reactphysics3d/src/collision/narrowphase/CapsuleVsCapsuleAlgorithm.cpp

227 lines
12 KiB
C++
Raw Normal View History

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2016 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "CapsuleVsCapsuleAlgorithm.h"
#include "collision/shapes/CapsuleShape.h"
// We want to use the ReactPhysics3D namespace
using namespace reactphysics3d;
// Compute the narrow-phase collision detection between two capsules
// This technique is based on the "Robust Contact Creation for Physics Simulations" presentation
// by Dirk Gregorius.
bool CapsuleVsCapsuleAlgorithm::testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) {
assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CAPSULE);
assert(narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::CAPSULE);
// Get the capsule collision shapes
const CapsuleShape* capsuleShape1 = static_cast<const CapsuleShape*>(narrowPhaseInfo->collisionShape1);
const CapsuleShape* capsuleShape2 = static_cast<const CapsuleShape*>(narrowPhaseInfo->collisionShape2);
// Get the transform from capsule 1 local-space to capsule 2 local-space
const Transform capsule1ToCapsule2SpaceTransform = narrowPhaseInfo->shape2ToWorldTransform.getInverse() * narrowPhaseInfo->shape1ToWorldTransform;
// Compute the end-points of the inner segment of the first capsule
Vector3 capsule1SegA(0, -capsuleShape1->getHeight() * decimal(0.5), 0);
Vector3 capsule1SegB(0, capsuleShape1->getHeight() * decimal(0.5), 0);
capsule1SegA = capsule1ToCapsule2SpaceTransform * capsule1SegA;
capsule1SegB = capsule1ToCapsule2SpaceTransform * capsule1SegB;
// Compute the end-points of the inner segment of the second capsule
const Vector3 capsule2SegA(0, -capsuleShape2->getHeight() * decimal(0.5), 0);
const Vector3 capsule2SegB(0, capsuleShape2->getHeight() * decimal(0.5), 0);
// The two inner capsule segments
const Vector3 seg1 = capsule1SegB - capsule1SegA;
const Vector3 seg2 = capsule2SegB - capsule2SegA;
// Compute the sum of the radius of the two capsules (virtual spheres)
decimal sumRadius = capsuleShape2->getRadius() + capsuleShape1->getRadius();
// If the two capsules are parallel (we create two contact points)
2017-08-18 15:50:27 +00:00
bool areCapsuleInnerSegmentsParralel = areParallelVectors(seg1, seg2);
if (areCapsuleInnerSegmentsParralel) {
// If the distance between the two segments is larger than the sum of the capsules radius (we do not have overlapping)
2017-08-18 15:50:27 +00:00
const decimal segmentsPerpendicularDistance = computePointToLineDistance(capsule1SegA, capsule1SegB, capsule2SegA);
if (segmentsPerpendicularDistance >= sumRadius) {
// The capsule are parallel but their inner segment distance is larger than the sum of the capsules radius.
// Therefore, we do not have overlap. If the inner segments overlap, we do not report any collision.
return false;
}
2017-08-18 15:50:27 +00:00
// Compute the planes that goes through the extreme points of the inner segment of capsule 1
decimal d1 = seg1.dot(capsule1SegA);
decimal d2 = -seg1.dot(capsule1SegB);
2017-08-18 15:50:27 +00:00
// Clip the inner segment of capsule 2 with the two planes that go through extreme points of inner
// segment of capsule 1
decimal t1 = computePlaneSegmentIntersection(capsule2SegB, capsule2SegA, d1, seg1);
decimal t2 = computePlaneSegmentIntersection(capsule2SegA, capsule2SegB, d2, -seg1);
2017-08-18 15:50:27 +00:00
// If the segments were overlapping (the clip segment is valid)
if (t1 > decimal(0.0) && t2 > decimal(0.0)) {
2017-08-18 15:50:27 +00:00
if (reportContacts) {
2017-08-18 15:50:27 +00:00
// Clip the inner segment of capsule 2
if (t1 > decimal(1.0)) t1 = decimal(1.0);
const Vector3 clipPointA = capsule2SegB - t1 * seg2;
if (t2 > decimal(1.0)) t2 = decimal(1.0);
const Vector3 clipPointB = capsule2SegA + t2 * seg2;
2017-08-18 15:50:27 +00:00
// Project point capsule2SegA onto line of innner segment of capsule 1
const Vector3 seg1Normalized = seg1.getUnit();
Vector3 pointOnInnerSegCapsule1 = capsule1SegA + seg1Normalized.dot(capsule2SegA - capsule1SegA) * seg1Normalized;
2017-08-18 15:50:27 +00:00
Vector3 normalCapsule2SpaceNormalized;
Vector3 segment1ToSegment2;
2017-08-18 15:50:27 +00:00
// If the inner capsule segments perpendicular distance is not zero (the inner segments are not overlapping)
if (segmentsPerpendicularDistance > MACHINE_EPSILON) {
2017-08-18 15:50:27 +00:00
// Compute a perpendicular vector from segment 1 to segment 2
segment1ToSegment2 = (capsule2SegA - pointOnInnerSegCapsule1);
normalCapsule2SpaceNormalized = segment1ToSegment2.getUnit();
}
else { // If the capsule inner segments are overlapping (degenerate case)
2017-08-18 15:50:27 +00:00
// We cannot use the vector between segments as a contact normal. To generate a contact normal, we take
// any vector that is orthogonal to the inner capsule segments.
2017-08-18 15:50:27 +00:00
Vector3 vec1(1, 0, 0);
Vector3 vec2(0, 1, 0);
2017-08-18 15:50:27 +00:00
Vector3 seg2Normalized = seg2.getUnit();
2017-08-18 15:50:27 +00:00
// Get the vectors (among vec1 and vec2) that is the most orthogonal to the capsule 2 inner segment (smallest absolute dot product)
decimal cosA1 = std::abs(seg2Normalized.x); // abs(vec1.dot(seg2))
decimal cosA2 = std::abs(seg2Normalized.y); // abs(vec2.dot(seg2))
2017-08-18 15:50:27 +00:00
segment1ToSegment2.setToZero();
// We choose as a contact normal, any direction that is perpendicular to the inner capsules segments
normalCapsule2SpaceNormalized = cosA1 < cosA2 ? seg2Normalized.cross(vec1) : seg2Normalized.cross(vec2);
}
Transform capsule2ToCapsule1SpaceTransform = capsule1ToCapsule2SpaceTransform.getInverse();
const Vector3 contactPointACapsule1Local = capsule2ToCapsule1SpaceTransform * (clipPointA - segment1ToSegment2 + normalCapsule2SpaceNormalized * capsuleShape1->getRadius());
const Vector3 contactPointBCapsule1Local = capsule2ToCapsule1SpaceTransform * (clipPointB - segment1ToSegment2 + normalCapsule2SpaceNormalized * capsuleShape1->getRadius());
const Vector3 contactPointACapsule2Local = clipPointA - normalCapsule2SpaceNormalized * capsuleShape2->getRadius();
const Vector3 contactPointBCapsule2Local = clipPointB - normalCapsule2SpaceNormalized * capsuleShape2->getRadius();
decimal penetrationDepth = sumRadius - segmentsPerpendicularDistance;
const Vector3 normalWorld = narrowPhaseInfo->shape2ToWorldTransform.getOrientation() * normalCapsule2SpaceNormalized;
// Create the contact info object
narrowPhaseInfo->addContactPoint(normalWorld, penetrationDepth, contactPointACapsule1Local, contactPointACapsule2Local);
narrowPhaseInfo->addContactPoint(normalWorld, penetrationDepth, contactPointBCapsule1Local, contactPointBCapsule2Local);
}
return true;
}
}
// Compute the closest points between the two inner capsule segments
Vector3 closestPointCapsule1Seg;
Vector3 closestPointCapsule2Seg;
computeClosestPointBetweenTwoSegments(capsule1SegA, capsule1SegB, capsule2SegA, capsule2SegB,
2017-08-18 15:50:27 +00:00
closestPointCapsule1Seg, closestPointCapsule2Seg);
// Compute the distance between the sphere center and the closest point on the segment
Vector3 closestPointsSeg1ToSeg2 = (closestPointCapsule2Seg - closestPointCapsule1Seg);
const decimal closestPointsDistanceSquare = closestPointsSeg1ToSeg2.lengthSquare();
// If the collision shapes overlap
2017-08-18 15:50:27 +00:00
if (closestPointsDistanceSquare < sumRadius * sumRadius) {
if (reportContacts) {
// If the distance between the inner segments is not zero
if (closestPointsDistanceSquare > MACHINE_EPSILON) {
2017-08-18 15:50:27 +00:00
decimal closestPointsDistance = std::sqrt(closestPointsDistanceSquare);
closestPointsSeg1ToSeg2 /= closestPointsDistance;
2017-08-18 15:50:27 +00:00
const Vector3 contactPointCapsule1Local = capsule1ToCapsule2SpaceTransform.getInverse() * (closestPointCapsule1Seg + closestPointsSeg1ToSeg2 * capsuleShape1->getRadius());
const Vector3 contactPointCapsule2Local = closestPointCapsule2Seg - closestPointsSeg1ToSeg2 * capsuleShape2->getRadius();
2017-08-18 15:50:27 +00:00
const Vector3 normalWorld = narrowPhaseInfo->shape2ToWorldTransform.getOrientation() * closestPointsSeg1ToSeg2;
2017-08-18 15:50:27 +00:00
decimal penetrationDepth = sumRadius - closestPointsDistance;
// Create the contact info object
narrowPhaseInfo->addContactPoint(normalWorld, penetrationDepth, contactPointCapsule1Local, contactPointCapsule2Local);
}
else { // The segment are overlapping (degenerate case)
2017-08-18 15:50:27 +00:00
// If the capsule segments are parralel
if (areCapsuleInnerSegmentsParralel) {
2017-08-18 15:50:27 +00:00
// The segment are parallel, not overlapping and their distance is zero.
// Therefore, the capsules are just touching at the top of their inner segments
decimal squareDistCapsule2PointToCapsuleSegA = (capsule1SegA - closestPointCapsule2Seg).lengthSquare();
2017-08-18 15:50:27 +00:00
Vector3 capsule1SegmentMostExtremePoint = squareDistCapsule2PointToCapsuleSegA > MACHINE_EPSILON ? capsule1SegA : capsule1SegB;
Vector3 normalCapsuleSpace2 = (closestPointCapsule2Seg - capsule1SegmentMostExtremePoint);
normalCapsuleSpace2.normalize();
const Vector3 contactPointCapsule1Local = capsule1ToCapsule2SpaceTransform.getInverse() * (closestPointCapsule1Seg + normalCapsuleSpace2 * capsuleShape1->getRadius());
const Vector3 contactPointCapsule2Local = closestPointCapsule2Seg - normalCapsuleSpace2 * capsuleShape2->getRadius();
const Vector3 normalWorld = narrowPhaseInfo->shape2ToWorldTransform.getOrientation() * normalCapsuleSpace2;
// Create the contact info object
narrowPhaseInfo->addContactPoint(normalWorld, sumRadius, contactPointCapsule1Local, contactPointCapsule2Local);
}
else { // If the capsules inner segments are not parallel
// We cannot use a vector between the segments as contact normal. We need to compute a new contact normal with the cross
// product between the two segments.
Vector3 normalCapsuleSpace2 = seg1.cross(seg2);
normalCapsuleSpace2.normalize();
// Compute the contact points on both shapes
const Vector3 contactPointCapsule1Local = capsule1ToCapsule2SpaceTransform.getInverse() * (closestPointCapsule1Seg + normalCapsuleSpace2 * capsuleShape1->getRadius());
const Vector3 contactPointCapsule2Local = closestPointCapsule2Seg - normalCapsuleSpace2 * capsuleShape2->getRadius();
const Vector3 normalWorld = narrowPhaseInfo->shape2ToWorldTransform.getOrientation() * normalCapsuleSpace2;
// Create the contact info object
narrowPhaseInfo->addContactPoint(normalWorld, sumRadius, contactPointCapsule1Local, contactPointCapsule2Local);
}
}
}
return true;
}
return false;
}