106 lines
5.0 KiB
C++
106 lines
5.0 KiB
C++
|
/********************************************************************************
|
||
|
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
|
||
|
* Copyright (c) 2010-2013 Daniel Chappuis *
|
||
|
*********************************************************************************
|
||
|
* *
|
||
|
* This software is provided 'as-is', without any express or implied warranty. *
|
||
|
* In no event will the authors be held liable for any damages arising from the *
|
||
|
* use of this software. *
|
||
|
* *
|
||
|
* Permission is granted to anyone to use this software for any purpose, *
|
||
|
* including commercial applications, and to alter it and redistribute it *
|
||
|
* freely, subject to the following restrictions: *
|
||
|
* *
|
||
|
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||
|
* that you wrote the original software. If you use this software in a *
|
||
|
* product, an acknowledgment in the product documentation would be *
|
||
|
* appreciated but is not required. *
|
||
|
* *
|
||
|
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||
|
* misrepresented as being the original software. *
|
||
|
* *
|
||
|
* 3. This notice may not be removed or altered from any source distribution. *
|
||
|
* *
|
||
|
********************************************************************************/
|
||
|
|
||
|
// Libraries
|
||
|
#include "SliderJoint.h"
|
||
|
|
||
|
using namespace reactphysics3d;
|
||
|
|
||
|
// Constructor
|
||
|
SliderJoint::SliderJoint(const SliderJointInfo& jointInfo) : Constraint(jointInfo) {
|
||
|
|
||
|
// Compute the local-space anchor point for each body
|
||
|
mLocalAnchorPointBody1 = mBody1->getTransform().getInverse() * jointInfo.anchorPointWorldSpace;
|
||
|
mLocalAnchorPointBody2 = mBody2->getTransform().getInverse() * jointInfo.anchorPointWorldSpace;
|
||
|
}
|
||
|
|
||
|
// Destructor
|
||
|
SliderJoint::~SliderJoint() {
|
||
|
|
||
|
}
|
||
|
|
||
|
// Initialize before solving the constraint
|
||
|
void SliderJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) {
|
||
|
|
||
|
// Initialize the bodies index in the velocity array
|
||
|
mIndexBody1 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody1)->second;
|
||
|
mIndexBody2 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody2)->second;
|
||
|
|
||
|
// Get the bodies positions and orientations
|
||
|
const Quaternion& orientationBody1 = mBody1->getTransform().getOrientation();
|
||
|
const Quaternion& orientationBody2 = mBody2->getTransform().getOrientation();
|
||
|
|
||
|
// Get the inertia tensor of bodies
|
||
|
const Matrix3x3 I1 = mBody1->getInertiaTensorInverseWorld();
|
||
|
const Matrix3x3 I2 = mBody2->getInertiaTensorInverseWorld();
|
||
|
|
||
|
// Compute the vector from body center to the anchor point in world-space
|
||
|
mU1World = orientationBody1 * mLocalAnchorPointBody1;
|
||
|
mU2World = orientationBody2 * mLocalAnchorPointBody2;
|
||
|
|
||
|
// Compute the two orthogonal vectors to vector mU1World in world-space
|
||
|
mN1 = mU1World.getOneUnitOrthogonalVector();
|
||
|
mN2 = mU1World.cross(mN1);
|
||
|
|
||
|
// Compute the cross product used in the Jacobian
|
||
|
mU1WorldCrossN1 = mN2;
|
||
|
mU1WorldCrossN2 = mU1World.cross(mN2);
|
||
|
mU2WorldCrossN1 = mU2World.cross(mN1);
|
||
|
mU2WorldCrossN2 = mU2World.cross(mN2);
|
||
|
|
||
|
// Compute the mass matrix K=JM^-1J^t for the 2 translation constraints (2x2 matrix)
|
||
|
const decimal n1Dotn1 = mN1.lengthSquare();
|
||
|
const decimal n2Dotn2 = mN2.lengthSquare();
|
||
|
const decimal sumInverseMass = mBody1->getMassInverse() + mBody2->getMassInverse();
|
||
|
|
||
|
}
|
||
|
|
||
|
// Solve the velocity constraint
|
||
|
void SliderJoint::solveVelocityConstraint(const ConstraintSolverData& constraintSolverData) {
|
||
|
|
||
|
// Get the body positions
|
||
|
const Vector3& x1 = mBody1->getTransform().getPosition();
|
||
|
const Vector3& x2 = mBody2->getTransform().getPosition();
|
||
|
|
||
|
// Get the velocities
|
||
|
Vector3& v1 = constraintSolverData.linearVelocities[mIndexBody1];
|
||
|
Vector3& v2 = constraintSolverData.linearVelocities[mIndexBody2];
|
||
|
Vector3& w1 = constraintSolverData.angularVelocities[mIndexBody1];
|
||
|
Vector3& w2 = constraintSolverData.angularVelocities[mIndexBody2];
|
||
|
|
||
|
// Get the inverse mass and inverse inertia tensors of the bodies
|
||
|
decimal inverseMassBody1 = mBody1->getMassInverse();
|
||
|
decimal inverseMassBody2 = mBody2->getMassInverse();
|
||
|
Matrix3x3 inverseInertiaTensorBody1 = mBody1->getInertiaTensorInverseWorld();
|
||
|
Matrix3x3 inverseInertiaTensorBody2 = mBody2->getInertiaTensorInverseWorld();
|
||
|
|
||
|
// Compute J*v
|
||
|
}
|
||
|
|
||
|
// Solve the position constraint
|
||
|
void SliderJoint::solvePositionConstraint(const ConstraintSolverData& constraintSolverData) {
|
||
|
|
||
|
}
|