Working on joints components
This commit is contained in:
parent
2144b8e571
commit
0230b74462
|
@ -781,7 +781,6 @@ void RigidBody::setIsSleeping(bool isSleeping) {
|
|||
RP3D_LOG(mLogger, Logger::Level::Information, Logger::Category::Body,
|
||||
"Body " + std::to_string(mEntity.id) + ": Set isSleeping=" +
|
||||
(isSleeping ? "true" : "false"));
|
||||
|
||||
}
|
||||
|
||||
// Set whether or not the body is allowed to go to sleep
|
||||
|
|
|
@ -84,7 +84,7 @@ class RigidBody : public CollisionBody {
|
|||
void updateInertiaTensorInverseWorld();
|
||||
|
||||
/// Set the variable to know whether or not the body is sleeping
|
||||
void setIsSleeping(bool isSleeping);
|
||||
void setIsSleeping(bool isSleeping);
|
||||
|
||||
public :
|
||||
|
||||
|
@ -222,6 +222,7 @@ class RigidBody : public CollisionBody {
|
|||
|
||||
friend class DynamicsWorld;
|
||||
friend class ContactSolverSystem;
|
||||
friend class Joint;
|
||||
friend class BallAndSocketJoint;
|
||||
friend class SliderJoint;
|
||||
friend class HingeJoint;
|
||||
|
|
|
@ -33,7 +33,8 @@ using namespace reactphysics3d;
|
|||
|
||||
// Constructor
|
||||
JointComponents::JointComponents(MemoryAllocator& allocator)
|
||||
:Components(allocator, sizeof(Entity) + sizeof(Entity) + sizeof(Entity)) {
|
||||
:Components(allocator, sizeof(Entity) + sizeof(Entity) + sizeof(Entity) +
|
||||
sizeof(Joint*)) {
|
||||
|
||||
// Allocate memory for the components data
|
||||
allocate(INIT_NB_ALLOCATED_COMPONENTS);
|
||||
|
@ -55,6 +56,7 @@ void JointComponents::allocate(uint32 nbComponentsToAllocate) {
|
|||
Entity* newJointsEntities = static_cast<Entity*>(newBuffer);
|
||||
Entity* newBody1Entities = reinterpret_cast<Entity*>(newJointsEntities + nbComponentsToAllocate);
|
||||
Entity* newBody2Entities = reinterpret_cast<Entity*>(newBody1Entities + nbComponentsToAllocate);
|
||||
Joint** newJoints = reinterpret_cast<Joint**>(newBody2Entities + nbComponentsToAllocate);
|
||||
|
||||
// If there was already components before
|
||||
if (mNbComponents > 0) {
|
||||
|
@ -63,6 +65,7 @@ void JointComponents::allocate(uint32 nbComponentsToAllocate) {
|
|||
memcpy(newJointsEntities, mJointEntities, mNbComponents * sizeof(Entity));
|
||||
memcpy(newBody1Entities, mBody1Entities, mNbComponents * sizeof(Entity));
|
||||
memcpy(newBody2Entities, mBody2Entities, mNbComponents * sizeof(Entity));
|
||||
memcpy(newJoints, mJoints, mNbComponents * sizeof(Joint*));
|
||||
|
||||
// Deallocate previous memory
|
||||
mMemoryAllocator.release(mBuffer, mNbAllocatedComponents * mComponentDataSize);
|
||||
|
@ -73,6 +76,7 @@ void JointComponents::allocate(uint32 nbComponentsToAllocate) {
|
|||
mJointEntities = newJointsEntities;
|
||||
mBody1Entities = newBody1Entities;
|
||||
mBody2Entities = newBody2Entities;
|
||||
mJoints = newJoints;
|
||||
}
|
||||
|
||||
// Add a component
|
||||
|
@ -85,6 +89,7 @@ void JointComponents::addComponent(Entity jointEntity, bool isSleeping, const Jo
|
|||
new (mJointEntities + index) Entity(jointEntity);
|
||||
new (mBody1Entities + index) Entity(component.body1Entity);
|
||||
new (mBody2Entities + index) Entity(component.body2Entity);
|
||||
mJoints[index] = component.joint;
|
||||
|
||||
// Map the entity with the new component lookup index
|
||||
mMapEntityToComponentIndex.add(Pair<Entity, uint32>(jointEntity, index));
|
||||
|
@ -105,6 +110,7 @@ void JointComponents::moveComponentToIndex(uint32 srcIndex, uint32 destIndex) {
|
|||
new (mJointEntities + destIndex) Entity(mJointEntities[srcIndex]);
|
||||
new (mBody1Entities + destIndex) Entity(mBody1Entities[srcIndex]);
|
||||
new (mBody2Entities + destIndex) Entity(mBody2Entities[srcIndex]);
|
||||
mJoints[destIndex] = mJoints[srcIndex];
|
||||
|
||||
// Destroy the source component
|
||||
destroyComponent(srcIndex);
|
||||
|
@ -124,6 +130,7 @@ void JointComponents::swapComponents(uint32 index1, uint32 index2) {
|
|||
Entity jointEntity1(mJointEntities[index1]);
|
||||
Entity body1Entity1(mBody1Entities[index1]);
|
||||
Entity body2Entity1(mBody2Entities[index1]);
|
||||
Joint* joint1 = mJoints[index1];
|
||||
|
||||
// Destroy component 1
|
||||
destroyComponent(index1);
|
||||
|
@ -134,6 +141,7 @@ void JointComponents::swapComponents(uint32 index1, uint32 index2) {
|
|||
new (mJointEntities + index2) Entity(jointEntity1);
|
||||
new (mBody1Entities + index2) Entity(body1Entity1);
|
||||
new (mBody2Entities + index2) Entity(body2Entity1);
|
||||
mJoints[index2] = joint1;
|
||||
|
||||
// Update the entity to component index mapping
|
||||
mMapEntityToComponentIndex.add(Pair<Entity, uint32>(jointEntity1, index2));
|
||||
|
@ -155,4 +163,5 @@ void JointComponents::destroyComponent(uint32 index) {
|
|||
mJointEntities[index].~Entity();
|
||||
mBody1Entities[index].~Entity();
|
||||
mBody2Entities[index].~Entity();
|
||||
mJoints[index] = nullptr;
|
||||
}
|
||||
|
|
|
@ -38,6 +38,7 @@ namespace reactphysics3d {
|
|||
// Class declarations
|
||||
class MemoryAllocator;
|
||||
class EntityManager;
|
||||
class Joint;
|
||||
|
||||
// Class JointComponents
|
||||
/**
|
||||
|
@ -59,6 +60,9 @@ class JointComponents : public Components {
|
|||
/// Array of body entities of the first bodies of the joints
|
||||
Entity* mBody2Entities;
|
||||
|
||||
/// Array with pointers to the joints
|
||||
Joint** mJoints;
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Allocate memory for a given number of components
|
||||
|
@ -80,10 +84,11 @@ class JointComponents : public Components {
|
|||
|
||||
const Entity body1Entity;
|
||||
const Entity body2Entity;
|
||||
Joint* joint;
|
||||
|
||||
/// Constructor
|
||||
JointComponent(Entity body1Entity, Entity body2Entity)
|
||||
: body1Entity(body1Entity), body2Entity(body2Entity) {
|
||||
JointComponent(Entity body1Entity, Entity body2Entity, Joint* joint)
|
||||
: body1Entity(body1Entity), body2Entity(body2Entity), joint(joint) {
|
||||
|
||||
}
|
||||
};
|
||||
|
@ -105,6 +110,9 @@ class JointComponents : public Components {
|
|||
/// Return the entity of the second body of a joint
|
||||
Entity getBody2Entity(Entity jointEntity) const;
|
||||
|
||||
/// Return a pointer to the joint
|
||||
Joint* getJoint(Entity jointEntity) const;
|
||||
|
||||
// -------------------- Friendship -------------------- //
|
||||
|
||||
friend class BroadPhaseSystem;
|
||||
|
@ -122,6 +130,12 @@ inline Entity JointComponents::getBody2Entity(Entity jointEntity) const {
|
|||
return mBody2Entities[mMapEntityToComponentIndex[jointEntity]];
|
||||
}
|
||||
|
||||
// Return a pointer to the joint
|
||||
inline Joint* JointComponents::getJoint(Entity jointEntity) const {
|
||||
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
|
||||
return mJoints[mMapEntityToComponentIndex[jointEntity]];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -27,6 +27,7 @@
|
|||
#include "BallAndSocketJoint.h"
|
||||
#include "systems/ConstraintSolverSystem.h"
|
||||
#include "components/RigidBodyComponents.h"
|
||||
#include "engine/DynamicsWorld.h"
|
||||
|
||||
using namespace reactphysics3d;
|
||||
|
||||
|
@ -34,26 +35,38 @@ using namespace reactphysics3d;
|
|||
const decimal BallAndSocketJoint::BETA = decimal(0.2);
|
||||
|
||||
// Constructor
|
||||
BallAndSocketJoint::BallAndSocketJoint(Entity entity, const BallAndSocketJointInfo& jointInfo)
|
||||
: Joint(entity, jointInfo), mImpulse(Vector3(0, 0, 0)) {
|
||||
BallAndSocketJoint::BallAndSocketJoint(Entity entity, DynamicsWorld& world, const BallAndSocketJointInfo& jointInfo)
|
||||
: Joint(entity, world, jointInfo), mImpulse(Vector3(0, 0, 0)) {
|
||||
|
||||
// Get the transforms of the two bodies
|
||||
Transform& body1Transform = mWorld.mTransformComponents.getTransform(jointInfo.body1->getEntity());
|
||||
Transform& body2Transform = mWorld.mTransformComponents.getTransform(jointInfo.body2->getEntity());
|
||||
|
||||
// Compute the local-space anchor point for each body
|
||||
mLocalAnchorPointBody1 = mBody1->getTransform().getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
mLocalAnchorPointBody2 = mBody2->getTransform().getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
mLocalAnchorPointBody1 = body1Transform.getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
mLocalAnchorPointBody2 = body2Transform.getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
}
|
||||
|
||||
// Initialize before solving the constraint
|
||||
void BallAndSocketJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
// Get the bodies entities
|
||||
Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
// TODO : Remove this and use compoents instead of pointers to bodies
|
||||
RigidBody* body1 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body1Entity));
|
||||
RigidBody* body2 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body2Entity));
|
||||
|
||||
// Get the bodies center of mass and orientations
|
||||
const Vector3& x1 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(mBody1Entity);
|
||||
const Vector3& x2 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(mBody2Entity);
|
||||
const Quaternion& orientationBody1 = mBody1->getTransform().getOrientation();
|
||||
const Quaternion& orientationBody2 = mBody2->getTransform().getOrientation();
|
||||
const Vector3& x1 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(body1Entity);
|
||||
const Vector3& x2 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(body2Entity);
|
||||
const Quaternion& orientationBody1 = body1->getTransform().getOrientation();
|
||||
const Quaternion& orientationBody2 = body2->getTransform().getOrientation();
|
||||
|
||||
// Get the inertia tensor of bodies
|
||||
mI1 = mBody1->getInertiaTensorInverseWorld();
|
||||
mI2 = mBody2->getInertiaTensorInverseWorld();
|
||||
mI1 = body1->getInertiaTensorInverseWorld();
|
||||
mI2 = body2->getInertiaTensorInverseWorld();
|
||||
|
||||
// Compute the vector from body center to the anchor point in world-space
|
||||
mR1World = orientationBody1 * mLocalAnchorPointBody1;
|
||||
|
@ -64,8 +77,8 @@ void BallAndSocketJoint::initBeforeSolve(const ConstraintSolverData& constraintS
|
|||
Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR2World);
|
||||
|
||||
// Compute the matrix K=JM^-1J^t (3x3 matrix)
|
||||
decimal body1MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1->getEntity());
|
||||
decimal body2MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2->getEntity());
|
||||
decimal body1MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(body1->getEntity());
|
||||
decimal body2MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(body2->getEntity());
|
||||
decimal inverseMassBodies = body1MassInverse + body2MassInverse;
|
||||
Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0,
|
||||
0, inverseMassBodies, 0,
|
||||
|
@ -75,7 +88,8 @@ void BallAndSocketJoint::initBeforeSolve(const ConstraintSolverData& constraintS
|
|||
|
||||
// Compute the inverse mass matrix K^-1
|
||||
mInverseMassMatrix.setToZero();
|
||||
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
||||
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
|
||||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
|
||||
mInverseMassMatrix = massMatrix.getInverse();
|
||||
}
|
||||
|
||||
|
@ -97,8 +111,11 @@ void BallAndSocketJoint::initBeforeSolve(const ConstraintSolverData& constraintS
|
|||
// Warm start the constraint (apply the previous impulse at the beginning of the step)
|
||||
void BallAndSocketJoint::warmstart(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody2Entity);
|
||||
Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(body1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(body2Entity);
|
||||
|
||||
// Get the velocities
|
||||
Vector3& v1 = constraintSolverData.rigidBodyComponents.mConstrainedLinearVelocities[dynamicsComponentIndexBody1];
|
||||
|
@ -111,22 +128,25 @@ void BallAndSocketJoint::warmstart(const ConstraintSolverData& constraintSolverD
|
|||
const Vector3 angularImpulseBody1 = mImpulse.cross(mR1World);
|
||||
|
||||
// Apply the impulse to the body 1
|
||||
v1 += constraintSolverData.rigidBodyComponents.getMassInverse(mBody1Entity) * linearImpulseBody1;
|
||||
v1 += constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity) * linearImpulseBody1;
|
||||
w1 += mI1 * angularImpulseBody1;
|
||||
|
||||
// Compute the impulse P=J^T * lambda for the body 2
|
||||
const Vector3 angularImpulseBody2 = -mImpulse.cross(mR2World);
|
||||
|
||||
// Apply the impulse to the body to the body 2
|
||||
v2 += constraintSolverData.rigidBodyComponents.getMassInverse(mBody2Entity) * mImpulse;
|
||||
v2 += constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity) * mImpulse;
|
||||
w2 += mI2 * angularImpulseBody2;
|
||||
}
|
||||
|
||||
// Solve the velocity constraint
|
||||
void BallAndSocketJoint::solveVelocityConstraint(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody2Entity);
|
||||
Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(body1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(body2Entity);
|
||||
|
||||
// Get the velocities
|
||||
Vector3& v1 = constraintSolverData.rigidBodyComponents.mConstrainedLinearVelocities[dynamicsComponentIndexBody1];
|
||||
|
@ -146,37 +166,44 @@ void BallAndSocketJoint::solveVelocityConstraint(const ConstraintSolverData& con
|
|||
const Vector3 angularImpulseBody1 = deltaLambda.cross(mR1World);
|
||||
|
||||
// Apply the impulse to the body 1
|
||||
v1 += constraintSolverData.rigidBodyComponents.getMassInverse(mBody1Entity) * linearImpulseBody1;
|
||||
v1 += constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity) * linearImpulseBody1;
|
||||
w1 += mI1 * angularImpulseBody1;
|
||||
|
||||
// Compute the impulse P=J^T * lambda for the body 2
|
||||
const Vector3 angularImpulseBody2 = -deltaLambda.cross(mR2World);
|
||||
|
||||
// Apply the impulse to the body 2
|
||||
v2 += constraintSolverData.rigidBodyComponents.getMassInverse(mBody2Entity) * deltaLambda;
|
||||
v2 += constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity) * deltaLambda;
|
||||
w2 += mI2 * angularImpulseBody2;
|
||||
}
|
||||
|
||||
// Solve the position constraint (for position error correction)
|
||||
void BallAndSocketJoint::solvePositionConstraint(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
// TODO : Remove this and use compoents instead of pointers to bodies
|
||||
RigidBody* body1 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body1Entity));
|
||||
RigidBody* body2 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body2Entity));
|
||||
|
||||
// If the error position correction technique is not the non-linear-gauss-seidel, we do
|
||||
// do not execute this method
|
||||
if (mPositionCorrectionTechnique != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) return;
|
||||
|
||||
// Get the bodies center of mass and orientations
|
||||
Vector3 x1 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(mBody1Entity);
|
||||
Vector3 x2 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(mBody2Entity);
|
||||
Quaternion q1 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(mBody1Entity);
|
||||
Quaternion q2 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(mBody2Entity);
|
||||
Vector3 x1 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(body1Entity);
|
||||
Vector3 x2 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(body2Entity);
|
||||
Quaternion q1 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(body1Entity);
|
||||
Quaternion q2 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(body2Entity);
|
||||
|
||||
// Get the inverse mass and inverse inertia tensors of the bodies
|
||||
const decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1Entity);
|
||||
const decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2Entity);
|
||||
const decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
|
||||
const decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
|
||||
|
||||
// Recompute the inverse inertia tensors
|
||||
mI1 = mBody1->getInertiaTensorInverseWorld();
|
||||
mI2 = mBody2->getInertiaTensorInverseWorld();
|
||||
mI1 = body1->getInertiaTensorInverseWorld();
|
||||
mI2 = body2->getInertiaTensorInverseWorld();
|
||||
|
||||
// Compute the vector from body center to the anchor point in world-space
|
||||
mR1World = q1 * mLocalAnchorPointBody1;
|
||||
|
@ -194,7 +221,8 @@ void BallAndSocketJoint::solvePositionConstraint(const ConstraintSolverData& con
|
|||
skewSymmetricMatrixU1 * mI1 * skewSymmetricMatrixU1.getTranspose() +
|
||||
skewSymmetricMatrixU2 * mI2 * skewSymmetricMatrixU2.getTranspose();
|
||||
mInverseMassMatrix.setToZero();
|
||||
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
||||
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
|
||||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
|
||||
mInverseMassMatrix = massMatrix.getInverse();
|
||||
}
|
||||
|
||||
|
@ -231,9 +259,9 @@ void BallAndSocketJoint::solvePositionConstraint(const ConstraintSolverData& con
|
|||
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
||||
q2.normalize();
|
||||
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(mBody1Entity, x1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(mBody2Entity, x2);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(mBody1Entity, q1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(mBody2Entity, q2);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(body1Entity, x1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(body2Entity, x2);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(body1Entity, q1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(body2Entity, q2);
|
||||
}
|
||||
|
||||
|
|
|
@ -125,7 +125,7 @@ class BallAndSocketJoint : public Joint {
|
|||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Constructor
|
||||
BallAndSocketJoint(Entity entity, const BallAndSocketJointInfo& jointInfo);
|
||||
BallAndSocketJoint(Entity entity, DynamicsWorld& world, const BallAndSocketJointInfo& jointInfo);
|
||||
|
||||
/// Destructor
|
||||
virtual ~BallAndSocketJoint() override = default;
|
||||
|
|
|
@ -27,6 +27,7 @@
|
|||
#include "FixedJoint.h"
|
||||
#include "systems/ConstraintSolverSystem.h"
|
||||
#include "components/RigidBodyComponents.h"
|
||||
#include "engine/DynamicsWorld.h"
|
||||
|
||||
using namespace reactphysics3d;
|
||||
|
||||
|
@ -34,12 +35,13 @@ using namespace reactphysics3d;
|
|||
const decimal FixedJoint::BETA = decimal(0.2);
|
||||
|
||||
// Constructor
|
||||
FixedJoint::FixedJoint(Entity entity, const FixedJointInfo& jointInfo)
|
||||
: Joint(entity, jointInfo), mImpulseTranslation(0, 0, 0), mImpulseRotation(0, 0, 0) {
|
||||
FixedJoint::FixedJoint(Entity entity, DynamicsWorld &world, const FixedJointInfo& jointInfo)
|
||||
: Joint(entity, world, jointInfo), mImpulseTranslation(0, 0, 0), mImpulseRotation(0, 0, 0) {
|
||||
|
||||
// Compute the local-space anchor point for each body
|
||||
const Transform& transform1 = mBody1->getTransform();
|
||||
const Transform& transform2 = mBody2->getTransform();
|
||||
const Transform& transform1 = mWorld.mTransformComponents.getTransform(jointInfo.body1->getEntity());
|
||||
const Transform& transform2 = mWorld.mTransformComponents.getTransform(jointInfo.body2->getEntity());
|
||||
|
||||
mLocalAnchorPointBody1 = transform1.getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
mLocalAnchorPointBody2 = transform2.getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
|
||||
|
@ -60,15 +62,23 @@ FixedJoint::FixedJoint(Entity entity, const FixedJointInfo& jointInfo)
|
|||
// Initialize before solving the constraint
|
||||
void FixedJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
// Get the bodies entities
|
||||
Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
// TODO : Remove this and use compoents instead of pointers to bodies
|
||||
RigidBody* body1 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body1Entity));
|
||||
RigidBody* body2 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body2Entity));
|
||||
|
||||
// Get the bodies positions and orientations
|
||||
const Vector3& x1 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(mBody1Entity);
|
||||
const Vector3& x2 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(mBody2Entity);
|
||||
const Quaternion& orientationBody1 = mBody1->getTransform().getOrientation();
|
||||
const Quaternion& orientationBody2 = mBody2->getTransform().getOrientation();
|
||||
const Vector3& x1 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(body1Entity);
|
||||
const Vector3& x2 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(body2Entity);
|
||||
const Quaternion& orientationBody1 = body1->getTransform().getOrientation();
|
||||
const Quaternion& orientationBody2 = body2->getTransform().getOrientation();
|
||||
|
||||
// Get the inertia tensor of bodies
|
||||
mI1 = mBody1->getInertiaTensorInverseWorld();
|
||||
mI2 = mBody2->getInertiaTensorInverseWorld();
|
||||
mI1 = body1->getInertiaTensorInverseWorld();
|
||||
mI2 = body2->getInertiaTensorInverseWorld();
|
||||
|
||||
// Compute the vector from body center to the anchor point in world-space
|
||||
mR1World = orientationBody1 * mLocalAnchorPointBody1;
|
||||
|
@ -79,8 +89,8 @@ void FixedJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDat
|
|||
Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR2World);
|
||||
|
||||
// Compute the matrix K=JM^-1J^t (3x3 matrix) for the 3 translation constraints
|
||||
const decimal body1MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1->getEntity());
|
||||
const decimal body2MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2->getEntity());
|
||||
const decimal body1MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(body1->getEntity());
|
||||
const decimal body2MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(body2->getEntity());
|
||||
const decimal inverseMassBodies = body1MassInverse + body2MassInverse;
|
||||
Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0,
|
||||
0, inverseMassBodies, 0,
|
||||
|
@ -90,7 +100,8 @@ void FixedJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDat
|
|||
|
||||
// Compute the inverse mass matrix K^-1 for the 3 translation constraints
|
||||
mInverseMassMatrixTranslation.setToZero();
|
||||
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
||||
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
|
||||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
|
||||
mInverseMassMatrixTranslation = massMatrix.getInverse();
|
||||
}
|
||||
|
||||
|
@ -104,7 +115,8 @@ void FixedJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDat
|
|||
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
|
||||
// contraints (3x3 matrix)
|
||||
mInverseMassMatrixRotation = mI1 + mI2;
|
||||
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
||||
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
|
||||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
|
||||
mInverseMassMatrixRotation = mInverseMassMatrixRotation.getInverse();
|
||||
}
|
||||
|
||||
|
@ -128,8 +140,12 @@ void FixedJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDat
|
|||
// Warm start the constraint (apply the previous impulse at the beginning of the step)
|
||||
void FixedJoint::warmstart(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody2Entity);
|
||||
// Get the bodies entities
|
||||
Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(body1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(body2Entity);
|
||||
|
||||
// Get the velocities
|
||||
Vector3& v1 = constraintSolverData.rigidBodyComponents.mConstrainedLinearVelocities[dynamicsComponentIndexBody1];
|
||||
|
@ -138,8 +154,8 @@ void FixedJoint::warmstart(const ConstraintSolverData& constraintSolverData) {
|
|||
Vector3& w2 = constraintSolverData.rigidBodyComponents.mConstrainedAngularVelocities[dynamicsComponentIndexBody2];
|
||||
|
||||
// Get the inverse mass of the bodies
|
||||
const decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1Entity);
|
||||
const decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2Entity);
|
||||
const decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
|
||||
const decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
|
||||
|
||||
// Compute the impulse P=J^T * lambda for the 3 translation constraints for body 1
|
||||
Vector3 linearImpulseBody1 = -mImpulseTranslation;
|
||||
|
@ -166,8 +182,12 @@ void FixedJoint::warmstart(const ConstraintSolverData& constraintSolverData) {
|
|||
// Solve the velocity constraint
|
||||
void FixedJoint::solveVelocityConstraint(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody2Entity);
|
||||
// Get the bodies entities
|
||||
Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(body1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(body2Entity);
|
||||
|
||||
// Get the velocities
|
||||
Vector3& v1 = constraintSolverData.rigidBodyComponents.mConstrainedLinearVelocities[dynamicsComponentIndexBody1];
|
||||
|
@ -176,8 +196,8 @@ void FixedJoint::solveVelocityConstraint(const ConstraintSolverData& constraintS
|
|||
Vector3& w2 = constraintSolverData.rigidBodyComponents.mConstrainedAngularVelocities[dynamicsComponentIndexBody2];
|
||||
|
||||
// Get the inverse mass of the bodies
|
||||
decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1Entity);
|
||||
decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2Entity);
|
||||
decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
|
||||
decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
|
||||
|
||||
// --------------- Translation Constraints --------------- //
|
||||
|
||||
|
@ -226,23 +246,31 @@ void FixedJoint::solveVelocityConstraint(const ConstraintSolverData& constraintS
|
|||
// Solve the position constraint (for position error correction)
|
||||
void FixedJoint::solvePositionConstraint(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
// Get the bodies entities
|
||||
Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
// TODO : Remove this and use compoents instead of pointers to bodies
|
||||
RigidBody* body1 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body1Entity));
|
||||
RigidBody* body2 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body2Entity));
|
||||
|
||||
// If the error position correction technique is not the non-linear-gauss-seidel, we do
|
||||
// do not execute this method
|
||||
if (mPositionCorrectionTechnique != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) return;
|
||||
|
||||
// Get the bodies positions and orientations
|
||||
Vector3 x1 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(mBody1Entity);
|
||||
Vector3 x2 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(mBody2Entity);
|
||||
Quaternion q1 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(mBody1Entity);
|
||||
Quaternion q2 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(mBody2Entity);
|
||||
Vector3 x1 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(body1Entity);
|
||||
Vector3 x2 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(body2Entity);
|
||||
Quaternion q1 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(body1Entity);
|
||||
Quaternion q2 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(body2Entity);
|
||||
|
||||
// Get the inverse mass and inverse inertia tensors of the bodies
|
||||
decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1Entity);
|
||||
decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2Entity);
|
||||
decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
|
||||
decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
|
||||
|
||||
// Recompute the inverse inertia tensors
|
||||
mI1 = mBody1->getInertiaTensorInverseWorld();
|
||||
mI2 = mBody2->getInertiaTensorInverseWorld();
|
||||
mI1 = body1->getInertiaTensorInverseWorld();
|
||||
mI2 = body2->getInertiaTensorInverseWorld();
|
||||
|
||||
// Compute the vector from body center to the anchor point in world-space
|
||||
mR1World = q1 * mLocalAnchorPointBody1;
|
||||
|
@ -262,7 +290,8 @@ void FixedJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
|
|||
skewSymmetricMatrixU1 * mI1 * skewSymmetricMatrixU1.getTranspose() +
|
||||
skewSymmetricMatrixU2 * mI2 * skewSymmetricMatrixU2.getTranspose();
|
||||
mInverseMassMatrixTranslation.setToZero();
|
||||
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
||||
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
|
||||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
|
||||
mInverseMassMatrixTranslation = massMatrix.getInverse();
|
||||
}
|
||||
|
||||
|
@ -302,7 +331,8 @@ void FixedJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
|
|||
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
|
||||
// contraints (3x3 matrix)
|
||||
mInverseMassMatrixRotation = mI1 + mI2;
|
||||
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
||||
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
|
||||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
|
||||
mInverseMassMatrixRotation = mInverseMassMatrixRotation.getInverse();
|
||||
}
|
||||
|
||||
|
@ -354,9 +384,9 @@ void FixedJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
|
|||
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
||||
q2.normalize();
|
||||
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(mBody1Entity, x1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(mBody2Entity, x2);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(mBody1Entity, q1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(mBody2Entity, q2);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(body1Entity, x1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(body2Entity, x2);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(body1Entity, q1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(body2Entity, q2);
|
||||
}
|
||||
|
||||
|
|
|
@ -136,7 +136,7 @@ class FixedJoint : public Joint {
|
|||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Constructor
|
||||
FixedJoint(Entity entity, const FixedJointInfo& jointInfo);
|
||||
FixedJoint(Entity entity, DynamicsWorld& world, const FixedJointInfo& jointInfo);
|
||||
|
||||
/// Destructor
|
||||
virtual ~FixedJoint() override = default;
|
||||
|
|
|
@ -27,6 +27,7 @@
|
|||
#include "HingeJoint.h"
|
||||
#include "systems/ConstraintSolverSystem.h"
|
||||
#include "components/RigidBodyComponents.h"
|
||||
#include "engine/DynamicsWorld.h"
|
||||
|
||||
using namespace reactphysics3d;
|
||||
|
||||
|
@ -34,8 +35,8 @@ using namespace reactphysics3d;
|
|||
const decimal HingeJoint::BETA = decimal(0.2);
|
||||
|
||||
// Constructor
|
||||
HingeJoint::HingeJoint(Entity entity, const HingeJointInfo& jointInfo)
|
||||
: Joint(entity, jointInfo), mImpulseTranslation(0, 0, 0), mImpulseRotation(0, 0),
|
||||
HingeJoint::HingeJoint(Entity entity, DynamicsWorld &world, const HingeJointInfo& jointInfo)
|
||||
: Joint(entity, world, jointInfo), mImpulseTranslation(0, 0, 0), mImpulseRotation(0, 0),
|
||||
mImpulseLowerLimit(0), mImpulseUpperLimit(0), mImpulseMotor(0),
|
||||
mIsLimitEnabled(jointInfo.isLimitEnabled), mIsMotorEnabled(jointInfo.isMotorEnabled),
|
||||
mLowerLimit(jointInfo.minAngleLimit), mUpperLimit(jointInfo.maxAngleLimit),
|
||||
|
@ -46,8 +47,8 @@ HingeJoint::HingeJoint(Entity entity, const HingeJointInfo& jointInfo)
|
|||
assert(mUpperLimit >= decimal(0) && mUpperLimit <= decimal(2.0) * PI);
|
||||
|
||||
// Compute the local-space anchor point for each body
|
||||
Transform transform1 = mBody1->getTransform();
|
||||
Transform transform2 = mBody2->getTransform();
|
||||
Transform& transform1 = mWorld.mTransformComponents.getTransform(jointInfo.body1->getEntity());
|
||||
Transform& transform2 = mWorld.mTransformComponents.getTransform(jointInfo.body2->getEntity());
|
||||
mLocalAnchorPointBody1 = transform1.getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
mLocalAnchorPointBody2 = transform2.getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
|
||||
|
@ -67,15 +68,23 @@ HingeJoint::HingeJoint(Entity entity, const HingeJointInfo& jointInfo)
|
|||
// Initialize before solving the constraint
|
||||
void HingeJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
// Get the bodies entities
|
||||
Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
// TODO : Remove this and use compoents instead of pointers to bodies
|
||||
RigidBody* body1 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body1Entity));
|
||||
RigidBody* body2 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body2Entity));
|
||||
|
||||
// Get the bodies positions and orientations
|
||||
const Vector3& x1 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(mBody1Entity);
|
||||
const Vector3& x2 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(mBody2Entity);
|
||||
const Quaternion& orientationBody1 = mBody1->getTransform().getOrientation();
|
||||
const Quaternion& orientationBody2 = mBody2->getTransform().getOrientation();
|
||||
const Vector3& x1 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(body1Entity);
|
||||
const Vector3& x2 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(body2Entity);
|
||||
const Quaternion& orientationBody1 = mWorld.mTransformComponents.getTransform(body1Entity).getOrientation();
|
||||
const Quaternion& orientationBody2 = mWorld.mTransformComponents.getTransform(body2Entity).getOrientation();
|
||||
|
||||
// Get the inertia tensor of bodies
|
||||
mI1 = mBody1->getInertiaTensorInverseWorld();
|
||||
mI2 = mBody2->getInertiaTensorInverseWorld();
|
||||
mI1 = body1->getInertiaTensorInverseWorld();
|
||||
mI2 = body2->getInertiaTensorInverseWorld();
|
||||
|
||||
// Compute the vector from body center to the anchor point in world-space
|
||||
mR1World = orientationBody1 * mLocalAnchorPointBody1;
|
||||
|
@ -113,8 +122,8 @@ void HingeJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDat
|
|||
Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR2World);
|
||||
|
||||
// Compute the inverse mass matrix K=JM^-1J^t for the 3 translation constraints (3x3 matrix)
|
||||
decimal body1MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1->getEntity());
|
||||
decimal body2MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2->getEntity());
|
||||
decimal body1MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(body1->getEntity());
|
||||
decimal body2MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(body2->getEntity());
|
||||
decimal inverseMassBodies = body1MassInverse + body2MassInverse;
|
||||
Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0,
|
||||
0, inverseMassBodies, 0,
|
||||
|
@ -122,7 +131,8 @@ void HingeJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDat
|
|||
skewSymmetricMatrixU1 * mI1 * skewSymmetricMatrixU1.getTranspose() +
|
||||
skewSymmetricMatrixU2 * mI2 * skewSymmetricMatrixU2.getTranspose();
|
||||
mInverseMassMatrixTranslation.setToZero();
|
||||
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
||||
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
|
||||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
|
||||
mInverseMassMatrixTranslation = massMatrix.getInverse();
|
||||
}
|
||||
|
||||
|
@ -148,7 +158,8 @@ void HingeJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDat
|
|||
mC2CrossA1.dot(I2C2CrossA1);
|
||||
const Matrix2x2 matrixKRotation(el11, el12, el21, el22);
|
||||
mInverseMassMatrixRotation.setToZero();
|
||||
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
||||
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
|
||||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
|
||||
mInverseMassMatrixRotation = matrixKRotation.getInverse();
|
||||
}
|
||||
|
||||
|
@ -197,8 +208,12 @@ void HingeJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDat
|
|||
// Warm start the constraint (apply the previous impulse at the beginning of the step)
|
||||
void HingeJoint::warmstart(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody2Entity);
|
||||
// Get the bodies entities
|
||||
Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(body1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(body2Entity);
|
||||
|
||||
// Get the velocities
|
||||
Vector3& v1 = constraintSolverData.rigidBodyComponents.mConstrainedLinearVelocities[dynamicsComponentIndexBody1];
|
||||
|
@ -207,8 +222,8 @@ void HingeJoint::warmstart(const ConstraintSolverData& constraintSolverData) {
|
|||
Vector3& w2 = constraintSolverData.rigidBodyComponents.mConstrainedAngularVelocities[dynamicsComponentIndexBody2];
|
||||
|
||||
// Get the inverse mass and inverse inertia tensors of the bodies
|
||||
const decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1Entity);
|
||||
const decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2Entity);
|
||||
const decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
|
||||
const decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
|
||||
|
||||
// Compute the impulse P=J^T * lambda for the 2 rotation constraints
|
||||
Vector3 rotationImpulse = -mB2CrossA1 * mImpulseRotation.x - mC2CrossA1 * mImpulseRotation.y;
|
||||
|
@ -256,8 +271,12 @@ void HingeJoint::warmstart(const ConstraintSolverData& constraintSolverData) {
|
|||
// Solve the velocity constraint
|
||||
void HingeJoint::solveVelocityConstraint(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody2Entity);
|
||||
// Get the bodies entities
|
||||
Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(body1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(body2Entity);
|
||||
|
||||
// Get the velocities
|
||||
Vector3& v1 = constraintSolverData.rigidBodyComponents.mConstrainedLinearVelocities[dynamicsComponentIndexBody1];
|
||||
|
@ -266,8 +285,8 @@ void HingeJoint::solveVelocityConstraint(const ConstraintSolverData& constraintS
|
|||
Vector3& w2 = constraintSolverData.rigidBodyComponents.mConstrainedAngularVelocities[dynamicsComponentIndexBody2];
|
||||
|
||||
// Get the inverse mass and inverse inertia tensors of the bodies
|
||||
decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1Entity);
|
||||
decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2Entity);
|
||||
decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
|
||||
decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
|
||||
|
||||
// --------------- Translation Constraints --------------- //
|
||||
|
||||
|
@ -409,19 +428,27 @@ void HingeJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
|
|||
// do not execute this method
|
||||
if (mPositionCorrectionTechnique != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) return;
|
||||
|
||||
// Get the bodies entities
|
||||
Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
// TODO : Remove this and use compoents instead of pointers to bodies
|
||||
RigidBody* body1 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body1Entity));
|
||||
RigidBody* body2 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body2Entity));
|
||||
|
||||
// Get the bodies positions and orientations
|
||||
Vector3 x1 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(mBody1Entity);
|
||||
Vector3 x2 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(mBody2Entity);
|
||||
Quaternion q1 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(mBody1Entity);
|
||||
Quaternion q2 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(mBody2Entity);
|
||||
Vector3 x1 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(body1Entity);
|
||||
Vector3 x2 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(body2Entity);
|
||||
Quaternion q1 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(body1Entity);
|
||||
Quaternion q2 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(body2Entity);
|
||||
|
||||
// Get the inverse mass and inverse inertia tensors of the bodies
|
||||
decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1Entity);
|
||||
decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2Entity);
|
||||
decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
|
||||
decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
|
||||
|
||||
// Recompute the inverse inertia tensors
|
||||
mI1 = mBody1->getInertiaTensorInverseWorld();
|
||||
mI2 = mBody2->getInertiaTensorInverseWorld();
|
||||
mI1 = body1->getInertiaTensorInverseWorld();
|
||||
mI2 = body2->getInertiaTensorInverseWorld();
|
||||
|
||||
// Compute the vector from body center to the anchor point in world-space
|
||||
mR1World = q1 * mLocalAnchorPointBody1;
|
||||
|
@ -453,8 +480,8 @@ void HingeJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
|
|||
// --------------- Translation Constraints --------------- //
|
||||
|
||||
// Compute the matrix K=JM^-1J^t (3x3 matrix) for the 3 translation constraints
|
||||
const decimal body1InverseMass = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1Entity);
|
||||
const decimal body2InverseMass = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2Entity);
|
||||
const decimal body1InverseMass = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
|
||||
const decimal body2InverseMass = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
|
||||
decimal inverseMassBodies = body1InverseMass + body2InverseMass;
|
||||
Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0,
|
||||
0, inverseMassBodies, 0,
|
||||
|
@ -462,7 +489,8 @@ void HingeJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
|
|||
skewSymmetricMatrixU1 * mI1 * skewSymmetricMatrixU1.getTranspose() +
|
||||
skewSymmetricMatrixU2 * mI2 * skewSymmetricMatrixU2.getTranspose();
|
||||
mInverseMassMatrixTranslation.setToZero();
|
||||
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
||||
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
|
||||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
|
||||
mInverseMassMatrixTranslation = massMatrix.getInverse();
|
||||
}
|
||||
|
||||
|
@ -514,7 +542,8 @@ void HingeJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
|
|||
mC2CrossA1.dot(I2C2CrossA1);
|
||||
const Matrix2x2 matrixKRotation(el11, el12, el21, el22);
|
||||
mInverseMassMatrixRotation.setToZero();
|
||||
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
||||
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
|
||||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
|
||||
mInverseMassMatrixRotation = matrixKRotation.getInverse();
|
||||
}
|
||||
|
||||
|
@ -611,10 +640,10 @@ void HingeJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
|
|||
}
|
||||
}
|
||||
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(mBody1Entity, x1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(mBody2Entity, x2);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(mBody1Entity, q1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(mBody2Entity, q2);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(body1Entity, x1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(body2Entity, x2);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(body1Entity, q1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(body2Entity, q2);
|
||||
}
|
||||
|
||||
|
||||
|
@ -645,8 +674,7 @@ void HingeJoint::enableMotor(bool isMotorEnabled) {
|
|||
mImpulseMotor = 0.0;
|
||||
|
||||
// Wake up the two bodies of the joint
|
||||
mBody1->setIsSleeping(false);
|
||||
mBody2->setIsSleeping(false);
|
||||
awakeBodies();
|
||||
}
|
||||
|
||||
// Set the minimum angle limit
|
||||
|
@ -655,7 +683,7 @@ void HingeJoint::enableMotor(bool isMotorEnabled) {
|
|||
*/
|
||||
void HingeJoint::setMinAngleLimit(decimal lowerLimit) {
|
||||
|
||||
assert(mLowerLimit <= 0 && mLowerLimit >= -2.0 * PI);
|
||||
assert(mLowerLimit <= decimal(0) && mLowerLimit >= decimal(-2.0 * PI));
|
||||
|
||||
if (lowerLimit != mLowerLimit) {
|
||||
|
||||
|
@ -672,7 +700,7 @@ void HingeJoint::setMinAngleLimit(decimal lowerLimit) {
|
|||
*/
|
||||
void HingeJoint::setMaxAngleLimit(decimal upperLimit) {
|
||||
|
||||
assert(upperLimit >= 0 && upperLimit <= 2.0 * PI);
|
||||
assert(upperLimit >= decimal(0) && upperLimit <= decimal(2.0 * PI));
|
||||
|
||||
if (upperLimit != mUpperLimit) {
|
||||
|
||||
|
@ -691,8 +719,7 @@ void HingeJoint::resetLimits() {
|
|||
mImpulseUpperLimit = 0.0;
|
||||
|
||||
// Wake up the two bodies of the joint
|
||||
mBody1->setIsSleeping(false);
|
||||
mBody2->setIsSleeping(false);
|
||||
awakeBodies();
|
||||
}
|
||||
|
||||
// Set the motor speed
|
||||
|
@ -703,8 +730,7 @@ void HingeJoint::setMotorSpeed(decimal motorSpeed) {
|
|||
mMotorSpeed = motorSpeed;
|
||||
|
||||
// Wake up the two bodies of the joint
|
||||
mBody1->setIsSleeping(false);
|
||||
mBody2->setIsSleeping(false);
|
||||
awakeBodies();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -716,12 +742,11 @@ void HingeJoint::setMaxMotorTorque(decimal maxMotorTorque) {
|
|||
|
||||
if (maxMotorTorque != mMaxMotorTorque) {
|
||||
|
||||
assert(mMaxMotorTorque >= 0.0);
|
||||
assert(mMaxMotorTorque >= decimal(0.0));
|
||||
mMaxMotorTorque = maxMotorTorque;
|
||||
|
||||
// Wake up the two bodies of the joint
|
||||
mBody1->setIsSleeping(false);
|
||||
mBody2->setIsSleeping(false);
|
||||
awakeBodies();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -729,7 +754,7 @@ void HingeJoint::setMaxMotorTorque(decimal maxMotorTorque) {
|
|||
decimal HingeJoint::computeNormalizedAngle(decimal angle) const {
|
||||
|
||||
// Convert it into the range [-2*pi; 2*pi]
|
||||
angle = fmod(angle, PI_TIMES_2);
|
||||
angle = std::fmod(angle, PI_TIMES_2);
|
||||
|
||||
// Convert it into the range [-pi; pi]
|
||||
if (angle < -PI) {
|
||||
|
@ -752,13 +777,13 @@ decimal HingeJoint::computeCorrespondingAngleNearLimits(decimal inputAngle, deci
|
|||
return inputAngle;
|
||||
}
|
||||
else if (inputAngle > upperLimitAngle) {
|
||||
decimal diffToUpperLimit = fabs(computeNormalizedAngle(inputAngle - upperLimitAngle));
|
||||
decimal diffToLowerLimit = fabs(computeNormalizedAngle(inputAngle - lowerLimitAngle));
|
||||
decimal diffToUpperLimit = std::fabs(computeNormalizedAngle(inputAngle - upperLimitAngle));
|
||||
decimal diffToLowerLimit = std::fabs(computeNormalizedAngle(inputAngle - lowerLimitAngle));
|
||||
return (diffToUpperLimit > diffToLowerLimit) ? (inputAngle - PI_TIMES_2) : inputAngle;
|
||||
}
|
||||
else if (inputAngle < lowerLimitAngle) {
|
||||
decimal diffToUpperLimit = fabs(computeNormalizedAngle(upperLimitAngle - inputAngle));
|
||||
decimal diffToLowerLimit = fabs(computeNormalizedAngle(lowerLimitAngle - inputAngle));
|
||||
decimal diffToUpperLimit = std::fabs(computeNormalizedAngle(upperLimitAngle - inputAngle));
|
||||
decimal diffToLowerLimit = std::fabs(computeNormalizedAngle(lowerLimitAngle - inputAngle));
|
||||
return (diffToUpperLimit > diffToLowerLimit) ? inputAngle : (inputAngle + PI_TIMES_2);
|
||||
}
|
||||
else {
|
||||
|
|
|
@ -287,7 +287,7 @@ class HingeJoint : public Joint {
|
|||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Constructor
|
||||
HingeJoint(Entity entity, const HingeJointInfo& jointInfo);
|
||||
HingeJoint(Entity entity, DynamicsWorld& world, const HingeJointInfo& jointInfo);
|
||||
|
||||
/// Destructor
|
||||
virtual ~HingeJoint() override = default;
|
||||
|
|
|
@ -25,16 +25,47 @@
|
|||
|
||||
// Libraries
|
||||
#include "Joint.h"
|
||||
#include "engine/DynamicsWorld.h"
|
||||
|
||||
using namespace reactphysics3d;
|
||||
|
||||
// Constructor
|
||||
Joint::Joint(Entity entity, const JointInfo& jointInfo)
|
||||
:mEntity(entity), mBody1(jointInfo.body1), mBody2(jointInfo.body2), mBody1Entity(jointInfo.body1->getEntity()),
|
||||
mBody2Entity(jointInfo.body2->getEntity()), mType(jointInfo.type),
|
||||
Joint::Joint(Entity entity, DynamicsWorld& world, const JointInfo& jointInfo)
|
||||
:mEntity(entity), mWorld(world), mType(jointInfo.type),
|
||||
mPositionCorrectionTechnique(jointInfo.positionCorrectionTechnique),
|
||||
mIsCollisionEnabled(jointInfo.isCollisionEnabled), mIsAlreadyInIsland(false) {
|
||||
|
||||
assert(mBody1 != nullptr);
|
||||
assert(mBody2 != nullptr);
|
||||
}
|
||||
|
||||
// Return the reference to the body 1
|
||||
/**
|
||||
* @return The first body involved in the joint
|
||||
*/
|
||||
RigidBody* Joint::getBody1() const {
|
||||
const Entity body1Entiy = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
return mWorld.mRigidBodyComponents.getRigidBody(body1Entiy);
|
||||
}
|
||||
|
||||
// Return the reference to the body 2
|
||||
/**
|
||||
* @return The second body involved in the joint
|
||||
*/
|
||||
RigidBody* Joint::getBody2() const {
|
||||
const Entity body2Entiy = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
return mWorld.mRigidBodyComponents.getRigidBody(body2Entiy);
|
||||
}
|
||||
|
||||
// Awake the two bodies of the joint
|
||||
void Joint::awakeBodies() const {
|
||||
|
||||
// Get the bodies entities
|
||||
Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
RigidBody* body1 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body1Entity));
|
||||
RigidBody* body2 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body2Entity));
|
||||
|
||||
// Wake up the two bodies of the joint
|
||||
body1->setIsSleeping(false);
|
||||
body2->setIsSleeping(false);
|
||||
}
|
||||
|
|
|
@ -123,19 +123,8 @@ class Joint {
|
|||
/// Entity ID of the joint
|
||||
Entity mEntity;
|
||||
|
||||
/// Pointer to the first body of the joint
|
||||
// TODO : Use Entities instead
|
||||
RigidBody* const mBody1;
|
||||
|
||||
/// Pointer to the second body of the joint
|
||||
// TODO : Use Entities instead
|
||||
RigidBody* const mBody2;
|
||||
|
||||
/// Entity of the first body of the joint
|
||||
Entity mBody1Entity;
|
||||
|
||||
/// Entity of the second body of the joint
|
||||
Entity mBody2Entity;
|
||||
/// Reference to the physics world
|
||||
DynamicsWorld& mWorld;
|
||||
|
||||
/// Type of the joint
|
||||
const JointType mType;
|
||||
|
@ -172,12 +161,15 @@ class Joint {
|
|||
/// Solve the position constraint
|
||||
virtual void solvePositionConstraint(const ConstraintSolverData& constraintSolverData) = 0;
|
||||
|
||||
/// Awake the two bodies of the joint
|
||||
void awakeBodies() const;
|
||||
|
||||
public :
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Constructor
|
||||
Joint(Entity entity, const JointInfo& jointInfo);
|
||||
Joint(Entity entity, DynamicsWorld& world, const JointInfo& jointInfo);
|
||||
|
||||
/// Destructor
|
||||
virtual ~Joint() = default;
|
||||
|
@ -213,22 +205,6 @@ class Joint {
|
|||
friend class ConstraintSolverSystem;
|
||||
};
|
||||
|
||||
// Return the reference to the body 1
|
||||
/**
|
||||
* @return The first body involved in the joint
|
||||
*/
|
||||
inline RigidBody* Joint::getBody1() const {
|
||||
return mBody1;
|
||||
}
|
||||
|
||||
// Return the reference to the body 2
|
||||
/**
|
||||
* @return The second body involved in the joint
|
||||
*/
|
||||
inline RigidBody* Joint::getBody2() const {
|
||||
return mBody2;
|
||||
}
|
||||
|
||||
// Return the type of the joint
|
||||
/**
|
||||
* @return The type of the joint
|
||||
|
|
|
@ -27,6 +27,7 @@
|
|||
#include "SliderJoint.h"
|
||||
#include "systems/ConstraintSolverSystem.h"
|
||||
#include "components/RigidBodyComponents.h"
|
||||
#include "engine/DynamicsWorld.h"
|
||||
|
||||
using namespace reactphysics3d;
|
||||
|
||||
|
@ -34,8 +35,8 @@ using namespace reactphysics3d;
|
|||
const decimal SliderJoint::BETA = decimal(0.2);
|
||||
|
||||
// Constructor
|
||||
SliderJoint::SliderJoint(Entity entity, const SliderJointInfo& jointInfo)
|
||||
: Joint(entity, jointInfo), mImpulseTranslation(0, 0), mImpulseRotation(0, 0, 0),
|
||||
SliderJoint::SliderJoint(Entity entity, DynamicsWorld &world, const SliderJointInfo& jointInfo)
|
||||
: Joint(entity, world, jointInfo), mImpulseTranslation(0, 0), mImpulseRotation(0, 0, 0),
|
||||
mImpulseLowerLimit(0), mImpulseUpperLimit(0), mImpulseMotor(0),
|
||||
mIsLimitEnabled(jointInfo.isLimitEnabled), mIsMotorEnabled(jointInfo.isMotorEnabled),
|
||||
mLowerLimit(jointInfo.minTranslationLimit),
|
||||
|
@ -48,8 +49,8 @@ SliderJoint::SliderJoint(Entity entity, const SliderJointInfo& jointInfo)
|
|||
assert(mMaxMotorForce >= decimal(0.0));
|
||||
|
||||
// Compute the local-space anchor point for each body
|
||||
const Transform& transform1 = mBody1->getTransform();
|
||||
const Transform& transform2 = mBody2->getTransform();
|
||||
const Transform& transform1 = mWorld.mTransformComponents.getTransform(jointInfo.body1->getEntity());
|
||||
const Transform& transform2 = mWorld.mTransformComponents.getTransform(jointInfo.body2->getEntity());
|
||||
mLocalAnchorPointBody1 = transform1.getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
mLocalAnchorPointBody2 = transform2.getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
|
||||
|
@ -64,10 +65,12 @@ SliderJoint::SliderJoint(Entity entity, const SliderJointInfo& jointInfo)
|
|||
// q20 = initial orientation of body 2
|
||||
// q10 = initial orientation of body 1
|
||||
// r0 = initial rotation rotation from body 1 to body 2
|
||||
// TODO : Do not compute the inverse here, it has already been computed above
|
||||
mInitOrientationDifferenceInv = transform2.getOrientation().getInverse() * transform1.getOrientation();
|
||||
|
||||
// Compute the slider axis in local-space of body 1
|
||||
mSliderAxisBody1 = mBody1->getTransform().getOrientation().getInverse() *
|
||||
// TODO : Do not compute the inverse here, it has already been computed above
|
||||
mSliderAxisBody1 = transform1.getOrientation().getInverse() *
|
||||
jointInfo.sliderAxisWorldSpace;
|
||||
mSliderAxisBody1.normalize();
|
||||
}
|
||||
|
@ -75,15 +78,23 @@ SliderJoint::SliderJoint(Entity entity, const SliderJointInfo& jointInfo)
|
|||
// Initialize before solving the constraint
|
||||
void SliderJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
// Get the bodies entities
|
||||
const Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
const Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
// TODO : Remove this and use compoents instead of pointers to bodies
|
||||
RigidBody* body1 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body1Entity));
|
||||
RigidBody* body2 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body2Entity));
|
||||
|
||||
// Get the bodies positions and orientations
|
||||
const Vector3& x1 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(mBody1Entity);
|
||||
const Vector3& x2 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(mBody2Entity);
|
||||
const Quaternion& orientationBody1 = mBody1->getTransform().getOrientation();
|
||||
const Quaternion& orientationBody2 = mBody2->getTransform().getOrientation();
|
||||
const Vector3& x1 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(body1Entity);
|
||||
const Vector3& x2 = constraintSolverData.rigidBodyComponents.getCenterOfMassWorld(body2Entity);
|
||||
const Quaternion& orientationBody1 = mWorld.mTransformComponents.getTransform(body1Entity).getOrientation();
|
||||
const Quaternion& orientationBody2 = mWorld.mTransformComponents.getTransform(body2Entity).getOrientation();
|
||||
|
||||
// Get the inertia tensor of bodies
|
||||
mI1 = mBody1->getInertiaTensorInverseWorld();
|
||||
mI2 = mBody2->getInertiaTensorInverseWorld();
|
||||
mI1 = body1->getInertiaTensorInverseWorld();
|
||||
mI2 = body2->getInertiaTensorInverseWorld();
|
||||
|
||||
// Vector from body center to the anchor point
|
||||
mR1 = orientationBody1 * mLocalAnchorPointBody1;
|
||||
|
@ -124,8 +135,8 @@ void SliderJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDa
|
|||
|
||||
// Compute the inverse of the mass matrix K=JM^-1J^t for the 2 translation
|
||||
// constraints (2x2 matrix)
|
||||
const decimal body1MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1->getEntity());
|
||||
const decimal body2MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2->getEntity());
|
||||
const decimal body1MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
|
||||
const decimal body2MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
|
||||
const decimal sumInverseMass = body1MassInverse + body2MassInverse;
|
||||
Vector3 I1R1PlusUCrossN1 = mI1 * mR1PlusUCrossN1;
|
||||
Vector3 I1R1PlusUCrossN2 = mI1 * mR1PlusUCrossN2;
|
||||
|
@ -141,7 +152,9 @@ void SliderJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDa
|
|||
mR2CrossN2.dot(I2R2CrossN2);
|
||||
Matrix2x2 matrixKTranslation(el11, el12, el21, el22);
|
||||
mInverseMassMatrixTranslationConstraint.setToZero();
|
||||
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
||||
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
|
||||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
|
||||
|
||||
mInverseMassMatrixTranslationConstraint = matrixKTranslation.getInverse();
|
||||
}
|
||||
|
||||
|
@ -157,7 +170,9 @@ void SliderJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDa
|
|||
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
|
||||
// contraints (3x3 matrix)
|
||||
mInverseMassMatrixRotationConstraint = mI1 + mI2;
|
||||
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
||||
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
|
||||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
|
||||
|
||||
mInverseMassMatrixRotationConstraint = mInverseMassMatrixRotationConstraint.getInverse();
|
||||
}
|
||||
|
||||
|
@ -215,8 +230,12 @@ void SliderJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDa
|
|||
// Warm start the constraint (apply the previous impulse at the beginning of the step)
|
||||
void SliderJoint::warmstart(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody2Entity);
|
||||
// Get the bodies entities
|
||||
const Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
const Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(body1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(body2Entity);
|
||||
|
||||
// Get the velocities
|
||||
Vector3& v1 = constraintSolverData.rigidBodyComponents.mConstrainedLinearVelocities[dynamicsComponentIndexBody1];
|
||||
|
@ -225,8 +244,8 @@ void SliderJoint::warmstart(const ConstraintSolverData& constraintSolverData) {
|
|||
Vector3& w2 = constraintSolverData.rigidBodyComponents.mConstrainedAngularVelocities[dynamicsComponentIndexBody2];
|
||||
|
||||
// Get the inverse mass and inverse inertia tensors of the bodies
|
||||
const decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1Entity);
|
||||
const decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2Entity);
|
||||
const decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
|
||||
const decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
|
||||
|
||||
// Compute the impulse P=J^T * lambda for the lower and upper limits constraints of body 1
|
||||
decimal impulseLimits = mImpulseUpperLimit - mImpulseLowerLimit;
|
||||
|
@ -277,8 +296,12 @@ void SliderJoint::warmstart(const ConstraintSolverData& constraintSolverData) {
|
|||
// Solve the velocity constraint
|
||||
void SliderJoint::solveVelocityConstraint(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(mBody2Entity);
|
||||
// Get the bodies entities
|
||||
const Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
const Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
uint32 dynamicsComponentIndexBody1 = constraintSolverData.rigidBodyComponents.getEntityIndex(body1Entity);
|
||||
uint32 dynamicsComponentIndexBody2 = constraintSolverData.rigidBodyComponents.getEntityIndex(body2Entity);
|
||||
|
||||
// Get the velocities
|
||||
Vector3& v1 = constraintSolverData.rigidBodyComponents.mConstrainedLinearVelocities[dynamicsComponentIndexBody1];
|
||||
|
@ -287,8 +310,8 @@ void SliderJoint::solveVelocityConstraint(const ConstraintSolverData& constraint
|
|||
Vector3& w2 = constraintSolverData.rigidBodyComponents.mConstrainedAngularVelocities[dynamicsComponentIndexBody2];
|
||||
|
||||
// Get the inverse mass and inverse inertia tensors of the bodies
|
||||
decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1Entity);
|
||||
decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2Entity);
|
||||
decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
|
||||
decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
|
||||
|
||||
// --------------- Translation Constraints --------------- //
|
||||
|
||||
|
@ -441,19 +464,27 @@ void SliderJoint::solvePositionConstraint(const ConstraintSolverData& constraint
|
|||
// do not execute this method
|
||||
if (mPositionCorrectionTechnique != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) return;
|
||||
|
||||
// Get the bodies entities
|
||||
const Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
const Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
// TODO : Remove this and use compoents instead of pointers to bodies
|
||||
RigidBody* body1 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body1Entity));
|
||||
RigidBody* body2 = static_cast<RigidBody*>(mWorld.mRigidBodyComponents.getRigidBody(body2Entity));
|
||||
|
||||
// Get the bodies positions and orientations
|
||||
Vector3 x1 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(mBody1Entity);
|
||||
Vector3 x2 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(mBody2Entity);
|
||||
Quaternion q1 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(mBody1Entity);
|
||||
Quaternion q2 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(mBody2Entity);
|
||||
Vector3 x1 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(body1Entity);
|
||||
Vector3 x2 = constraintSolverData.rigidBodyComponents.getConstrainedPosition(body2Entity);
|
||||
Quaternion q1 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(body1Entity);
|
||||
Quaternion q2 = constraintSolverData.rigidBodyComponents.getConstrainedOrientation(body2Entity);
|
||||
|
||||
// Get the inverse mass and inverse inertia tensors of the bodies
|
||||
const decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1Entity);
|
||||
const decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2Entity);
|
||||
const decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
|
||||
const decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
|
||||
|
||||
// Recompute the inertia tensor of bodies
|
||||
mI1 = mBody1->getInertiaTensorInverseWorld();
|
||||
mI2 = mBody2->getInertiaTensorInverseWorld();
|
||||
mI1 = body1->getInertiaTensorInverseWorld();
|
||||
mI2 = body2->getInertiaTensorInverseWorld();
|
||||
|
||||
// Vector from body center to the anchor point
|
||||
mR1 = q1 * mLocalAnchorPointBody1;
|
||||
|
@ -488,8 +519,8 @@ void SliderJoint::solvePositionConstraint(const ConstraintSolverData& constraint
|
|||
|
||||
// Recompute the inverse of the mass matrix K=JM^-1J^t for the 2 translation
|
||||
// constraints (2x2 matrix)
|
||||
const decimal body1MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1Entity);
|
||||
const decimal body2MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2Entity);
|
||||
const decimal body1MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
|
||||
const decimal body2MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
|
||||
decimal sumInverseMass = body1MassInverse + body2MassInverse;
|
||||
Vector3 I1R1PlusUCrossN1 = mI1 * mR1PlusUCrossN1;
|
||||
Vector3 I1R1PlusUCrossN2 = mI1 * mR1PlusUCrossN2;
|
||||
|
@ -505,7 +536,9 @@ void SliderJoint::solvePositionConstraint(const ConstraintSolverData& constraint
|
|||
mR2CrossN2.dot(I2R2CrossN2);
|
||||
Matrix2x2 matrixKTranslation(el11, el12, el21, el22);
|
||||
mInverseMassMatrixTranslationConstraint.setToZero();
|
||||
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
||||
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
|
||||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
|
||||
|
||||
mInverseMassMatrixTranslationConstraint = matrixKTranslation.getInverse();
|
||||
}
|
||||
|
||||
|
@ -548,7 +581,9 @@ void SliderJoint::solvePositionConstraint(const ConstraintSolverData& constraint
|
|||
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
|
||||
// contraints (3x3 matrix)
|
||||
mInverseMassMatrixRotationConstraint = mI1 + mI2;
|
||||
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
||||
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
|
||||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
|
||||
|
||||
mInverseMassMatrixRotationConstraint = mInverseMassMatrixRotationConstraint.getInverse();
|
||||
}
|
||||
|
||||
|
@ -610,8 +645,8 @@ void SliderJoint::solvePositionConstraint(const ConstraintSolverData& constraint
|
|||
if (mIsLowerLimitViolated || mIsUpperLimitViolated) {
|
||||
|
||||
// Compute the inverse of the mass matrix K=JM^-1J^t for the limits (1x1 matrix)
|
||||
const decimal body1MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(mBody1Entity);
|
||||
const decimal body2MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(mBody2Entity);
|
||||
const decimal body1MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
|
||||
const decimal body2MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
|
||||
mInverseMassMatrixLimit = body1MassInverse + body2MassInverse +
|
||||
mR1PlusUCrossSliderAxis.dot(mI1 * mR1PlusUCrossSliderAxis) +
|
||||
mR2CrossSliderAxis.dot(mI2 * mR2CrossSliderAxis);
|
||||
|
@ -686,10 +721,10 @@ void SliderJoint::solvePositionConstraint(const ConstraintSolverData& constraint
|
|||
}
|
||||
}
|
||||
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(mBody1Entity, x1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(mBody2Entity, x2);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(mBody1Entity, q1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(mBody2Entity, q2);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(body1Entity, x1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedPosition(body2Entity, x2);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(body1Entity, q1);
|
||||
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(body2Entity, q2);
|
||||
}
|
||||
|
||||
// Enable/Disable the limits of the joint
|
||||
|
@ -719,8 +754,7 @@ void SliderJoint::enableMotor(bool isMotorEnabled) {
|
|||
mImpulseMotor = 0.0;
|
||||
|
||||
// Wake up the two bodies of the joint
|
||||
mBody1->setIsSleeping(false);
|
||||
mBody2->setIsSleeping(false);
|
||||
awakeBodies();
|
||||
}
|
||||
|
||||
// Return the current translation value of the joint
|
||||
|
@ -731,11 +765,18 @@ decimal SliderJoint::getTranslation() const {
|
|||
|
||||
// TODO : Check if we need to compare rigid body position or center of mass here
|
||||
|
||||
// Get the bodies entities
|
||||
const Entity body1Entity = mWorld.mJointsComponents.getBody1Entity(mEntity);
|
||||
const Entity body2Entity = mWorld.mJointsComponents.getBody2Entity(mEntity);
|
||||
|
||||
// Get the bodies positions and orientations
|
||||
const Vector3& x1 = mBody1->getTransform().getPosition();
|
||||
const Vector3& x2 = mBody2->getTransform().getPosition();
|
||||
const Quaternion& q1 = mBody1->getTransform().getOrientation();
|
||||
const Quaternion& q2 = mBody2->getTransform().getOrientation();
|
||||
const Transform& transform1 = mWorld.mTransformComponents.getTransform(body1Entity);
|
||||
const Transform& transform2 = mWorld.mTransformComponents.getTransform(body2Entity);
|
||||
|
||||
const Vector3& x1 = transform1.getPosition();
|
||||
const Vector3& x2 = transform2.getPosition();
|
||||
const Quaternion& q1 = transform1.getOrientation();
|
||||
const Quaternion& q2 = transform2.getOrientation();
|
||||
|
||||
// Compute the two anchor points in world-space coordinates
|
||||
const Vector3 anchorBody1 = x1 + q1 * mLocalAnchorPointBody1;
|
||||
|
@ -794,8 +835,7 @@ void SliderJoint::resetLimits() {
|
|||
mImpulseUpperLimit = 0.0;
|
||||
|
||||
// Wake up the two bodies of the joint
|
||||
mBody1->setIsSleeping(false);
|
||||
mBody2->setIsSleeping(false);
|
||||
awakeBodies();
|
||||
}
|
||||
|
||||
// Set the motor speed
|
||||
|
@ -809,8 +849,7 @@ void SliderJoint::setMotorSpeed(decimal motorSpeed) {
|
|||
mMotorSpeed = motorSpeed;
|
||||
|
||||
// Wake up the two bodies of the joint
|
||||
mBody1->setIsSleeping(false);
|
||||
mBody2->setIsSleeping(false);
|
||||
awakeBodies();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -822,11 +861,10 @@ void SliderJoint::setMaxMotorForce(decimal maxMotorForce) {
|
|||
|
||||
if (maxMotorForce != mMaxMotorForce) {
|
||||
|
||||
assert(mMaxMotorForce >= 0.0);
|
||||
assert(mMaxMotorForce >= decimal(0.0));
|
||||
mMaxMotorForce = maxMotorForce;
|
||||
|
||||
// Wake up the two bodies of the joint
|
||||
mBody1->setIsSleeping(false);
|
||||
mBody2->setIsSleeping(false);
|
||||
awakeBodies();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -289,7 +289,7 @@ class SliderJoint : public Joint {
|
|||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Constructor
|
||||
SliderJoint(Entity entity, const SliderJointInfo& jointInfo);
|
||||
SliderJoint(Entity entity, DynamicsWorld& world, const SliderJointInfo& jointInfo);
|
||||
|
||||
/// Destructor
|
||||
virtual ~SliderJoint() override = default;
|
||||
|
|
|
@ -322,11 +322,6 @@ Joint* DynamicsWorld::createJoint(const JointInfo& jointInfo) {
|
|||
|
||||
Joint* newJoint = nullptr;
|
||||
|
||||
bool isJointDisabled = mRigidBodyComponents.getIsEntityDisabled(jointInfo.body1->getEntity()) &&
|
||||
mRigidBodyComponents.getIsEntityDisabled(jointInfo.body2->getEntity());
|
||||
JointComponents::JointComponent jointComponent(jointInfo.body1->getEntity(), jointInfo.body2->getEntity());
|
||||
mJointsComponents.addComponent(entity, isJointDisabled, jointComponent);
|
||||
|
||||
// Allocate memory to create the new joint
|
||||
switch(jointInfo.type) {
|
||||
|
||||
|
@ -337,7 +332,7 @@ Joint* DynamicsWorld::createJoint(const JointInfo& jointInfo) {
|
|||
sizeof(BallAndSocketJoint));
|
||||
const BallAndSocketJointInfo& info = static_cast<const BallAndSocketJointInfo&>(
|
||||
jointInfo);
|
||||
newJoint = new (allocatedMemory) BallAndSocketJoint(entity, info);
|
||||
newJoint = new (allocatedMemory) BallAndSocketJoint(entity, *this, info);
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -347,7 +342,7 @@ Joint* DynamicsWorld::createJoint(const JointInfo& jointInfo) {
|
|||
void* allocatedMemory = mMemoryManager.allocate(MemoryManager::AllocationType::Pool,
|
||||
sizeof(SliderJoint));
|
||||
const SliderJointInfo& info = static_cast<const SliderJointInfo&>(jointInfo);
|
||||
newJoint = new (allocatedMemory) SliderJoint(entity, info);
|
||||
newJoint = new (allocatedMemory) SliderJoint(entity, *this, info);
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -357,7 +352,7 @@ Joint* DynamicsWorld::createJoint(const JointInfo& jointInfo) {
|
|||
void* allocatedMemory = mMemoryManager.allocate(MemoryManager::AllocationType::Pool,
|
||||
sizeof(HingeJoint));
|
||||
const HingeJointInfo& info = static_cast<const HingeJointInfo&>(jointInfo);
|
||||
newJoint = new (allocatedMemory) HingeJoint(entity, info);
|
||||
newJoint = new (allocatedMemory) HingeJoint(entity, *this, info);
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -367,7 +362,7 @@ Joint* DynamicsWorld::createJoint(const JointInfo& jointInfo) {
|
|||
void* allocatedMemory = mMemoryManager.allocate(MemoryManager::AllocationType::Pool,
|
||||
sizeof(FixedJoint));
|
||||
const FixedJointInfo& info = static_cast<const FixedJointInfo&>(jointInfo);
|
||||
newJoint = new (allocatedMemory) FixedJoint(entity, info);
|
||||
newJoint = new (allocatedMemory) FixedJoint(entity, *this, info);
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -378,6 +373,11 @@ Joint* DynamicsWorld::createJoint(const JointInfo& jointInfo) {
|
|||
}
|
||||
}
|
||||
|
||||
bool isJointDisabled = mRigidBodyComponents.getIsEntityDisabled(jointInfo.body1->getEntity()) &&
|
||||
mRigidBodyComponents.getIsEntityDisabled(jointInfo.body2->getEntity());
|
||||
JointComponents::JointComponent jointComponent(jointInfo.body1->getEntity(), jointInfo.body2->getEntity(), newJoint);
|
||||
mJointsComponents.addComponent(entity, isJointDisabled, jointComponent);
|
||||
|
||||
// If the collision between the two bodies of the constraint is disabled
|
||||
if (!jointInfo.isCollisionEnabled) {
|
||||
|
||||
|
@ -418,16 +418,19 @@ void DynamicsWorld::destroyJoint(Joint* joint) {
|
|||
mCollisionDetection.removeNoCollisionPair(joint->getBody1(), joint->getBody2());
|
||||
}
|
||||
|
||||
RigidBody* body1 = joint->getBody1();
|
||||
RigidBody* body2 = joint->getBody2();
|
||||
|
||||
// Wake up the two bodies of the joint
|
||||
joint->getBody1()->setIsSleeping(false);
|
||||
joint->getBody2()->setIsSleeping(false);
|
||||
body1->setIsSleeping(false);
|
||||
body2->setIsSleeping(false);
|
||||
|
||||
// Remove the joint from the world
|
||||
mJoints.remove(joint);
|
||||
|
||||
// Remove the joint from the joint list of the bodies involved in the joint
|
||||
joint->mBody1->removeJointFromJointsList(mMemoryManager, joint);
|
||||
joint->mBody2->removeJointFromJointsList(mMemoryManager, joint);
|
||||
body1->removeJointFromJointsList(mMemoryManager, joint);
|
||||
body2->removeJointFromJointsList(mMemoryManager, joint);
|
||||
|
||||
size_t nbBytes = joint->getSizeInBytes();
|
||||
|
||||
|
@ -448,26 +451,29 @@ void DynamicsWorld::addJointToBody(Joint* joint) {
|
|||
|
||||
assert(joint != nullptr);
|
||||
|
||||
RigidBody* body1 = joint->getBody1();
|
||||
RigidBody* body2 = joint->getBody2();
|
||||
|
||||
// Add the joint at the beginning of the linked list of joints of the first body
|
||||
void* allocatedMemory1 = mMemoryManager.allocate(MemoryManager::AllocationType::Pool,
|
||||
sizeof(JointListElement));
|
||||
JointListElement* jointListElement1 = new (allocatedMemory1) JointListElement(joint,
|
||||
joint->mBody1->mJointsList);
|
||||
joint->mBody1->mJointsList = jointListElement1;
|
||||
body1->mJointsList);
|
||||
body1->mJointsList = jointListElement1;
|
||||
|
||||
RP3D_LOG(mLogger, Logger::Level::Information, Logger::Category::Body,
|
||||
"Body " + std::to_string(joint->mBody1->getEntity().id) + ": Joint " + std::to_string(joint->getEntity().id) +
|
||||
"Body " + std::to_string(body1->getEntity().id) + ": Joint " + std::to_string(joint->getEntity().id) +
|
||||
" added to body");
|
||||
|
||||
// Add the joint at the beginning of the linked list of joints of the second body
|
||||
void* allocatedMemory2 = mMemoryManager.allocate(MemoryManager::AllocationType::Pool,
|
||||
sizeof(JointListElement));
|
||||
JointListElement* jointListElement2 = new (allocatedMemory2) JointListElement(joint,
|
||||
joint->mBody2->mJointsList);
|
||||
joint->mBody2->mJointsList = jointListElement2;
|
||||
body2->mJointsList);
|
||||
body2->mJointsList = jointListElement2;
|
||||
|
||||
RP3D_LOG(mLogger, Logger::Level::Information, Logger::Category::Body,
|
||||
"Body " + std::to_string(joint->mBody2->getEntity().id) + ": Joint " + std::to_string(joint->getEntity().id) +
|
||||
"Body " + std::to_string(body2->getEntity().id) + ": Joint " + std::to_string(joint->getEntity().id) +
|
||||
" added to body");
|
||||
}
|
||||
|
||||
|
|
|
@ -219,6 +219,11 @@ class DynamicsWorld : public CollisionWorld {
|
|||
// -------------------- Friendship -------------------- //
|
||||
|
||||
friend class RigidBody;
|
||||
friend class Joint;
|
||||
friend class BallAndSocketJoint;
|
||||
friend class FixedJoint;
|
||||
friend class HingeJoint;
|
||||
friend class SliderJoint;
|
||||
};
|
||||
|
||||
// Get the number of iterations for the velocity constraint solver
|
||||
|
|
Loading…
Reference in New Issue
Block a user