reactphysics3d/src/components/SliderJointComponents.cpp

409 lines
22 KiB
C++
Raw Normal View History

2019-09-13 05:15:48 +00:00
/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "SliderJointComponents.h"
#include "engine/EntityManager.h"
#include "mathematics/Matrix3x3.h"
#include <cassert>
// We want to use the ReactPhysics3D namespace
using namespace reactphysics3d;
// Constructor
SliderJointComponents::SliderJointComponents(MemoryAllocator& allocator)
:Components(allocator, sizeof(Entity) + sizeof(SliderJoint*) + sizeof(Vector3) +
sizeof(Vector3) + sizeof(Vector3) + sizeof(Vector3) +
sizeof(Matrix3x3) + sizeof(Matrix3x3) + sizeof(Vector2) +
sizeof(Vector3) + sizeof(Matrix2x2) + sizeof(Matrix3x3) +
sizeof(Vector2) + sizeof(Vector3) + sizeof(Quaternion)/* +
sizeof(Vector3) + sizeof(Vector3) + sizeof(Vector3) + sizeof(Vector3) +
sizeof(Vector3) + sizeof(decimal) + sizeof(decimal) + sizeof(decimal) +
sizeof(decimal) + sizeof(decimal) + sizeof(decimal) + sizeof(decimal) +
sizeof(bool) + sizeof(bool) + sizeof(decimal) + sizeof(decimal) +
sizeof(bool) + sizeof(bool) + sizeof(decimal) + sizeof(decimal)*/) {
// Allocate memory for the components data
allocate(INIT_NB_ALLOCATED_COMPONENTS);
}
// Allocate memory for a given number of components
void SliderJointComponents::allocate(uint32 nbComponentsToAllocate) {
assert(nbComponentsToAllocate > mNbAllocatedComponents);
// Size for the data of a single component (in bytes)
const size_t totalSizeBytes = nbComponentsToAllocate * mComponentDataSize;
// Allocate memory
void* newBuffer = mMemoryAllocator.allocate(totalSizeBytes);
assert(newBuffer != nullptr);
// New pointers to components data
Entity* newJointEntities = static_cast<Entity*>(newBuffer);
SliderJoint** newJoints = reinterpret_cast<SliderJoint**>(newJointEntities + nbComponentsToAllocate);
Vector3* newLocalAnchorPointBody1 = reinterpret_cast<Vector3*>(newJoints + nbComponentsToAllocate);
Vector3* newLocalAnchorPointBody2 = reinterpret_cast<Vector3*>(newLocalAnchorPointBody1 + nbComponentsToAllocate);
Matrix3x3* newI1 = reinterpret_cast<Matrix3x3*>(newLocalAnchorPointBody2 + nbComponentsToAllocate);
Matrix3x3* newI2 = reinterpret_cast<Matrix3x3*>(newI1 + nbComponentsToAllocate);
Vector2* newImpulseTranslation = reinterpret_cast<Vector2*>(newI2 + nbComponentsToAllocate);
Vector3* newImpulseRotation = reinterpret_cast<Vector3*>(newImpulseTranslation + nbComponentsToAllocate);
Matrix2x2* newInverseMassMatrixTranslation = reinterpret_cast<Matrix2x2*>(newImpulseRotation + nbComponentsToAllocate);
Matrix3x3* newInverseMassMatrixRotation = reinterpret_cast<Matrix3x3*>(newInverseMassMatrixTranslation + nbComponentsToAllocate);
Vector2* newBiasTranslation = reinterpret_cast<Vector2*>(newInverseMassMatrixRotation + nbComponentsToAllocate);
Vector3* newBiasRotation = reinterpret_cast<Vector3*>(newBiasTranslation + nbComponentsToAllocate);
Quaternion* newInitOrientationDifferenceInv = reinterpret_cast<Quaternion*>(newBiasRotation + nbComponentsToAllocate);
/*
Vector3* newHingeLocalAxisBody1 = reinterpret_cast<Vector3*>(newInitOrientationDifferenceInv + nbComponentsToAllocate);
Vector3* newHingeLocalAxisBody2 = reinterpret_cast<Vector3*>(newHingeLocalAxisBody1 + nbComponentsToAllocate);
Vector3* newA1 = reinterpret_cast<Vector3*>(newHingeLocalAxisBody2 + nbComponentsToAllocate);
Vector3* newB2CrossA1 = reinterpret_cast<Vector3*>(newA1 + nbComponentsToAllocate);
Vector3* newC2CrossA1 = reinterpret_cast<Vector3*>(newB2CrossA1 + nbComponentsToAllocate);
decimal* newImpulseLowerLimit = reinterpret_cast<decimal*>(newC2CrossA1 + nbComponentsToAllocate);
decimal* newImpulseUpperLimit = reinterpret_cast<decimal*>(newImpulseLowerLimit + nbComponentsToAllocate);
decimal* newImpulseMotor = reinterpret_cast<decimal*>(newImpulseUpperLimit + nbComponentsToAllocate);
decimal* newInverseMassMatrixLimitMotor = reinterpret_cast<decimal*>(newImpulseMotor + nbComponentsToAllocate);
decimal* newInverseMassMatrixMotor = reinterpret_cast<decimal*>(newInverseMassMatrixLimitMotor + nbComponentsToAllocate);
decimal* newBLowerLimit = reinterpret_cast<decimal*>(newInverseMassMatrixMotor + nbComponentsToAllocate);
decimal* newBUpperLimit = reinterpret_cast<decimal*>(newBLowerLimit + nbComponentsToAllocate);
bool* newIsLimitEnabled = reinterpret_cast<bool*>(newBUpperLimit + nbComponentsToAllocate);
bool* newIsMotorEnabled = reinterpret_cast<bool*>(newIsLimitEnabled + nbComponentsToAllocate);
decimal* newLowerLimit = reinterpret_cast<decimal*>(newIsMotorEnabled + nbComponentsToAllocate);
decimal* newUpperLimit = reinterpret_cast<decimal*>(newLowerLimit + nbComponentsToAllocate);
bool* newIsLowerLimitViolated = reinterpret_cast<bool*>(newUpperLimit + nbComponentsToAllocate);
bool* newIsUpperLimitViolated = reinterpret_cast<bool*>(newIsLowerLimitViolated + nbComponentsToAllocate);
decimal* newMotorSpeed = reinterpret_cast<decimal*>(newIsUpperLimitViolated + nbComponentsToAllocate);
decimal* newMaxMotorTorque = reinterpret_cast<decimal*>(newMotorSpeed + nbComponentsToAllocate);
*/
// If there was already components before
if (mNbComponents > 0) {
// Copy component data from the previous buffer to the new one
memcpy(newJointEntities, mJointEntities, mNbComponents * sizeof(Entity));
memcpy(newJoints, mJoints, mNbComponents * sizeof(SliderJoint*));
memcpy(newLocalAnchorPointBody1, mLocalAnchorPointBody1, mNbComponents * sizeof(Vector3));
memcpy(newLocalAnchorPointBody2, mLocalAnchorPointBody2, mNbComponents * sizeof(Vector3));
memcpy(newI1, mI1, mNbComponents * sizeof(Matrix3x3));
memcpy(newI2, mI2, mNbComponents * sizeof(Matrix3x3));
memcpy(newImpulseTranslation, mImpulseTranslation, mNbComponents * sizeof(Vector2));
memcpy(newImpulseRotation, mImpulseRotation, mNbComponents * sizeof(Vector3));
memcpy(newInverseMassMatrixTranslation, mInverseMassMatrixTranslation, mNbComponents * sizeof(Matrix2x2));
memcpy(newInverseMassMatrixRotation, mInverseMassMatrixRotation, mNbComponents * sizeof(Matrix3x3));
memcpy(newBiasTranslation, mBiasTranslation, mNbComponents * sizeof(Vector2));
memcpy(newBiasRotation, mBiasRotation, mNbComponents * sizeof(Vector3));
memcpy(newInitOrientationDifferenceInv, mInitOrientationDifferenceInv, mNbComponents * sizeof(Quaternion));
/*
memcpy(newHingeLocalAxisBody1, mHingeLocalAxisBody1, mNbComponents * sizeof(Vector3));
memcpy(newHingeLocalAxisBody2, mHingeLocalAxisBody2, mNbComponents * sizeof(Vector3));
memcpy(newA1, mA1, mNbComponents * sizeof(Vector3));
memcpy(newB2CrossA1, mB2CrossA1, mNbComponents * sizeof(Vector3));
memcpy(newC2CrossA1, mC2CrossA1, mNbComponents * sizeof(Vector3));
memcpy(newImpulseLowerLimit, mImpulseLowerLimit, mNbComponents * sizeof(decimal));
memcpy(newImpulseUpperLimit, mImpulseUpperLimit, mNbComponents * sizeof(decimal));
memcpy(newImpulseMotor, mImpulseMotor, mNbComponents * sizeof(decimal));
memcpy(newInverseMassMatrixLimitMotor, mInverseMassMatrixLimitMotor, mNbComponents * sizeof(decimal));
memcpy(newInverseMassMatrixMotor, mInverseMassMatrixMotor, mNbComponents * sizeof(decimal));
memcpy(newBLowerLimit, mBLowerLimit, mNbComponents * sizeof(decimal));
memcpy(newBUpperLimit, mBUpperLimit, mNbComponents * sizeof(decimal));
memcpy(newIsLimitEnabled, mIsLimitEnabled, mNbComponents * sizeof(bool));
memcpy(newIsMotorEnabled, mIsMotorEnabled, mNbComponents * sizeof(bool));
memcpy(newLowerLimit, mLowerLimit, mNbComponents * sizeof(decimal));
memcpy(newUpperLimit, mUpperLimit, mNbComponents * sizeof(decimal));
memcpy(newIsLowerLimitViolated, mIsLowerLimitViolated, mNbComponents * sizeof(bool));
memcpy(newIsUpperLimitViolated, mIsUpperLimitViolated, mNbComponents * sizeof(bool));
memcpy(newMotorSpeed, mMotorSpeed, mNbComponents * sizeof(decimal));
memcpy(newMaxMotorTorque, mMaxMotorTorque, mNbComponents * sizeof(decimal));
*/
// Deallocate previous memory
mMemoryAllocator.release(mBuffer, mNbAllocatedComponents * mComponentDataSize);
}
mBuffer = newBuffer;
mJointEntities = newJointEntities;
mJoints = newJoints;
mNbAllocatedComponents = nbComponentsToAllocate;
mLocalAnchorPointBody1 = newLocalAnchorPointBody1;
mLocalAnchorPointBody2 = newLocalAnchorPointBody2;
mI1 = newI1;
mI2 = newI2;
mImpulseTranslation = newImpulseTranslation;
mImpulseRotation = newImpulseRotation;
mInverseMassMatrixTranslation = newInverseMassMatrixTranslation;
mInverseMassMatrixRotation = newInverseMassMatrixRotation;
mBiasTranslation = newBiasTranslation;
mBiasRotation = newBiasRotation;
mInitOrientationDifferenceInv = newInitOrientationDifferenceInv;
/*
mHingeLocalAxisBody1 = newHingeLocalAxisBody1;
mHingeLocalAxisBody2 = newHingeLocalAxisBody2;
mA1 = newA1;
mB2CrossA1 = newB2CrossA1;
mC2CrossA1 = newC2CrossA1;
mImpulseLowerLimit = newImpulseLowerLimit;
mImpulseUpperLimit = newImpulseUpperLimit;
mImpulseMotor = newImpulseMotor;
mInverseMassMatrixLimitMotor = newInverseMassMatrixLimitMotor;
mInverseMassMatrixMotor = newInverseMassMatrixMotor;
mBLowerLimit = newBLowerLimit;
mBUpperLimit = newBUpperLimit;
mIsLimitEnabled = newIsLimitEnabled;
mIsMotorEnabled = newIsMotorEnabled;
mLowerLimit = newLowerLimit;
mUpperLimit = newUpperLimit;
mIsLowerLimitViolated = newIsLowerLimitViolated;
mIsUpperLimitViolated = newIsUpperLimitViolated;
mMotorSpeed = newMotorSpeed;
mMaxMotorTorque = newMaxMotorTorque;
*/
}
// Add a component
void SliderJointComponents::addComponent(Entity jointEntity, bool isSleeping, const SliderJointComponent& component) {
// Prepare to add new component (allocate memory if necessary and compute insertion index)
uint32 index = prepareAddComponent(isSleeping);
// Insert the new component data
new (mJointEntities + index) Entity(jointEntity);
mJoints[index] = nullptr;
new (mLocalAnchorPointBody1 + index) Vector3(0, 0, 0);
new (mLocalAnchorPointBody2 + index) Vector3(0, 0, 0);
new (mI1 + index) Matrix3x3();
new (mI2 + index) Matrix3x3();
new (mImpulseTranslation + index) Vector2(0, 0);
new (mImpulseRotation + index) Vector3(0, 0, 0);
new (mInverseMassMatrixTranslation + index) Matrix2x2();
new (mInverseMassMatrixRotation + index) Matrix3x3();
new (mBiasTranslation + index) Vector2(0, 0);
new (mBiasRotation + index) Vector3(0, 0, 0);
new (mInitOrientationDifferenceInv + index) Quaternion(0, 0, 0, 0);
/*
new (mHingeLocalAxisBody1 + index) Vector3(0, 0, 0);
new (mHingeLocalAxisBody2 + index) Vector3(0, 0, 0);
new (mA1 + index) Vector3(0, 0, 0);
new (mB2CrossA1 + index) Vector3(0, 0, 0);
new (mC2CrossA1 + index) Vector3(0, 0, 0);
mImpulseLowerLimit[index] = decimal(0.0);
mImpulseUpperLimit[index] = decimal(0.0);
mInverseMassMatrixLimitMotor[index] = decimal(0.0);
mInverseMassMatrixMotor[index] = decimal(0.0);
mBLowerLimit[index] = decimal(0.0);
mBUpperLimit[index] = decimal(0.0);
mIsLimitEnabled[index] = component.isLimitEnabled;
mIsMotorEnabled[index] = component.isMotorEnabled;
mLowerLimit[index] = component.lowerLimit;
mUpperLimit[index] = component.upperLimit;
mIsLowerLimitViolated[index] = false;
mIsUpperLimitViolated[index] = false;
mMotorSpeed[index] = component.motorSpeed;
mMaxMotorTorque[index] = component.maxMotorTorque;
*/
// Map the entity with the new component lookup index
mMapEntityToComponentIndex.add(Pair<Entity, uint32>(jointEntity, index));
mNbComponents++;
assert(mDisabledStartIndex <= mNbComponents);
assert(mNbComponents == static_cast<uint32>(mMapEntityToComponentIndex.size()));
}
// Move a component from a source to a destination index in the components array
// The destination location must contain a constructed object
void SliderJointComponents::moveComponentToIndex(uint32 srcIndex, uint32 destIndex) {
const Entity entity = mJointEntities[srcIndex];
// Copy the data of the source component to the destination location
new (mJointEntities + destIndex) Entity(mJointEntities[srcIndex]);
mJoints[destIndex] = mJoints[srcIndex];
new (mLocalAnchorPointBody1 + destIndex) Vector3(mLocalAnchorPointBody1[srcIndex]);
new (mLocalAnchorPointBody2 + destIndex) Vector3(mLocalAnchorPointBody2[srcIndex]);
new (mI1 + destIndex) Matrix3x3(mI1[srcIndex]);
new (mI2 + destIndex) Matrix3x3(mI2[srcIndex]);
new (mImpulseTranslation + destIndex) Vector2(mImpulseTranslation[srcIndex]);
new (mImpulseRotation + destIndex) Vector3(mImpulseRotation[srcIndex]);
new (mInverseMassMatrixTranslation + destIndex) Matrix2x2(mInverseMassMatrixTranslation[srcIndex]);
new (mInverseMassMatrixRotation + destIndex) Matrix3x3(mInverseMassMatrixRotation[srcIndex]);
new (mBiasTranslation + destIndex) Vector2(mBiasTranslation[srcIndex]);
new (mBiasRotation + destIndex) Vector3(mBiasRotation[srcIndex]);
new (mInitOrientationDifferenceInv + destIndex) Quaternion(mInitOrientationDifferenceInv[srcIndex]);
/*
new (mHingeLocalAxisBody1 + destIndex) Vector3(mHingeLocalAxisBody1[srcIndex]);
new (mHingeLocalAxisBody2 + destIndex) Vector3(mHingeLocalAxisBody2[srcIndex]);
new (mA1 + destIndex) Vector3(mA1[srcIndex]);
new (mB2CrossA1 + destIndex) Vector3(mB2CrossA1[srcIndex]);
new (mC2CrossA1 + destIndex) Vector3(mC2CrossA1[srcIndex]);
mImpulseLowerLimit[destIndex] = mImpulseLowerLimit[srcIndex];
mImpulseUpperLimit[destIndex] = mImpulseUpperLimit[srcIndex];
mImpulseMotor[destIndex] = mImpulseMotor[srcIndex];
mInverseMassMatrixLimitMotor[destIndex] = mInverseMassMatrixLimitMotor[srcIndex];
mInverseMassMatrixMotor[destIndex] = mInverseMassMatrixMotor[srcIndex];
mBLowerLimit[destIndex] = mBLowerLimit[srcIndex];
mBUpperLimit[destIndex] = mBUpperLimit[srcIndex];
mIsLimitEnabled[destIndex] = mIsLimitEnabled[srcIndex];
mIsMotorEnabled[destIndex] = mIsMotorEnabled[srcIndex];
mLowerLimit[destIndex] = mLowerLimit[srcIndex];
mUpperLimit[destIndex] = mUpperLimit[srcIndex];
mIsLowerLimitViolated[destIndex] = mIsLowerLimitViolated[srcIndex];
mIsUpperLimitViolated[destIndex] = mIsUpperLimitViolated[srcIndex];
mMotorSpeed[destIndex] = mMotorSpeed[srcIndex];
mMaxMotorTorque[destIndex] = mMaxMotorTorque[srcIndex];
*/
// Destroy the source component
destroyComponent(srcIndex);
assert(!mMapEntityToComponentIndex.containsKey(entity));
// Update the entity to component index mapping
mMapEntityToComponentIndex.add(Pair<Entity, uint32>(entity, destIndex));
assert(mMapEntityToComponentIndex[mJointEntities[destIndex]] == destIndex);
}
// Swap two components in the array
void SliderJointComponents::swapComponents(uint32 index1, uint32 index2) {
// Copy component 1 data
Entity jointEntity1(mJointEntities[index1]);
SliderJoint* joint1 = mJoints[index1];
Vector3 localAnchorPointBody1(mLocalAnchorPointBody1[index1]);
Vector3 localAnchorPointBody2(mLocalAnchorPointBody2[index1]);
Matrix3x3 i11(mI1[index1]);
Matrix3x3 i21(mI2[index1]);
Vector2 impulseTranslation1(mImpulseTranslation[index1]);
Vector3 impulseRotation1(mImpulseRotation[index1]);
Matrix2x2 inverseMassMatrixTranslation1(mInverseMassMatrixTranslation[index1]);
Matrix3x3 inverseMassMatrixRotation1(mInverseMassMatrixRotation[index1]);
Vector2 biasTranslation1(mBiasTranslation[index1]);
Vector3 biasRotation1(mBiasRotation[index1]);
Quaternion initOrientationDifferenceInv1(mInitOrientationDifferenceInv[index1]);
/*
Vector3 hingeLocalAxisBody1(mHingeLocalAxisBody1[index1]);
Vector3 hingeLocalAxisBody2(mHingeLocalAxisBody2[index1]);
Vector3 a1(mA1[index1]);
Vector3 b2CrossA1(mB2CrossA1[index1]);
Vector3 c2CrossA1(mC2CrossA1[index1]);
decimal impulseLowerLimit(mImpulseLowerLimit[index1]);
decimal impulseUpperLimit(mImpulseUpperLimit[index1]);
decimal impulseMotor(mImpulseMotor[index1]);
decimal inverseMassMatrixLimitMotor(mInverseMassMatrixLimitMotor[index1]);
decimal inverseMassMatrixMotor(mInverseMassMatrixMotor[index1]);
decimal bLowerLimit(mBLowerLimit[index1]);
decimal bUpperLimit(mUpperLimit[index1]);
bool isLimitEnabled(mIsLimitEnabled[index1]);
bool isMotorEnabled(mIsMotorEnabled[index1]);
decimal lowerLimit(mLowerLimit[index1]);
decimal upperLimit(mUpperLimit[index1]);
bool isLowerLimitViolated(mIsLowerLimitViolated[index1]);
bool isUpperLimitViolated(mIsUpperLimitViolated[index1]);
decimal motorSpeed(mMotorSpeed[index1]);
decimal maxMotorTorque(mMaxMotorTorque[index1]);
*/
// Destroy component 1
destroyComponent(index1);
moveComponentToIndex(index2, index1);
// Reconstruct component 1 at component 2 location
new (mJointEntities + index2) Entity(jointEntity1);
mJoints[index2] = joint1;
new (mLocalAnchorPointBody1 + index2) Vector3(localAnchorPointBody1);
new (mLocalAnchorPointBody2 + index2) Vector3(localAnchorPointBody2);
new (mI1 + index2) Matrix3x3(i11);
new (mI2 + index2) Matrix3x3(i21);
new (mImpulseTranslation + index2) Vector2(impulseTranslation1);
new (mImpulseRotation + index2) Vector3(impulseRotation1);
new (mInverseMassMatrixTranslation + index2) Matrix2x2(inverseMassMatrixTranslation1);
new (mInverseMassMatrixRotation + index2) Matrix3x3(inverseMassMatrixRotation1);
new (mBiasTranslation + index2) Vector2(biasTranslation1);
new (mBiasRotation + index2) Vector3(biasRotation1);
new (mInitOrientationDifferenceInv + index2) Quaternion(initOrientationDifferenceInv1);
/*
new (mHingeLocalAxisBody1 + index2) Vector3(hingeLocalAxisBody1);
new (mHingeLocalAxisBody2 + index2) Vector3(hingeLocalAxisBody2);
new (mA1 + index2) Vector3(a1);
new (mB2CrossA1 + index2) Vector3(b2CrossA1);
new (mC2CrossA1 + index2) Vector3(c2CrossA1);
mImpulseLowerLimit[index2] = impulseLowerLimit;
mImpulseUpperLimit[index2] = impulseUpperLimit;
mImpulseMotor[index2] = impulseMotor;
mInverseMassMatrixLimitMotor[index2] = inverseMassMatrixLimitMotor;
mInverseMassMatrixMotor[index2] = inverseMassMatrixMotor;
mBLowerLimit[index2] = bLowerLimit;
mBUpperLimit[index2] = bUpperLimit;
mIsLimitEnabled[index2] = isLimitEnabled;
mIsMotorEnabled[index2] = isMotorEnabled;
mLowerLimit[index2] = lowerLimit;
mUpperLimit[index2] = upperLimit;
mIsLowerLimitViolated[index2] = isLowerLimitViolated;
mIsUpperLimitViolated[index2] = isUpperLimitViolated;
mMotorSpeed[index2] = motorSpeed;
mMaxMotorTorque[index2] = maxMotorTorque;
*/
// Update the entity to component index mapping
mMapEntityToComponentIndex.add(Pair<Entity, uint32>(jointEntity1, index2));
assert(mMapEntityToComponentIndex[mJointEntities[index1]] == index1);
assert(mMapEntityToComponentIndex[mJointEntities[index2]] == index2);
assert(mNbComponents == static_cast<uint32>(mMapEntityToComponentIndex.size()));
}
// Destroy a component at a given index
void SliderJointComponents::destroyComponent(uint32 index) {
Components::destroyComponent(index);
assert(mMapEntityToComponentIndex[mJointEntities[index]] == index);
mMapEntityToComponentIndex.remove(mJointEntities[index]);
mJointEntities[index].~Entity();
mJoints[index] = nullptr;
mLocalAnchorPointBody1[index].~Vector3();
mLocalAnchorPointBody2[index].~Vector3();
mI1[index].~Matrix3x3();
mI2[index].~Matrix3x3();
mImpulseTranslation[index].~Vector2();
mImpulseRotation[index].~Vector3();
mInverseMassMatrixTranslation[index].~Matrix2x2();
mInverseMassMatrixRotation[index].~Matrix3x3();
mBiasTranslation[index].~Vector2();
mBiasRotation[index].~Vector3();
mInitOrientationDifferenceInv[index].~Quaternion();
/*
mHingeLocalAxisBody1[index].~Vector3();
mHingeLocalAxisBody2[index].~Vector3();
mA1[index].~Vector3();
mB2CrossA1[index].~Vector3();
mC2CrossA1[index].~Vector3();
*/
}