reactphysics3d/testbed/nanogui/ext/eigen/unsupported/doc/examples/PolynomialSolver1.cpp

54 lines
2.3 KiB
C++
Raw Normal View History

#include <unsupported/Eigen/Polynomials>
#include <vector>
#include <iostream>
using namespace Eigen;
using namespace std;
int main()
{
typedef Matrix<double,5,1> Vector5d;
Vector5d roots = Vector5d::Random();
cout << "Roots: " << roots.transpose() << endl;
Eigen::Matrix<double,6,1> polynomial;
roots_to_monicPolynomial( roots, polynomial );
PolynomialSolver<double,5> psolve( polynomial );
cout << "Complex roots: " << psolve.roots().transpose() << endl;
std::vector<double> realRoots;
psolve.realRoots( realRoots );
Map<Vector5d> mapRR( &realRoots[0] );
cout << "Real roots: " << mapRR.transpose() << endl;
cout << endl;
cout << "Illustration of the convergence problem with the QR algorithm: " << endl;
cout << "---------------------------------------------------------------" << endl;
Eigen::Matrix<float,7,1> hardCase_polynomial;
hardCase_polynomial <<
-0.957, 0.9219, 0.3516, 0.9453, -0.4023, -0.5508, -0.03125;
cout << "Hard case polynomial defined by floats: " << hardCase_polynomial.transpose() << endl;
PolynomialSolver<float,6> psolvef( hardCase_polynomial );
cout << "Complex roots: " << psolvef.roots().transpose() << endl;
Eigen::Matrix<float,6,1> evals;
for( int i=0; i<6; ++i ){ evals[i] = std::abs( poly_eval( hardCase_polynomial, psolvef.roots()[i] ) ); }
cout << "Norms of the evaluations of the polynomial at the roots: " << evals.transpose() << endl << endl;
cout << "Using double's almost always solves the problem for small degrees: " << endl;
cout << "-------------------------------------------------------------------" << endl;
PolynomialSolver<double,6> psolve6d( hardCase_polynomial.cast<double>() );
cout << "Complex roots: " << psolve6d.roots().transpose() << endl;
for( int i=0; i<6; ++i )
{
std::complex<float> castedRoot( psolve6d.roots()[i].real(), psolve6d.roots()[i].imag() );
evals[i] = std::abs( poly_eval( hardCase_polynomial, castedRoot ) );
}
cout << "Norms of the evaluations of the polynomial at the roots: " << evals.transpose() << endl << endl;
cout.precision(10);
cout << "The last root in float then in double: " << psolvef.roots()[5] << "\t" << psolve6d.roots()[5] << endl;
std::complex<float> castedRoot( psolve6d.roots()[5].real(), psolve6d.roots()[5].imag() );
cout << "Norm of the difference: " << std::abs( psolvef.roots()[5] - castedRoot ) << endl;
}