()) {
cerr << "didn't find any measurements in input file: " << filename << endl;
exit(1);
}
}
};
struct preprocessed_inputfile_entry_t
{
uint16_t product_size;
uint16_t block_size;
float efficiency;
};
bool lower_efficiency(const preprocessed_inputfile_entry_t& e1, const preprocessed_inputfile_entry_t& e2)
{
return e1.efficiency < e2.efficiency;
}
struct preprocessed_inputfile_t
{
string filename;
vector<preprocessed_inputfile_entry_t> entries;
preprocessed_inputfile_t(const inputfile_t& inputfile)
: filename(inputfile.filename)
{
if (inputfile.type != inputfile_t::type_t::all_pot_sizes) {
abort();
}
auto it = inputfile.entries.begin();
auto it_first_with_given_product_size = it;
while (it != inputfile.entries.end()) {
++it;
if (it == inputfile.entries.end() ||
it->product_size != it_first_with_given_product_size->product_size)
{
import_input_file_range_one_product_size(it_first_with_given_product_size, it);
it_first_with_given_product_size = it;
}
}
}
private:
void import_input_file_range_one_product_size(
const vector<inputfile_entry_t>::const_iterator& begin,
const vector<inputfile_entry_t>::const_iterator& end)
{
uint16_t product_size = begin->product_size;
float max_gflops = 0.0f;
for (auto it = begin; it != end; ++it) {
if (it->product_size != product_size) {
cerr << "Unexpected ordering of entries in " << filename << endl;
cerr << "(Expected all entries for product size " << hex << product_size << dec << " to be grouped)" << endl;
exit(1);
}
max_gflops = max(max_gflops, it->gflops);
}
for (auto it = begin; it != end; ++it) {
preprocessed_inputfile_entry_t entry;
entry.product_size = it->product_size;
entry.block_size = it->pot_block_size;
entry.efficiency = it->gflops / max_gflops;
entries.push_back(entry);
}
}
};
void check_all_files_in_same_exact_order(
const vector<preprocessed_inputfile_t>& preprocessed_inputfiles)
{
if (preprocessed_inputfiles.empty()) {
return;
}
const preprocessed_inputfile_t& first_file = preprocessed_inputfiles[0];
const size_t num_entries = first_file.entries.size();
for (size_t i = 0; i < preprocessed_inputfiles.size(); i++) {
if (preprocessed_inputfiles[i].entries.size() != num_entries) {
cerr << "these files have different number of entries: "
<< preprocessed_inputfiles[i].filename
<< " and "
<< first_file.filename
<< endl;
exit(1);
}
}
for (size_t entry_index = 0; entry_index < num_entries; entry_index++) {
const uint16_t entry_product_size = first_file.entries[entry_index].product_size;
const uint16_t entry_block_size = first_file.entries[entry_index].block_size;
for (size_t file_index = 0; file_index < preprocessed_inputfiles.size(); file_index++) {
const preprocessed_inputfile_t& cur_file = preprocessed_inputfiles[file_index];
if (cur_file.entries[entry_index].product_size != entry_product_size ||
cur_file.entries[entry_index].block_size != entry_block_size)
{
cerr << "entries not in same order between these files: "
<< first_file.filename
<< " and "
<< cur_file.filename
<< endl;
exit(1);
}
}
}
}
float efficiency_of_subset(
const vector<preprocessed_inputfile_t>& preprocessed_inputfiles,
const vector<size_t>& subset)
{
if (subset.size() <= 1) {
return 1.0f;
}
const preprocessed_inputfile_t& first_file = preprocessed_inputfiles[subset[0]];
const size_t num_entries = first_file.entries.size();
float efficiency = 1.0f;
size_t entry_index = 0;
size_t first_entry_index_with_this_product_size = 0;
uint16_t product_size = first_file.entries[0].product_size;
while (entry_index < num_entries) {
++entry_index;
if (entry_index == num_entries ||
first_file.entries[entry_index].product_size != product_size)
{
float efficiency_this_product_size = 0.0f;
for (size_t e = first_entry_index_with_this_product_size; e < entry_index; e++) {
float efficiency_this_entry = 1.0f;
for (auto i = subset.begin(); i != subset.end(); ++i) {
efficiency_this_entry = min(efficiency_this_entry, preprocessed_inputfiles[*i].entries[e].efficiency);
}
efficiency_this_product_size = max(efficiency_this_product_size, efficiency_this_entry);
}
efficiency = min(efficiency, efficiency_this_product_size);
if (entry_index < num_entries) {
first_entry_index_with_this_product_size = entry_index;
product_size = first_file.entries[entry_index].product_size;
}
}
}
return efficiency;
}
void dump_table_for_subset(
const vector<preprocessed_inputfile_t>& preprocessed_inputfiles,
const vector<size_t>& subset)
{
const preprocessed_inputfile_t& first_file = preprocessed_inputfiles[subset[0]];
const size_t num_entries = first_file.entries.size();
size_t entry_index = 0;
size_t first_entry_index_with_this_product_size = 0;
uint16_t product_size = first_file.entries[0].product_size;
size_t i = 0;
size_triple_t min_product_size(first_file.entries.front().product_size);
size_triple_t max_product_size(first_file.entries.back().product_size);
if (!min_product_size.is_cubic() || !max_product_size.is_cubic()) {
abort();
}
if (only_cubic_sizes) {
cerr << "Can't generate tables with --only-cubic-sizes." << endl;
abort();
}
cout << "struct LookupTable {" << endl;
cout << " static const size_t BaseSize = " << min_product_size.k << ";" << endl;
const size_t NumSizes = log2_pot(max_product_size.k / min_product_size.k) + 1;
const size_t TableSize = NumSizes * NumSizes * NumSizes;
cout << " static const size_t NumSizes = " << NumSizes << ";" << endl;
cout << " static const unsigned short* Data() {" << endl;
cout << " static const unsigned short data[" << TableSize << "] = {";
while (entry_index < num_entries) {
++entry_index;
if (entry_index == num_entries ||
first_file.entries[entry_index].product_size != product_size)
{
float best_efficiency_this_product_size = 0.0f;
uint16_t best_block_size_this_product_size = 0;
for (size_t e = first_entry_index_with_this_product_size; e < entry_index; e++) {
float efficiency_this_entry = 1.0f;
for (auto i = subset.begin(); i != subset.end(); ++i) {
efficiency_this_entry = min(efficiency_this_entry, preprocessed_inputfiles[*i].entries[e].efficiency);
}
if (efficiency_this_entry > best_efficiency_this_product_size) {
best_efficiency_this_product_size = efficiency_this_entry;
best_block_size_this_product_size = first_file.entries[e].block_size;
}
}
if ((i++) % NumSizes) {
cout << " ";
} else {
cout << endl << " ";
}
cout << "0x" << hex << best_block_size_this_product_size << dec;
if (entry_index < num_entries) {
cout << ",";
first_entry_index_with_this_product_size = entry_index;
product_size = first_file.entries[entry_index].product_size;
}
}
}
if (i != TableSize) {
cerr << endl << "Wrote " << i << " table entries, expected " << TableSize << endl;
abort();
}
cout << endl << " };" << endl;
cout << " return data;" << endl;
cout << " }" << endl;
cout << "};" << endl;
}
float efficiency_of_partition(
const vector<preprocessed_inputfile_t>& preprocessed_inputfiles,
const vector<vector<size_t>>& partition)
{
float efficiency = 1.0f;
for (auto s = partition.begin(); s != partition.end(); ++s) {
efficiency = min(efficiency, efficiency_of_subset(preprocessed_inputfiles, *s));
}
return efficiency;
}
void make_first_subset(size_t subset_size, vector<size_t>& out_subset, size_t set_size)
{
assert(subset_size >= 1 && subset_size <= set_size);
out_subset.resize(subset_size);
for (size_t i = 0; i < subset_size; i++) {
out_subset[i] = i;
}
}
bool is_last_subset(const vector<size_t>& subset, size_t set_size)
{
return subset[0] == set_size - subset.size();
}
void next_subset(vector<size_t>& inout_subset, size_t set_size)
{
if (is_last_subset(inout_subset, set_size)) {
cerr << "iterating past the last subset" << endl;
abort();
}
size_t i = 1;
while (inout_subset[inout_subset.size() - i] == set_size - i) {
i++;
assert(i <= inout_subset.size());
}
size_t first_index_to_change = inout_subset.size() - i;
inout_subset[first_index_to_change]++;
size_t p = inout_subset[first_index_to_change];
for (size_t j = first_index_to_change + 1; j < inout_subset.size(); j++) {
inout_subset[j] = ++p;
}
}
const size_t number_of_subsets_limit = 100;
const size_t always_search_subsets_of_size_at_least = 2;
bool is_number_of_subsets_feasible(size_t n, size_t p)
{
assert(n>0 && p>0 && p<=n);
uint64_t numerator = 1, denominator = 1;
for (size_t i = 0; i < p; i++) {
numerator *= n - i;
denominator *= i + 1;
if (numerator > denominator * number_of_subsets_limit) {
return false;
}
}
return true;
}
size_t max_feasible_subset_size(size_t n)
{
assert(n > 0);
const size_t minresult = min<size_t>(n-1, always_search_subsets_of_size_at_least);
for (size_t p = 1; p <= n - 1; p++) {
if (!is_number_of_subsets_feasible(n, p+1)) {
return max(p, minresult);
}
}
return n - 1;
}
void find_subset_with_efficiency_higher_than(
const vector<preprocessed_inputfile_t>& preprocessed_inputfiles,
float required_efficiency_to_beat,
vector<size_t>& inout_remainder,
vector<size_t>& out_subset)
{
out_subset.resize(0);
if (required_efficiency_to_beat >= 1.0f) {
cerr << "can't beat efficiency 1." << endl;
abort();
}
while (!inout_remainder.empty()) {
vector<size_t> candidate_indices(inout_remainder.size());
for (size_t i = 0; i < candidate_indices.size(); i++) {
candidate_indices[i] = i;
}
size_t candidate_indices_subset_size = max_feasible_subset_size(candidate_indices.size());
while (candidate_indices_subset_size >= 1) {
vector<size_t> candidate_indices_subset;
make_first_subset(candidate_indices_subset_size,
candidate_indices_subset,
candidate_indices.size());
vector<size_t> best_candidate_indices_subset;
float best_efficiency = 0.0f;
vector<size_t> trial_subset = out_subset;
trial_subset.resize(out_subset.size() + candidate_indices_subset_size);
while (true)
{
for (size_t i = 0; i < candidate_indices_subset_size; i++) {
trial_subset[out_subset.size() + i] = inout_remainder[candidate_indices_subset[i]];
}
float trial_efficiency = efficiency_of_subset(preprocessed_inputfiles, trial_subset);
if (trial_efficiency > best_efficiency) {
best_efficiency = trial_efficiency;
best_candidate_indices_subset = candidate_indices_subset;
}
if (is_last_subset(candidate_indices_subset, candidate_indices.size())) {
break;
}
next_subset(candidate_indices_subset, candidate_indices.size());
}
if (best_efficiency > required_efficiency_to_beat) {
for (size_t i = 0; i < best_candidate_indices_subset.size(); i++) {
candidate_indices[i] = candidate_indices[best_candidate_indices_subset[i]];
}
candidate_indices.resize(best_candidate_indices_subset.size());
}
candidate_indices_subset_size--;
}
size_t candidate_index = candidate_indices[0];
auto candidate_iterator = inout_remainder.begin() + candidate_index;
vector<size_t> trial_subset = out_subset;
trial_subset.push_back(*candidate_iterator);
float trial_efficiency = efficiency_of_subset(preprocessed_inputfiles, trial_subset);
if (trial_efficiency > required_efficiency_to_beat) {
out_subset.push_back(*candidate_iterator);
inout_remainder.erase(candidate_iterator);
} else {
break;
}
}
}
void find_partition_with_efficiency_higher_than(
const vector<preprocessed_inputfile_t>& preprocessed_inputfiles,
float required_efficiency_to_beat,
vector<vector<size_t>>& out_partition)
{
out_partition.resize(0);
vector<size_t> remainder;
for (size_t i = 0; i < preprocessed_inputfiles.size(); i++) {
remainder.push_back(i);
}
while (!remainder.empty()) {
vector<size_t> new_subset;
find_subset_with_efficiency_higher_than(
preprocessed_inputfiles,
required_efficiency_to_beat,
remainder,
new_subset);
out_partition.push_back(new_subset);
}
}
void print_partition(
const vector<preprocessed_inputfile_t>& preprocessed_inputfiles,
const vector<vector<size_t>>& partition)
{
float efficiency = efficiency_of_partition(preprocessed_inputfiles, partition);
cout << "Partition into " << partition.size() << " subsets for " << efficiency * 100.0f << "% efficiency" << endl;
for (auto subset = partition.begin(); subset != partition.end(); ++subset) {
cout << " Subset " << (subset - partition.begin())
<< ", efficiency " << efficiency_of_subset(preprocessed_inputfiles, *subset) * 100.0f << "%:"
<< endl;
for (auto file = subset->begin(); file != subset->end(); ++file) {
cout << " " << preprocessed_inputfiles[*file].filename << endl;
}
if (dump_tables) {
cout << " Table:" << endl;
dump_table_for_subset(preprocessed_inputfiles, *subset);
}
}
cout << endl;
}
struct action_t
{
virtual const char* invokation_name() const { abort(); return nullptr; }
virtual void run(const vector<string>&) const { abort(); }
virtual ~action_t() {}
};
struct partition_action_t : action_t
{
virtual const char* invokation_name() const override { return "partition"; }
virtual void run(const vector<string>& input_filenames) const override
{
vector<preprocessed_inputfile_t> preprocessed_inputfiles;
if (input_filenames.empty()) {
cerr << "The " << invokation_name() << " action needs a list of input files." << endl;
exit(1);
}
for (auto it = input_filenames.begin(); it != input_filenames.end(); ++it) {
inputfile_t inputfile(*it);
switch (inputfile.type) {
case inputfile_t::type_t::all_pot_sizes:
preprocessed_inputfiles.emplace_back(inputfile);
break;
case inputfile_t::type_t::default_sizes:
cerr << "The " << invokation_name() << " action only uses measurements for all pot sizes, and "
<< "has no use for " << *it << " which contains measurements for default sizes." << endl;
exit(1);
break;
default:
cerr << "Unrecognized input file: " << *it << endl;
exit(1);
}
}
check_all_files_in_same_exact_order(preprocessed_inputfiles);
float required_efficiency_to_beat = 0.0f;
vector<vector<vector<size_t>>> partitions;
cerr << "searching for partitions...\r" << flush;
while (true)
{
vector<vector<size_t>> partition;
find_partition_with_efficiency_higher_than(
preprocessed_inputfiles,
required_efficiency_to_beat,
partition);
float actual_efficiency = efficiency_of_partition(preprocessed_inputfiles, partition);
cerr << "partition " << preprocessed_inputfiles.size() << " files into " << partition.size()
<< " subsets for " << 100.0f * actual_efficiency
<< " % efficiency"
<< " \r" << flush;
partitions.push_back(partition);
if (partition.size() == preprocessed_inputfiles.size() || actual_efficiency == 1.0f) {
break;
}
required_efficiency_to_beat = actual_efficiency;
}
cerr << " " << endl;
while (true) {
bool repeat = false;
for (size_t i = 0; i < partitions.size() - 1; i++) {
if (partitions[i].size() >= partitions[i+1].size()) {
partitions.erase(partitions.begin() + i);
repeat = true;
break;
}
}
if (!repeat) {
break;
}
}
for (auto it = partitions.begin(); it != partitions.end(); ++it) {
print_partition(preprocessed_inputfiles, *it);
}
}
};
struct evaluate_defaults_action_t : action_t
{
struct results_entry_t {
uint16_t product_size;
size_triple_t default_block_size;
uint16_t best_pot_block_size;
float default_gflops;
float best_pot_gflops;
float default_efficiency;
};
friend ostream& operator<<(ostream& s, const results_entry_t& entry)
{
return s
<< "Product size " << size_triple_t(entry.product_size)
<< ": default block size " << entry.default_block_size
<< " -> " << entry.default_gflops
<< " GFlop/s = " << entry.default_efficiency * 100.0f << " %"
<< " of best POT block size " << size_triple_t(entry.best_pot_block_size)
<< " -> " << entry.best_pot_gflops
<< " GFlop/s" << dec;
}
static bool lower_efficiency(const results_entry_t& e1, const results_entry_t& e2) {
return e1.default_efficiency < e2.default_efficiency;
}
virtual const char* invokation_name() const override { return "evaluate-defaults"; }
void show_usage_and_exit() const
{
cerr << "usage: " << invokation_name() << " default-sizes-data all-pot-sizes-data" << endl;
cerr << "checks how well the performance with default sizes compares to the best "
<< "performance measured over all POT sizes." << endl;
exit(1);
}
virtual void run(const vector<string>& input_filenames) const override
{
if (input_filenames.size() != 2) {
show_usage_and_exit();
}
inputfile_t inputfile_default_sizes(input_filenames[0]);
inputfile_t inputfile_all_pot_sizes(input_filenames[1]);
if (inputfile_default_sizes.type != inputfile_t::type_t::default_sizes) {
cerr << inputfile_default_sizes.filename << " is not an input file with default sizes." << endl;
show_usage_and_exit();
}
if (inputfile_all_pot_sizes.type != inputfile_t::type_t::all_pot_sizes) {
cerr << inputfile_all_pot_sizes.filename << " is not an input file with all POT sizes." << endl;
show_usage_and_exit();
}
vector<results_entry_t> results;
vector<results_entry_t> cubic_results;
uint16_t product_size = 0;
auto it_all_pot_sizes = inputfile_all_pot_sizes.entries.begin();
for (auto it_default_sizes = inputfile_default_sizes.entries.begin();
it_default_sizes != inputfile_default_sizes.entries.end();
++it_default_sizes)
{
if (it_default_sizes->product_size == product_size) {
continue;
}
product_size = it_default_sizes->product_size;
while (it_all_pot_sizes != inputfile_all_pot_sizes.entries.end() &&
it_all_pot_sizes->product_size != product_size)
{
++it_all_pot_sizes;
}
if (it_all_pot_sizes == inputfile_all_pot_sizes.entries.end()) {
break;
}
uint16_t best_pot_block_size = 0;
float best_pot_gflops = 0;
for (auto it = it_all_pot_sizes;
it != inputfile_all_pot_sizes.entries.end() && it->product_size == product_size;
++it)
{
if (it->gflops > best_pot_gflops) {
best_pot_gflops = it->gflops;
best_pot_block_size = it->pot_block_size;
}
}
results_entry_t entry;
entry.product_size = product_size;
entry.default_block_size = it_default_sizes->nonpot_block_size;
entry.best_pot_block_size = best_pot_block_size;
entry.default_gflops = it_default_sizes->gflops;
entry.best_pot_gflops = best_pot_gflops;
entry.default_efficiency = entry.default_gflops / entry.best_pot_gflops;
results.push_back(entry);
size_triple_t t(product_size);
if (t.k == t.m && t.m == t.n) {
cubic_results.push_back(entry);
}
}
cout << "All results:" << endl;
for (auto it = results.begin(); it != results.end(); ++it) {
cout << *it << endl;
}
cout << endl;
sort(results.begin(), results.end(), lower_efficiency);
const size_t n = min<size_t>(20, results.size());
cout << n << " worst results:" << endl;
for (size_t i = 0; i < n; i++) {
cout << results[i] << endl;
}
cout << endl;
cout << "cubic results:" << endl;
for (auto it = cubic_results.begin(); it != cubic_results.end(); ++it) {
cout << *it << endl;
}
cout << endl;
sort(cubic_results.begin(), cubic_results.end(), lower_efficiency);
cout.precision(2);
vector<float> a = {0.5f, 0.20f, 0.10f, 0.05f, 0.02f, 0.01f};
for (auto it = a.begin(); it != a.end(); ++it) {
size_t n = min(results.size() - 1, size_t(*it * results.size()));
cout << (100.0f * n / (results.size() - 1))
<< " % of product sizes have default efficiency <= "
<< 100.0f * results[n].default_efficiency << " %" << endl;
}
cout.precision(default_precision);
}
};
void show_usage_and_exit(int argc, char* argv[],
const vector<unique_ptr<action_t>>& available_actions)
{
cerr << "usage: " << argv[0] << " <action> [options...] <input files...>" << endl;
cerr << "available actions:" << endl;
for (auto it = available_actions.begin(); it != available_actions.end(); ++it) {
cerr << " " << (*it)->invokation_name() << endl;
}
cerr << "the input files should each contain an output of benchmark-blocking-sizes" << endl;
exit(1);
}
int main(int argc, char* argv[])
{
cout.precision(default_precision);
cerr.precision(default_precision);
vector<unique_ptr<action_t>> available_actions;
available_actions.emplace_back(new partition_action_t);
available_actions.emplace_back(new evaluate_defaults_action_t);
vector<string> input_filenames;
action_t* action = nullptr;
if (argc < 2) {
show_usage_and_exit(argc, argv, available_actions);
}
for (int i = 1; i < argc; i++) {
bool arg_handled = false;
// Step 1. Try to match action invokation names.
for (auto it = available_actions.begin(); it != available_actions.end(); ++it) {
if (!strcmp(argv[i], (*it)->invokation_name())) {
if (!action) {
action = it->get();
arg_handled = true;
break;
} else {
cerr << "can't specify more than one action!" << endl;
show_usage_and_exit(argc, argv, available_actions);
}
}
}
if (arg_handled) {
continue;
}
// Step 2. Try to match option names.
if (argv[i][0] == '-') {
if (!strcmp(argv[i], "--only-cubic-sizes")) {
only_cubic_sizes = true;
arg_handled = true;
}
if (!strcmp(argv[i], "--dump-tables")) {
dump_tables = true;
arg_handled = true;
}
if (!arg_handled) {
cerr << "Unrecognized option: " << argv[i] << endl;
show_usage_and_exit(argc, argv, available_actions);
}
}
if (arg_handled) {
continue;
}
// Step 3. Default to interpreting args as input filenames.
input_filenames.emplace_back(argv[i]);
}
if (dump_tables && only_cubic_sizes) {
cerr << "Incompatible options: --only-cubic-sizes and --dump-tables." << endl;
show_usage_and_exit(argc, argv, available_actions);
}
if (!action) {
show_usage_and_exit(argc, argv, available_actions);
}
action->run(input_filenames);
}