reactphysics3d/testbed/nanogui/ext/eigen/unsupported/test/svd_common.h

262 lines
8.7 KiB
C
Raw Normal View History

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// discard stack allocation as that too bypasses malloc
#define EIGEN_STACK_ALLOCATION_LIMIT 0
#define EIGEN_RUNTIME_NO_MALLOC
#include "main.h"
#include <unsupported/Eigen/SVD>
#include <Eigen/LU>
// check if "svd" is the good image of "m"
template<typename MatrixType, typename SVD>
void svd_check_full(const MatrixType& m, const SVD& svd)
{
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
MatrixType sigma = MatrixType::Zero(rows, cols);
sigma.diagonal() = svd.singularValues().template cast<Scalar>();
MatrixUType u = svd.matrixU();
MatrixVType v = svd.matrixV();
VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
VERIFY_IS_UNITARY(u);
VERIFY_IS_UNITARY(v);
} // end svd_check_full
// Compare to a reference value
template<typename MatrixType, typename SVD>
void svd_compare_to_full(const MatrixType& m,
unsigned int computationOptions,
const SVD& referenceSvd)
{
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
Index diagSize = (std::min)(rows, cols);
SVD svd(m, computationOptions);
VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
if(computationOptions & ComputeFullU)
VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
if(computationOptions & ComputeThinU)
VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
if(computationOptions & ComputeFullV)
VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV());
if(computationOptions & ComputeThinV)
VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
} // end svd_compare_to_full
template<typename MatrixType, typename SVD>
void svd_solve(const MatrixType& m, unsigned int computationOptions)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
SVD svd(m, computationOptions);
SolutionType x = svd.solve(rhs);
// evaluate normal equation which works also for least-squares solutions
VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
} // end svd_solve
// test computations options
// 2 functions because Jacobisvd can return before the second function
template<typename MatrixType, typename SVD>
void svd_test_computation_options_1(const MatrixType& m, const SVD& fullSvd)
{
svd_check_full< MatrixType, SVD >(m, fullSvd);
svd_solve< MatrixType, SVD >(m, ComputeFullU | ComputeFullV);
}
template<typename MatrixType, typename SVD>
void svd_test_computation_options_2(const MatrixType& m, const SVD& fullSvd)
{
svd_compare_to_full< MatrixType, SVD >(m, ComputeFullU, fullSvd);
svd_compare_to_full< MatrixType, SVD >(m, ComputeFullV, fullSvd);
svd_compare_to_full< MatrixType, SVD >(m, 0, fullSvd);
if (MatrixType::ColsAtCompileTime == Dynamic) {
// thin U/V are only available with dynamic number of columns
svd_compare_to_full< MatrixType, SVD >(m, ComputeFullU|ComputeThinV, fullSvd);
svd_compare_to_full< MatrixType, SVD >(m, ComputeThinV, fullSvd);
svd_compare_to_full< MatrixType, SVD >(m, ComputeThinU|ComputeFullV, fullSvd);
svd_compare_to_full< MatrixType, SVD >(m, ComputeThinU , fullSvd);
svd_compare_to_full< MatrixType, SVD >(m, ComputeThinU|ComputeThinV, fullSvd);
svd_solve<MatrixType, SVD>(m, ComputeFullU | ComputeThinV);
svd_solve<MatrixType, SVD>(m, ComputeThinU | ComputeFullV);
svd_solve<MatrixType, SVD>(m, ComputeThinU | ComputeThinV);
typedef typename MatrixType::Index Index;
Index diagSize = (std::min)(m.rows(), m.cols());
SVD svd(m, ComputeThinU | ComputeThinV);
VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
}
}
template<typename MatrixType, typename SVD>
void svd_verify_assert(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
RhsType rhs(rows);
SVD svd;
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.singularValues())
VERIFY_RAISES_ASSERT(svd.matrixV())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
MatrixType a = MatrixType::Zero(rows, cols);
a.setZero();
svd.compute(a, 0);
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.matrixV())
svd.singularValues();
VERIFY_RAISES_ASSERT(svd.solve(rhs))
if (ColsAtCompileTime == Dynamic)
{
svd.compute(a, ComputeThinU);
svd.matrixU();
VERIFY_RAISES_ASSERT(svd.matrixV())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
svd.compute(a, ComputeThinV);
svd.matrixV();
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
}
else
{
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
}
}
// work around stupid msvc error when constructing at compile time an expression that involves
// a division by zero, even if the numeric type has floating point
template<typename Scalar>
EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
// workaround aggressive optimization in ICC
template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
template<typename MatrixType, typename SVD>
void svd_inf_nan()
{
// all this function does is verify we don't iterate infinitely on nan/inf values
SVD svd;
typedef typename MatrixType::Scalar Scalar;
Scalar some_inf = Scalar(1) / zero<Scalar>();
VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
Scalar some_nan = zero<Scalar> () / zero<Scalar> ();
VERIFY(some_nan != some_nan);
svd.compute(MatrixType::Constant(10,10,some_nan), ComputeFullU | ComputeFullV);
MatrixType m = MatrixType::Zero(10,10);
m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
svd.compute(m, ComputeFullU | ComputeFullV);
m = MatrixType::Zero(10,10);
m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_nan;
svd.compute(m, ComputeFullU | ComputeFullV);
}
template<typename SVD>
void svd_preallocate()
{
Vector3f v(3.f, 2.f, 1.f);
MatrixXf m = v.asDiagonal();
internal::set_is_malloc_allowed(false);
VERIFY_RAISES_ASSERT(VectorXf v(10);)
SVD svd;
internal::set_is_malloc_allowed(true);
svd.compute(m);
VERIFY_IS_APPROX(svd.singularValues(), v);
SVD svd2(3,3);
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
VERIFY_IS_APPROX(svd2.singularValues(), v);
VERIFY_RAISES_ASSERT(svd2.matrixU());
VERIFY_RAISES_ASSERT(svd2.matrixV());
svd2.compute(m, ComputeFullU | ComputeFullV);
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
SVD svd3(3,3,ComputeFullU|ComputeFullV);
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
VERIFY_IS_APPROX(svd2.singularValues(), v);
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
internal::set_is_malloc_allowed(false);
svd2.compute(m, ComputeFullU|ComputeFullV);
internal::set_is_malloc_allowed(true);
}