191 lines
5.1 KiB
Plaintext
191 lines
5.1 KiB
Plaintext
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#ifndef EIGEN_ALIGNED_VECTOR3
|
||
|
#define EIGEN_ALIGNED_VECTOR3
|
||
|
|
||
|
#include <Eigen/Geometry>
|
||
|
|
||
|
namespace Eigen {
|
||
|
|
||
|
/**
|
||
|
* \defgroup AlignedVector3_Module Aligned vector3 module
|
||
|
*
|
||
|
* \code
|
||
|
* #include <unsupported/Eigen/AlignedVector3>
|
||
|
* \endcode
|
||
|
*/
|
||
|
//@{
|
||
|
|
||
|
|
||
|
/** \class AlignedVector3
|
||
|
*
|
||
|
* \brief A vectorization friendly 3D vector
|
||
|
*
|
||
|
* This class represents a 3D vector internally using a 4D vector
|
||
|
* such that vectorization can be seamlessly enabled. Of course,
|
||
|
* the same result can be achieved by directly using a 4D vector.
|
||
|
* This class makes this process simpler.
|
||
|
*
|
||
|
*/
|
||
|
// TODO specialize Cwise
|
||
|
template<typename _Scalar> class AlignedVector3;
|
||
|
|
||
|
namespace internal {
|
||
|
template<typename _Scalar> struct traits<AlignedVector3<_Scalar> >
|
||
|
: traits<Matrix<_Scalar,3,1,0,4,1> >
|
||
|
{
|
||
|
};
|
||
|
}
|
||
|
|
||
|
template<typename _Scalar> class AlignedVector3
|
||
|
: public MatrixBase<AlignedVector3<_Scalar> >
|
||
|
{
|
||
|
typedef Matrix<_Scalar,4,1> CoeffType;
|
||
|
CoeffType m_coeffs;
|
||
|
public:
|
||
|
|
||
|
typedef MatrixBase<AlignedVector3<_Scalar> > Base;
|
||
|
EIGEN_DENSE_PUBLIC_INTERFACE(AlignedVector3)
|
||
|
using Base::operator*;
|
||
|
|
||
|
inline Index rows() const { return 3; }
|
||
|
inline Index cols() const { return 1; }
|
||
|
|
||
|
inline const Scalar& coeff(Index row, Index col) const
|
||
|
{ return m_coeffs.coeff(row, col); }
|
||
|
|
||
|
inline Scalar& coeffRef(Index row, Index col)
|
||
|
{ return m_coeffs.coeffRef(row, col); }
|
||
|
|
||
|
inline const Scalar& coeff(Index index) const
|
||
|
{ return m_coeffs.coeff(index); }
|
||
|
|
||
|
inline Scalar& coeffRef(Index index)
|
||
|
{ return m_coeffs.coeffRef(index);}
|
||
|
|
||
|
|
||
|
inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z)
|
||
|
: m_coeffs(x, y, z, Scalar(0))
|
||
|
{}
|
||
|
|
||
|
inline AlignedVector3(const AlignedVector3& other)
|
||
|
: Base(), m_coeffs(other.m_coeffs)
|
||
|
{}
|
||
|
|
||
|
template<typename XprType, int Size=XprType::SizeAtCompileTime>
|
||
|
struct generic_assign_selector {};
|
||
|
|
||
|
template<typename XprType> struct generic_assign_selector<XprType,4>
|
||
|
{
|
||
|
inline static void run(AlignedVector3& dest, const XprType& src)
|
||
|
{
|
||
|
dest.m_coeffs = src;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename XprType> struct generic_assign_selector<XprType,3>
|
||
|
{
|
||
|
inline static void run(AlignedVector3& dest, const XprType& src)
|
||
|
{
|
||
|
dest.m_coeffs.template head<3>() = src;
|
||
|
dest.m_coeffs.w() = Scalar(0);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<typename Derived>
|
||
|
inline explicit AlignedVector3(const MatrixBase<Derived>& other)
|
||
|
{
|
||
|
generic_assign_selector<Derived>::run(*this,other.derived());
|
||
|
}
|
||
|
|
||
|
inline AlignedVector3& operator=(const AlignedVector3& other)
|
||
|
{ m_coeffs = other.m_coeffs; return *this; }
|
||
|
|
||
|
|
||
|
inline AlignedVector3 operator+(const AlignedVector3& other) const
|
||
|
{ return AlignedVector3(m_coeffs + other.m_coeffs); }
|
||
|
|
||
|
inline AlignedVector3& operator+=(const AlignedVector3& other)
|
||
|
{ m_coeffs += other.m_coeffs; return *this; }
|
||
|
|
||
|
inline AlignedVector3 operator-(const AlignedVector3& other) const
|
||
|
{ return AlignedVector3(m_coeffs - other.m_coeffs); }
|
||
|
|
||
|
inline AlignedVector3 operator-=(const AlignedVector3& other)
|
||
|
{ m_coeffs -= other.m_coeffs; return *this; }
|
||
|
|
||
|
inline AlignedVector3 operator*(const Scalar& s) const
|
||
|
{ return AlignedVector3(m_coeffs * s); }
|
||
|
|
||
|
inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec)
|
||
|
{ return AlignedVector3(s * vec.m_coeffs); }
|
||
|
|
||
|
inline AlignedVector3& operator*=(const Scalar& s)
|
||
|
{ m_coeffs *= s; return *this; }
|
||
|
|
||
|
inline AlignedVector3 operator/(const Scalar& s) const
|
||
|
{ return AlignedVector3(m_coeffs / s); }
|
||
|
|
||
|
inline AlignedVector3& operator/=(const Scalar& s)
|
||
|
{ m_coeffs /= s; return *this; }
|
||
|
|
||
|
inline Scalar dot(const AlignedVector3& other) const
|
||
|
{
|
||
|
eigen_assert(m_coeffs.w()==Scalar(0));
|
||
|
eigen_assert(other.m_coeffs.w()==Scalar(0));
|
||
|
return m_coeffs.dot(other.m_coeffs);
|
||
|
}
|
||
|
|
||
|
inline void normalize()
|
||
|
{
|
||
|
m_coeffs /= norm();
|
||
|
}
|
||
|
|
||
|
inline AlignedVector3 normalized()
|
||
|
{
|
||
|
return AlignedVector3(m_coeffs / norm());
|
||
|
}
|
||
|
|
||
|
inline Scalar sum() const
|
||
|
{
|
||
|
eigen_assert(m_coeffs.w()==Scalar(0));
|
||
|
return m_coeffs.sum();
|
||
|
}
|
||
|
|
||
|
inline Scalar squaredNorm() const
|
||
|
{
|
||
|
eigen_assert(m_coeffs.w()==Scalar(0));
|
||
|
return m_coeffs.squaredNorm();
|
||
|
}
|
||
|
|
||
|
inline Scalar norm() const
|
||
|
{
|
||
|
using std::sqrt;
|
||
|
return sqrt(squaredNorm());
|
||
|
}
|
||
|
|
||
|
inline AlignedVector3 cross(const AlignedVector3& other) const
|
||
|
{
|
||
|
return AlignedVector3(m_coeffs.cross3(other.m_coeffs));
|
||
|
}
|
||
|
|
||
|
template<typename Derived>
|
||
|
inline bool isApprox(const MatrixBase<Derived>& other, RealScalar eps=NumTraits<Scalar>::dummy_precision()) const
|
||
|
{
|
||
|
return m_coeffs.template head<3>().isApprox(other,eps);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
//@}
|
||
|
|
||
|
}
|
||
|
|
||
|
#endif // EIGEN_ALIGNED_VECTOR3
|