273 lines
8.1 KiB
FortranFixed
273 lines
8.1 KiB
FortranFixed
|
SUBROUTINE CHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
|
||
|
* .. Scalar Arguments ..
|
||
|
COMPLEX ALPHA,BETA
|
||
|
INTEGER INCX,INCY,N
|
||
|
CHARACTER UPLO
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX AP(*),X(*),Y(*)
|
||
|
* ..
|
||
|
*
|
||
|
* Purpose
|
||
|
* =======
|
||
|
*
|
||
|
* CHPMV performs the matrix-vector operation
|
||
|
*
|
||
|
* y := alpha*A*x + beta*y,
|
||
|
*
|
||
|
* where alpha and beta are scalars, x and y are n element vectors and
|
||
|
* A is an n by n hermitian matrix, supplied in packed form.
|
||
|
*
|
||
|
* Arguments
|
||
|
* ==========
|
||
|
*
|
||
|
* UPLO - CHARACTER*1.
|
||
|
* On entry, UPLO specifies whether the upper or lower
|
||
|
* triangular part of the matrix A is supplied in the packed
|
||
|
* array AP as follows:
|
||
|
*
|
||
|
* UPLO = 'U' or 'u' The upper triangular part of A is
|
||
|
* supplied in AP.
|
||
|
*
|
||
|
* UPLO = 'L' or 'l' The lower triangular part of A is
|
||
|
* supplied in AP.
|
||
|
*
|
||
|
* Unchanged on exit.
|
||
|
*
|
||
|
* N - INTEGER.
|
||
|
* On entry, N specifies the order of the matrix A.
|
||
|
* N must be at least zero.
|
||
|
* Unchanged on exit.
|
||
|
*
|
||
|
* ALPHA - COMPLEX .
|
||
|
* On entry, ALPHA specifies the scalar alpha.
|
||
|
* Unchanged on exit.
|
||
|
*
|
||
|
* AP - COMPLEX array of DIMENSION at least
|
||
|
* ( ( n*( n + 1 ) )/2 ).
|
||
|
* Before entry with UPLO = 'U' or 'u', the array AP must
|
||
|
* contain the upper triangular part of the hermitian matrix
|
||
|
* packed sequentially, column by column, so that AP( 1 )
|
||
|
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
|
||
|
* and a( 2, 2 ) respectively, and so on.
|
||
|
* Before entry with UPLO = 'L' or 'l', the array AP must
|
||
|
* contain the lower triangular part of the hermitian matrix
|
||
|
* packed sequentially, column by column, so that AP( 1 )
|
||
|
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
|
||
|
* and a( 3, 1 ) respectively, and so on.
|
||
|
* Note that the imaginary parts of the diagonal elements need
|
||
|
* not be set and are assumed to be zero.
|
||
|
* Unchanged on exit.
|
||
|
*
|
||
|
* X - COMPLEX array of dimension at least
|
||
|
* ( 1 + ( n - 1 )*abs( INCX ) ).
|
||
|
* Before entry, the incremented array X must contain the n
|
||
|
* element vector x.
|
||
|
* Unchanged on exit.
|
||
|
*
|
||
|
* INCX - INTEGER.
|
||
|
* On entry, INCX specifies the increment for the elements of
|
||
|
* X. INCX must not be zero.
|
||
|
* Unchanged on exit.
|
||
|
*
|
||
|
* BETA - COMPLEX .
|
||
|
* On entry, BETA specifies the scalar beta. When BETA is
|
||
|
* supplied as zero then Y need not be set on input.
|
||
|
* Unchanged on exit.
|
||
|
*
|
||
|
* Y - COMPLEX array of dimension at least
|
||
|
* ( 1 + ( n - 1 )*abs( INCY ) ).
|
||
|
* Before entry, the incremented array Y must contain the n
|
||
|
* element vector y. On exit, Y is overwritten by the updated
|
||
|
* vector y.
|
||
|
*
|
||
|
* INCY - INTEGER.
|
||
|
* On entry, INCY specifies the increment for the elements of
|
||
|
* Y. INCY must not be zero.
|
||
|
* Unchanged on exit.
|
||
|
*
|
||
|
* Further Details
|
||
|
* ===============
|
||
|
*
|
||
|
* Level 2 Blas routine.
|
||
|
*
|
||
|
* -- Written on 22-October-1986.
|
||
|
* Jack Dongarra, Argonne National Lab.
|
||
|
* Jeremy Du Croz, Nag Central Office.
|
||
|
* Sven Hammarling, Nag Central Office.
|
||
|
* Richard Hanson, Sandia National Labs.
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
COMPLEX ONE
|
||
|
PARAMETER (ONE= (1.0E+0,0.0E+0))
|
||
|
COMPLEX ZERO
|
||
|
PARAMETER (ZERO= (0.0E+0,0.0E+0))
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
COMPLEX TEMP1,TEMP2
|
||
|
INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC CONJG,REAL
|
||
|
* ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
||
|
INFO = 1
|
||
|
ELSE IF (N.LT.0) THEN
|
||
|
INFO = 2
|
||
|
ELSE IF (INCX.EQ.0) THEN
|
||
|
INFO = 6
|
||
|
ELSE IF (INCY.EQ.0) THEN
|
||
|
INFO = 9
|
||
|
END IF
|
||
|
IF (INFO.NE.0) THEN
|
||
|
CALL XERBLA('CHPMV ',INFO)
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible.
|
||
|
*
|
||
|
IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
|
||
|
*
|
||
|
* Set up the start points in X and Y.
|
||
|
*
|
||
|
IF (INCX.GT.0) THEN
|
||
|
KX = 1
|
||
|
ELSE
|
||
|
KX = 1 - (N-1)*INCX
|
||
|
END IF
|
||
|
IF (INCY.GT.0) THEN
|
||
|
KY = 1
|
||
|
ELSE
|
||
|
KY = 1 - (N-1)*INCY
|
||
|
END IF
|
||
|
*
|
||
|
* Start the operations. In this version the elements of the array AP
|
||
|
* are accessed sequentially with one pass through AP.
|
||
|
*
|
||
|
* First form y := beta*y.
|
||
|
*
|
||
|
IF (BETA.NE.ONE) THEN
|
||
|
IF (INCY.EQ.1) THEN
|
||
|
IF (BETA.EQ.ZERO) THEN
|
||
|
DO 10 I = 1,N
|
||
|
Y(I) = ZERO
|
||
|
10 CONTINUE
|
||
|
ELSE
|
||
|
DO 20 I = 1,N
|
||
|
Y(I) = BETA*Y(I)
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
IY = KY
|
||
|
IF (BETA.EQ.ZERO) THEN
|
||
|
DO 30 I = 1,N
|
||
|
Y(IY) = ZERO
|
||
|
IY = IY + INCY
|
||
|
30 CONTINUE
|
||
|
ELSE
|
||
|
DO 40 I = 1,N
|
||
|
Y(IY) = BETA*Y(IY)
|
||
|
IY = IY + INCY
|
||
|
40 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
IF (ALPHA.EQ.ZERO) RETURN
|
||
|
KK = 1
|
||
|
IF (LSAME(UPLO,'U')) THEN
|
||
|
*
|
||
|
* Form y when AP contains the upper triangle.
|
||
|
*
|
||
|
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
|
||
|
DO 60 J = 1,N
|
||
|
TEMP1 = ALPHA*X(J)
|
||
|
TEMP2 = ZERO
|
||
|
K = KK
|
||
|
DO 50 I = 1,J - 1
|
||
|
Y(I) = Y(I) + TEMP1*AP(K)
|
||
|
TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
|
||
|
K = K + 1
|
||
|
50 CONTINUE
|
||
|
Y(J) = Y(J) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
|
||
|
KK = KK + J
|
||
|
60 CONTINUE
|
||
|
ELSE
|
||
|
JX = KX
|
||
|
JY = KY
|
||
|
DO 80 J = 1,N
|
||
|
TEMP1 = ALPHA*X(JX)
|
||
|
TEMP2 = ZERO
|
||
|
IX = KX
|
||
|
IY = KY
|
||
|
DO 70 K = KK,KK + J - 2
|
||
|
Y(IY) = Y(IY) + TEMP1*AP(K)
|
||
|
TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
|
||
|
IX = IX + INCX
|
||
|
IY = IY + INCY
|
||
|
70 CONTINUE
|
||
|
Y(JY) = Y(JY) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
|
||
|
JX = JX + INCX
|
||
|
JY = JY + INCY
|
||
|
KK = KK + J
|
||
|
80 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
*
|
||
|
* Form y when AP contains the lower triangle.
|
||
|
*
|
||
|
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
|
||
|
DO 100 J = 1,N
|
||
|
TEMP1 = ALPHA*X(J)
|
||
|
TEMP2 = ZERO
|
||
|
Y(J) = Y(J) + TEMP1*REAL(AP(KK))
|
||
|
K = KK + 1
|
||
|
DO 90 I = J + 1,N
|
||
|
Y(I) = Y(I) + TEMP1*AP(K)
|
||
|
TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
|
||
|
K = K + 1
|
||
|
90 CONTINUE
|
||
|
Y(J) = Y(J) + ALPHA*TEMP2
|
||
|
KK = KK + (N-J+1)
|
||
|
100 CONTINUE
|
||
|
ELSE
|
||
|
JX = KX
|
||
|
JY = KY
|
||
|
DO 120 J = 1,N
|
||
|
TEMP1 = ALPHA*X(JX)
|
||
|
TEMP2 = ZERO
|
||
|
Y(JY) = Y(JY) + TEMP1*REAL(AP(KK))
|
||
|
IX = JX
|
||
|
IY = JY
|
||
|
DO 110 K = KK + 1,KK + N - J
|
||
|
IX = IX + INCX
|
||
|
IY = IY + INCY
|
||
|
Y(IY) = Y(IY) + TEMP1*AP(K)
|
||
|
TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
|
||
|
110 CONTINUE
|
||
|
Y(JY) = Y(JY) + ALPHA*TEMP2
|
||
|
JX = JX + INCX
|
||
|
JY = JY + INCY
|
||
|
KK = KK + (N-J+1)
|
||
|
120 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CHPMV .
|
||
|
*
|
||
|
END
|