Remove unused files
This commit is contained in:
parent
7495ff6598
commit
002264a5a1
|
@ -1,302 +0,0 @@
|
|||
/********************************************************************************
|
||||
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
|
||||
* Copyright (c) 2010-2016 Daniel Chappuis *
|
||||
*********************************************************************************
|
||||
* *
|
||||
* This software is provided 'as-is', without any express or implied warranty. *
|
||||
* In no event will the authors be held liable for any damages arising from the *
|
||||
* use of this software. *
|
||||
* *
|
||||
* Permission is granted to anyone to use this software for any purpose, *
|
||||
* including commercial applications, and to alter it and redistribute it *
|
||||
* freely, subject to the following restrictions: *
|
||||
* *
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||||
* that you wrote the original software. If you use this software in a *
|
||||
* product, an acknowledgment in the product documentation would be *
|
||||
* appreciated but is not required. *
|
||||
* *
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||||
* misrepresented as being the original software. *
|
||||
* *
|
||||
* 3. This notice may not be removed or altered from any source distribution. *
|
||||
* *
|
||||
********************************************************************************/
|
||||
/*
|
||||
// Libraries
|
||||
#include "collision/shapes/ConcaveShape.h"
|
||||
#include "collision/shapes/TriangleShape.h"
|
||||
#include "ConcaveVsConvexAlgorithm.h"
|
||||
#include "collision/CollisionDetection.h"
|
||||
#include "engine/CollisionWorld.h"
|
||||
#include <algorithm>
|
||||
|
||||
using namespace reactphysics3d;
|
||||
|
||||
// Report collision between a triangle of a concave shape and the convex mesh shape (for middle-phase)
|
||||
void MiddlePhaseTriangleCallback::testTriangle(uint meshSubPart, uint triangleIndex, const Vector3* trianglePoints,
|
||||
const Vector3* verticesNormals) {
|
||||
|
||||
// Create a triangle collision shape
|
||||
decimal margin = mConcaveShape->getTriangleMargin();
|
||||
TriangleShape* triangleShape = new (mAllocator.allocate(sizeof(TriangleShape)))
|
||||
TriangleShape(trianglePoints[0], trianglePoints[1], trianglePoints[2],
|
||||
verticesNormals, meshSubPart, triangleIndex, margin);
|
||||
|
||||
// Create a narrow phase info for the narrow-phase collision detection
|
||||
NarrowPhaseInfo* firstNarrowPhaseInfo = narrowPhaseInfoList;
|
||||
narrowPhaseInfoList = new (mAllocator.allocate(sizeof(NarrowPhaseInfo)))
|
||||
NarrowPhaseInfo(mOverlappingPair, mConvexProxyShape->getCollisionShape(),
|
||||
triangleShape, mConvexProxyShape->getLocalToWorldTransform(),
|
||||
mConcaveProxyShape->getLocalToWorldTransform(), mConvexProxyShape->getCachedCollisionData(),
|
||||
mConcaveProxyShape->getCachedCollisionData());
|
||||
narrowPhaseInfoList->next = firstNarrowPhaseInfo;
|
||||
}
|
||||
|
||||
// Return true and compute a contact info if the two bounding volumes collide
|
||||
void ConcaveVsConvexAlgorithm::testCollision(const NarrowPhaseInfo* narrowPhaseInfo,
|
||||
NarrowPhaseCallback* narrowPhaseCallback) {
|
||||
|
||||
// ProxyShape* convexProxyShape;
|
||||
// ProxyShape* concaveProxyShape;
|
||||
// const ConvexShape* convexShape;
|
||||
// const ConcaveShape* concaveShape;
|
||||
|
||||
// // Collision shape 1 is convex, collision shape 2 is concave
|
||||
// if (shape1Info.collisionShape->isConvex()) {
|
||||
// convexProxyShape = shape1Info.proxyShape;
|
||||
// convexShape = static_cast<const ConvexShape*>(shape1Info.collisionShape);
|
||||
// concaveProxyShape = shape2Info.proxyShape;
|
||||
// concaveShape = static_cast<const ConcaveShape*>(shape2Info.collisionShape);
|
||||
// }
|
||||
// else { // Collision shape 2 is convex, collision shape 1 is concave
|
||||
// convexProxyShape = shape2Info.proxyShape;
|
||||
// convexShape = static_cast<const ConvexShape*>(shape2Info.collisionShape);
|
||||
// concaveProxyShape = shape1Info.proxyShape;
|
||||
// concaveShape = static_cast<const ConcaveShape*>(shape1Info.collisionShape);
|
||||
// }
|
||||
|
||||
// // Set the parameters of the callback object
|
||||
// ConvexVsTriangleCallback convexVsTriangleCallback;
|
||||
// convexVsTriangleCallback.setCollisionDetection(mCollisionDetection);
|
||||
// convexVsTriangleCallback.setConvexShape(convexShape);
|
||||
// convexVsTriangleCallback.setConcaveShape(concaveShape);
|
||||
// convexVsTriangleCallback.setProxyShapes(convexProxyShape, concaveProxyShape);
|
||||
// convexVsTriangleCallback.setOverlappingPair(shape1Info.overlappingPair);
|
||||
|
||||
// // Compute the convex shape AABB in the local-space of the convex shape
|
||||
// AABB aabb;
|
||||
// convexShape->computeAABB(aabb, convexProxyShape->getLocalToWorldTransform());
|
||||
|
||||
// // If smooth mesh collision is enabled for the concave mesh
|
||||
// if (concaveShape->getIsSmoothMeshCollisionEnabled()) {
|
||||
|
||||
// std::vector<SmoothMeshContactInfo> contactPoints;
|
||||
|
||||
// SmoothCollisionNarrowPhaseCallback smoothNarrowPhaseCallback(contactPoints);
|
||||
|
||||
// convexVsTriangleCallback.setNarrowPhaseCallback(&smoothNarrowPhaseCallback);
|
||||
|
||||
// // Call the convex vs triangle callback for each triangle of the concave shape
|
||||
// concaveShape->testAllTriangles(convexVsTriangleCallback, aabb);
|
||||
|
||||
// // Run the smooth mesh collision algorithm
|
||||
// processSmoothMeshCollision(shape1Info.overlappingPair, contactPoints, narrowPhaseCallback);
|
||||
// }
|
||||
// else {
|
||||
|
||||
// convexVsTriangleCallback.setNarrowPhaseCallback(narrowPhaseCallback);
|
||||
|
||||
// // Call the convex vs triangle callback for each triangle of the concave shape
|
||||
// concaveShape->testAllTriangles(convexVsTriangleCallback, aabb);
|
||||
// }
|
||||
}
|
||||
|
||||
//// Test collision between a triangle and the convex mesh shape
|
||||
//void ConvexVsTriangleCallback::testTriangle(const Vector3* trianglePoints) {
|
||||
|
||||
// // Create a triangle collision shape
|
||||
// decimal margin = mConcaveShape->getTriangleMargin();
|
||||
// TriangleShape triangleShape(trianglePoints[0], trianglePoints[1], trianglePoints[2], margin);
|
||||
|
||||
// // Select the collision algorithm to use between the triangle and the convex shape
|
||||
// NarrowPhaseAlgorithm* algo = mCollisionDetection->getCollisionAlgorithm(triangleShape.getType(),
|
||||
// mConvexShape->getType());
|
||||
|
||||
// // If there is no collision algorithm between those two kinds of shapes
|
||||
// if (algo == nullptr) return;
|
||||
|
||||
// // Notify the narrow-phase algorithm about the overlapping pair we are going to test
|
||||
// algo->setCurrentOverlappingPair(mOverlappingPair);
|
||||
|
||||
// // Create the CollisionShapeInfo objects
|
||||
// CollisionShapeInfo shapeConvexInfo(mConvexProxyShape, mConvexShape, mConvexProxyShape->getLocalToWorldTransform(),
|
||||
// mOverlappingPair, mConvexProxyShape->getCachedCollisionData());
|
||||
// CollisionShapeInfo shapeConcaveInfo(mConcaveProxyShape, &triangleShape,
|
||||
// mConcaveProxyShape->getLocalToWorldTransform(),
|
||||
// mOverlappingPair, mConcaveProxyShape->getCachedCollisionData());
|
||||
|
||||
// // Use the collision algorithm to test collision between the triangle and the other convex shape
|
||||
// algo->testCollision(shapeConvexInfo, shapeConcaveInfo, mNarrowPhaseCallback);
|
||||
//}
|
||||
|
||||
// Process the concave triangle mesh collision using the smooth mesh collision algorithm described
|
||||
// by Pierre Terdiman (http://www.codercorner.com/MeshContacts.pdf). This is used to avoid the collision
|
||||
// issue with some internal edges.
|
||||
//void ConcaveVsConvexAlgorithm::processSmoothMeshCollision(OverlappingPair* overlappingPair,
|
||||
// std::vector<SmoothMeshContactInfo> contactPoints,
|
||||
// NarrowPhaseCallback* narrowPhaseCallback) {
|
||||
|
||||
// // Set with the triangle vertices already processed to void further contacts with same triangle
|
||||
// std::unordered_multimap<int, Vector3> processTriangleVertices;
|
||||
|
||||
// // Sort the list of narrow-phase contacts according to their penetration depth
|
||||
// std::sort(contactPoints.begin(), contactPoints.end(), ContactsDepthCompare());
|
||||
|
||||
// // For each contact point (from smaller penetration depth to larger)
|
||||
// std::vector<SmoothMeshContactInfo>::const_iterator it;
|
||||
// for (it = contactPoints.begin(); it != contactPoints.end(); ++it) {
|
||||
|
||||
// const SmoothMeshContactInfo info = *it;
|
||||
// const Vector3& contactPoint = info.isFirstShapeTriangle ? info.contactInfo.localPoint1 : info.contactInfo.localPoint2;
|
||||
|
||||
// // Compute the barycentric coordinates of the point in the triangle
|
||||
// decimal u, v, w;
|
||||
// computeBarycentricCoordinatesInTriangle(info.triangleVertices[0],
|
||||
// info.triangleVertices[1],
|
||||
// info.triangleVertices[2],
|
||||
// contactPoint, u, v, w);
|
||||
// int nbZeros = 0;
|
||||
// bool isUZero = approxEqual(u, 0, 0.0001);
|
||||
// bool isVZero = approxEqual(v, 0, 0.0001);
|
||||
// bool isWZero = approxEqual(w, 0, 0.0001);
|
||||
// if (isUZero) nbZeros++;
|
||||
// if (isVZero) nbZeros++;
|
||||
// if (isWZero) nbZeros++;
|
||||
|
||||
// // If it is a vertex contact
|
||||
// if (nbZeros == 2) {
|
||||
|
||||
// Vector3 contactVertex = !isUZero ? info.triangleVertices[0] : (!isVZero ? info.triangleVertices[1] : info.triangleVertices[2]);
|
||||
|
||||
// // Check that this triangle vertex has not been processed yet
|
||||
// if (!hasVertexBeenProcessed(processTriangleVertices, contactVertex)) {
|
||||
|
||||
// // Keep the contact as it is and report it
|
||||
// narrowPhaseCallback->notifyContact(overlappingPair, info.contactInfo);
|
||||
// }
|
||||
// }
|
||||
// else if (nbZeros == 1) { // If it is an edge contact
|
||||
|
||||
// Vector3 contactVertex1 = isUZero ? info.triangleVertices[1] : (isVZero ? info.triangleVertices[0] : info.triangleVertices[0]);
|
||||
// Vector3 contactVertex2 = isUZero ? info.triangleVertices[2] : (isVZero ? info.triangleVertices[2] : info.triangleVertices[1]);
|
||||
|
||||
// // Check that this triangle edge has not been processed yet
|
||||
// if (!hasVertexBeenProcessed(processTriangleVertices, contactVertex1) &&
|
||||
// !hasVertexBeenProcessed(processTriangleVertices, contactVertex2)) {
|
||||
|
||||
// // Keep the contact as it is and report it
|
||||
// narrowPhaseCallback->notifyContact(overlappingPair, info.contactInfo);
|
||||
// }
|
||||
|
||||
// }
|
||||
// else { // If it is a face contact
|
||||
|
||||
// ContactPointInfo newContactInfo(info.contactInfo);
|
||||
|
||||
// ProxyShape* firstShape;
|
||||
// ProxyShape* secondShape;
|
||||
// if (info.isFirstShapeTriangle) {
|
||||
// firstShape = overlappingPair->getShape1();
|
||||
// secondShape = overlappingPair->getShape2();
|
||||
// }
|
||||
// else {
|
||||
// firstShape = overlappingPair->getShape2();
|
||||
// secondShape = overlappingPair->getShape1();
|
||||
// }
|
||||
|
||||
// // We use the triangle normal as the contact normal
|
||||
// Vector3 a = info.triangleVertices[1] - info.triangleVertices[0];
|
||||
// Vector3 b = info.triangleVertices[2] - info.triangleVertices[0];
|
||||
// Vector3 localNormal = a.cross(b);
|
||||
// newContactInfo.normal = firstShape->getLocalToWorldTransform().getOrientation() * localNormal;
|
||||
// Vector3 firstLocalPoint = info.isFirstShapeTriangle ? info.contactInfo.localPoint1 : info.contactInfo.localPoint2;
|
||||
// Vector3 firstWorldPoint = firstShape->getLocalToWorldTransform() * firstLocalPoint;
|
||||
// newContactInfo.normal.normalize();
|
||||
// if (newContactInfo.normal.dot(info.contactInfo.normal) < 0) {
|
||||
// newContactInfo.normal = -newContactInfo.normal;
|
||||
// }
|
||||
|
||||
// // We recompute the contact point on the second body with the new normal as described in
|
||||
// // the Smooth Mesh Contacts with GJK of the Game Physics Pearls book (from Gino van Den Bergen and
|
||||
// // Dirk Gregorius) to avoid adding torque
|
||||
// Transform worldToLocalSecondPoint = secondShape->getLocalToWorldTransform().getInverse();
|
||||
// if (info.isFirstShapeTriangle) {
|
||||
// Vector3 newSecondWorldPoint = firstWorldPoint + newContactInfo.normal;
|
||||
// newContactInfo.localPoint2 = worldToLocalSecondPoint * newSecondWorldPoint;
|
||||
// }
|
||||
// else {
|
||||
// Vector3 newSecondWorldPoint = firstWorldPoint - newContactInfo.normal;
|
||||
// newContactInfo.localPoint1 = worldToLocalSecondPoint * newSecondWorldPoint;
|
||||
// }
|
||||
|
||||
// // Report the contact
|
||||
// narrowPhaseCallback->notifyContact(overlappingPair, newContactInfo);
|
||||
// }
|
||||
|
||||
// // Add the three vertices of the triangle to the set of processed
|
||||
// // triangle vertices
|
||||
// addProcessedVertex(processTriangleVertices, info.triangleVertices[0]);
|
||||
// addProcessedVertex(processTriangleVertices, info.triangleVertices[1]);
|
||||
// addProcessedVertex(processTriangleVertices, info.triangleVertices[2]);
|
||||
// }
|
||||
//}
|
||||
|
||||
// Return true if the vertex is in the set of already processed vertices
|
||||
bool ConcaveVsConvexAlgorithm::hasVertexBeenProcessed(const std::unordered_multimap<int, Vector3>& processTriangleVertices, const Vector3& vertex) const {
|
||||
|
||||
int key = int(vertex.x * vertex.y * vertex.z);
|
||||
|
||||
auto range = processTriangleVertices.equal_range(key);
|
||||
for (auto it = range.first; it != range.second; ++it) {
|
||||
if (vertex.x == it->second.x && vertex.y == it->second.y && vertex.z == it->second.z) return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
//// Called by a narrow-phase collision algorithm when a new contact has been found
|
||||
//void SmoothCollisionNarrowPhaseCallback::notifyContact(OverlappingPair* overlappingPair,
|
||||
// const ContactPointInfo& contactInfo) {
|
||||
// Vector3 triangleVertices[3];
|
||||
// bool isFirstShapeTriangle;
|
||||
|
||||
// // If the collision shape 1 is the triangle
|
||||
// if (contactInfo.collisionShape1->getType() == CollisionShapeType::TRIANGLE) {
|
||||
// assert(contactInfo.collisionShape2->getType() != CollisionShapeType::TRIANGLE);
|
||||
|
||||
// const TriangleShape* triangleShape = static_cast<const TriangleShape*>(contactInfo.collisionShape1);
|
||||
// triangleVertices[0] = triangleShape->getVertex(0);
|
||||
// triangleVertices[1] = triangleShape->getVertex(1);
|
||||
// triangleVertices[2] = triangleShape->getVertex(2);
|
||||
|
||||
// isFirstShapeTriangle = true;
|
||||
// }
|
||||
// else { // If the collision shape 2 is the triangle
|
||||
// assert(contactInfo.collisionShape2->getType() == CollisionShapeType::TRIANGLE);
|
||||
|
||||
// const TriangleShape* triangleShape = static_cast<const TriangleShape*>(contactInfo.collisionShape2);
|
||||
// triangleVertices[0] = triangleShape->getVertex(0);
|
||||
// triangleVertices[1] = triangleShape->getVertex(1);
|
||||
// triangleVertices[2] = triangleShape->getVertex(2);
|
||||
|
||||
// isFirstShapeTriangle = false;
|
||||
// }
|
||||
// SmoothMeshContactInfo smoothContactInfo(contactInfo, isFirstShapeTriangle, triangleVertices[0], triangleVertices[1], triangleVertices[2]);
|
||||
|
||||
// // Add the narrow-phase contact into the list of contact to process for
|
||||
// // smooth mesh collision
|
||||
// mContactPoints.push_back(smoothContactInfo);
|
||||
//}
|
||||
*/
|
|
@ -1,196 +0,0 @@
|
|||
/********************************************************************************
|
||||
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
|
||||
* Copyright (c) 2010-2016 Daniel Chappuis *
|
||||
*********************************************************************************
|
||||
* *
|
||||
* This software is provided 'as-is', without any express or implied warranty. *
|
||||
* In no event will the authors be held liable for any damages arising from the *
|
||||
* use of this software. *
|
||||
* *
|
||||
* Permission is granted to anyone to use this software for any purpose, *
|
||||
* including commercial applications, and to alter it and redistribute it *
|
||||
* freely, subject to the following restrictions: *
|
||||
* *
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||||
* that you wrote the original software. If you use this software in a *
|
||||
* product, an acknowledgment in the product documentation would be *
|
||||
* appreciated but is not required. *
|
||||
* *
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||||
* misrepresented as being the original software. *
|
||||
* *
|
||||
* 3. This notice may not be removed or altered from any source distribution. *
|
||||
* *
|
||||
********************************************************************************/
|
||||
/*
|
||||
#ifndef REACTPHYSICS3D_CONCAVE_VS_CONVEX_ALGORITHM_H
|
||||
#define REACTPHYSICS3D_CONCAVE_VS_CONVEX_ALGORITHM_H
|
||||
|
||||
// Libraries
|
||||
#include "NarrowPhaseAlgorithm.h"
|
||||
#include "collision/shapes/ConvexShape.h"
|
||||
#include "collision/shapes/ConcaveShape.h"
|
||||
#include "memory/SingleFrameAllocator.h"
|
||||
#include <unordered_map>
|
||||
|
||||
/// Namespace ReactPhysics3D
|
||||
namespace reactphysics3d {
|
||||
|
||||
// Class ConvexVsTriangleCallback
|
||||
class MiddlePhaseTriangleCallback : public TriangleCallback {
|
||||
|
||||
protected:
|
||||
|
||||
/// Broadphase overlapping pair
|
||||
OverlappingPair* mOverlappingPair;
|
||||
|
||||
/// Pointer to the concave proxy shape
|
||||
ProxyShape* mConcaveProxyShape;
|
||||
|
||||
/// Pointer to the convex proxy shape
|
||||
ProxyShape* mConvexProxyShape;
|
||||
|
||||
/// Pointer to the concave collision shape
|
||||
const ConcaveShape* mConcaveShape;
|
||||
|
||||
/// Reference to the single-frame memory allocator
|
||||
Allocator& mAllocator;
|
||||
|
||||
public:
|
||||
|
||||
/// Pointer to the first element of the linked-list of narrow-phase info
|
||||
NarrowPhaseInfo* narrowPhaseInfoList;
|
||||
|
||||
/// Constructor
|
||||
MiddlePhaseTriangleCallback(OverlappingPair* overlappingPair,
|
||||
ProxyShape* concaveProxyShape,
|
||||
ProxyShape* convexProxyShape, const ConcaveShape* concaveShape,
|
||||
Allocator& allocator)
|
||||
:mOverlappingPair(overlappingPair), mConcaveProxyShape(concaveProxyShape),
|
||||
mConvexProxyShape(convexProxyShape), mConcaveShape(concaveShape),
|
||||
mAllocator(allocator), narrowPhaseInfoList(nullptr) {
|
||||
|
||||
}
|
||||
|
||||
/// Test collision between a triangle and the convex mesh shape
|
||||
virtual void testTriangle(uint meshSubpart, uint triangleIndex, const Vector3* trianglePoints,
|
||||
const Vector3* verticesNormals) override;
|
||||
};
|
||||
|
||||
// Class SmoothMeshContactInfo
|
||||
struct SmoothMeshContactInfo {
|
||||
|
||||
public:
|
||||
|
||||
ContactManifoldInfo* contactManifoldInfo;
|
||||
ContactPointInfo* contactInfo;
|
||||
bool isFirstShapeTriangle;
|
||||
Vector3 triangleVertices[3];
|
||||
bool isUVWZero[3];
|
||||
|
||||
/// Constructor
|
||||
SmoothMeshContactInfo(ContactManifoldInfo* manifoldInfo, ContactPointInfo* contactPointInfo,
|
||||
bool firstShapeTriangle,
|
||||
const Vector3& trianglePoint1, const Vector3& trianglePoint2,
|
||||
const Vector3& trianglePoint3, bool isUZero, bool isVZero, bool isWZero)
|
||||
: contactManifoldInfo(manifoldInfo), contactInfo(contactPointInfo) {
|
||||
|
||||
isFirstShapeTriangle = firstShapeTriangle;
|
||||
|
||||
triangleVertices[0] = trianglePoint1;
|
||||
triangleVertices[1] = trianglePoint2;
|
||||
triangleVertices[2] = trianglePoint3;
|
||||
|
||||
isUVWZero[0] = isUZero;
|
||||
isUVWZero[1] = isVZero;
|
||||
isUVWZero[2] = isWZero;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
struct ContactsDepthCompare {
|
||||
bool operator()(const SmoothMeshContactInfo& contact1, const SmoothMeshContactInfo& contact2)
|
||||
{
|
||||
return contact1.contactInfo->penetrationDepth < contact2.contactInfo->penetrationDepth;
|
||||
}
|
||||
};
|
||||
|
||||
/// Method used to compare two smooth mesh contact info to sort them
|
||||
//inline static bool contactsDepthCompare(const SmoothMeshContactInfo& contact1,
|
||||
// const SmoothMeshContactInfo& contact2) {
|
||||
// return contact1.contactInfo.penetrationDepth < contact2.contactInfo.penetrationDepth;
|
||||
//}
|
||||
|
||||
// TODO : Delete this
|
||||
// Class SmoothCollisionNarrowPhaseCallback
|
||||
class SmoothCollisionNarrowPhaseCallback {
|
||||
|
||||
private:
|
||||
|
||||
std::vector<SmoothMeshContactInfo>& mContactPoints;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
// Constructor
|
||||
SmoothCollisionNarrowPhaseCallback(std::vector<SmoothMeshContactInfo>& contactPoints)
|
||||
: mContactPoints(contactPoints) {
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// TODO : Delete this
|
||||
// Class ConcaveVsConvexAlgorithm
|
||||
class ConcaveVsConvexAlgorithm {
|
||||
|
||||
protected :
|
||||
|
||||
// -------------------- Attributes -------------------- //
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Process the concave triangle mesh collision using the smooth mesh collision algorithm
|
||||
void processSmoothMeshCollision(OverlappingPair* overlappingPair,
|
||||
std::vector<SmoothMeshContactInfo> contactPoints,
|
||||
NarrowPhaseCallback* narrowPhaseCallback);
|
||||
|
||||
/// Add a triangle vertex into the set of processed triangles
|
||||
void addProcessedVertex(std::unordered_multimap<int, Vector3>& processTriangleVertices,
|
||||
const Vector3& vertex);
|
||||
|
||||
/// Return true if the vertex is in the set of already processed vertices
|
||||
bool hasVertexBeenProcessed(const std::unordered_multimap<int, Vector3>& processTriangleVertices,
|
||||
const Vector3& vertex) const;
|
||||
|
||||
public :
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Constructor
|
||||
ConcaveVsConvexAlgorithm() = default;
|
||||
|
||||
/// Destructor
|
||||
~ConcaveVsConvexAlgorithm() = default;
|
||||
|
||||
/// Private copy-constructor
|
||||
ConcaveVsConvexAlgorithm(const ConcaveVsConvexAlgorithm& algorithm) = delete;
|
||||
|
||||
/// Private assignment operator
|
||||
ConcaveVsConvexAlgorithm& operator=(const ConcaveVsConvexAlgorithm& algorithm) = delete;
|
||||
|
||||
/// Compute a contact info if the two bounding volume collide
|
||||
void testCollision(const NarrowPhaseInfo* narrowPhaseInfo,
|
||||
NarrowPhaseCallback* narrowPhaseCallback);
|
||||
};
|
||||
|
||||
// Add a triangle vertex into the set of processed triangles
|
||||
inline void ConcaveVsConvexAlgorithm::addProcessedVertex(std::unordered_multimap<int, Vector3>& processTriangleVertices, const Vector3& vertex) {
|
||||
processTriangleVertices.insert(std::make_pair(int(vertex.x * vertex.y * vertex.z), vertex));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
*/
|
Loading…
Reference in New Issue
Block a user