reactphysics3d/testbed/common/Sphere.cpp

180 lines
7.8 KiB
C++
Raw Normal View History

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2015 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "Sphere.h"
// Constructor
Sphere::Sphere(float radius, const openglframework::Vector3 &position,
reactphysics3d::CollisionWorld* world,
const std::string& meshFolderPath)
: openglframework::Mesh(), mRadius(radius) {
// Load the mesh from a file
openglframework::MeshReaderWriter::loadMeshFromFile(meshFolderPath + "sphere.obj", *this);
// Calculate the normals of the mesh
calculateNormals();
// Compute the scaling matrix
mScalingMatrix = openglframework::Matrix4(mRadius, 0, 0, 0,
0, mRadius, 0, 0,
0, 0, mRadius, 0,
0, 0, 0, 1);
// Initialize the position where the sphere will be rendered
translateWorld(position);
// Create the collision shape for the rigid body (sphere shape)
// ReactPhysics3D will clone this object to create an internal one. Therefore,
// it is OK if this object is destroyed right after calling RigidBody::addCollisionShape()
const rp3d::SphereShape collisionShape(mRadius);
// Initial position and orientation of the rigid body
rp3d::Vector3 initPosition(position.x, position.y, position.z);
rp3d::Quaternion initOrientation = rp3d::Quaternion::identity();
rp3d::Transform transform(initPosition, initOrientation);
// Create a rigid body corresponding to the sphere in the dynamics world
mRigidBody = world->createCollisionBody(transform);
// Add a collision shape to the body and specify the mass of the shape
mRigidBody->addCollisionShape(collisionShape, rp3d::Transform::identity());
mTransformMatrix = mTransformMatrix * mScalingMatrix;
}
// Constructor
Sphere::Sphere(float radius, const openglframework::Vector3 &position,
float mass, reactphysics3d::DynamicsWorld* world,
const std::string& meshFolderPath)
: openglframework::Mesh(), mRadius(radius) {
// Load the mesh from a file
openglframework::MeshReaderWriter::loadMeshFromFile(meshFolderPath + "sphere.obj", *this);
// Calculate the normals of the mesh
calculateNormals();
// Compute the scaling matrix
mScalingMatrix = openglframework::Matrix4(mRadius, 0, 0, 0,
0, mRadius, 0, 0,
0, 0, mRadius, 0,
0, 0, 0, 1);
// Initialize the position where the sphere will be rendered
translateWorld(position);
// Create the collision shape for the rigid body (sphere shape)
// ReactPhysics3D will clone this object to create an internal one. Therefore,
// it is OK if this object is destroyed right after calling RigidBody::addCollisionShape()
const rp3d::SphereShape collisionShape(mRadius);
// Initial position and orientation of the rigid body
rp3d::Vector3 initPosition(position.x, position.y, position.z);
rp3d::Quaternion initOrientation = rp3d::Quaternion::identity();
rp3d::Transform transform(initPosition, initOrientation);
// Create a rigid body corresponding to the sphere in the dynamics world
rp3d::RigidBody* body = world->createRigidBody(transform);
// Add a collision shape to the body and specify the mass of the shape
body->addCollisionShape(collisionShape, rp3d::Transform::identity(), mass);
mRigidBody = body;
mTransformMatrix = mTransformMatrix * mScalingMatrix;
}
// Destructor
Sphere::~Sphere() {
// Destroy the mesh
destroy();
}
// Render the sphere at the correct position and with the correct orientation
void Sphere::render(openglframework::Shader& shader,
const openglframework::Matrix4& worldToCameraMatrix) {
// Bind the shader
shader.bind();
// Set the model to camera matrix
const openglframework::Matrix4 localToCameraMatrix = worldToCameraMatrix * mTransformMatrix;
shader.setMatrix4x4Uniform("localToCameraMatrix", localToCameraMatrix);
// Set the normal matrix (inverse transpose of the 3x3 upper-left sub matrix of the
// model-view matrix)
const openglframework::Matrix3 normalMatrix =
localToCameraMatrix.getUpperLeft3x3Matrix().getInverse().getTranspose();
shader.setMatrix3x3Uniform("normalMatrix", normalMatrix);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
if (hasTexture()) {
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
}
glVertexPointer(3, GL_FLOAT, 0, getVerticesPointer());
glNormalPointer(GL_FLOAT, 0, getNormalsPointer());
if(hasTexture()) {
glTexCoordPointer(2, GL_FLOAT, 0, getUVTextureCoordinatesPointer());
}
// For each part of the mesh
for (unsigned int i=0; i<getNbParts(); i++) {
glDrawElements(GL_TRIANGLES, getNbFaces(i) * 3,
GL_UNSIGNED_INT, getIndicesPointer());
}
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
if (hasTexture()) {
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
// Unbind the shader
shader.unbind();
}
// Update the transform matrix of the sphere
void Sphere::updateTransform() {
// Get the interpolated transform of the rigid body
rp3d::Transform transform = mRigidBody->getInterpolatedTransform();
// Compute the transform used for rendering the sphere
rp3d::decimal matrix[16];
transform.getOpenGLMatrix(matrix);
openglframework::Matrix4 newMatrix(matrix[0], matrix[4], matrix[8], matrix[12],
matrix[1], matrix[5], matrix[9], matrix[13],
matrix[2], matrix[6], matrix[10], matrix[14],
matrix[3], matrix[7], matrix[11], matrix[15]);
// Apply the scaling matrix to have the correct sphere dimensions
mTransformMatrix = newMatrix * mScalingMatrix;
}