git-svn-id: https://reactphysics3d.googlecode.com/svn/trunk@215 92aac97c-a6ce-11dd-a772-7fcde58d38e6

This commit is contained in:
chappuis.daniel 2009-11-22 13:45:51 +00:00
parent 1cd2b4a783
commit 04177b57d9
2 changed files with 86 additions and 185 deletions

View File

@ -52,7 +52,7 @@ NarrowPhaseSATAlgorithm::~NarrowPhaseSATAlgorithm() {
// Return true and compute a collision contact if the two bounding volume collide. // Return true and compute a collision contact if the two bounding volume collide.
// The method returns false if there is no collision between the two bounding volumes. // The method returns false if there is no collision between the two bounding volumes.
bool NarrowPhaseSATAlgorithm::testCollision(const BoundingVolume* const boundingVolume1, const BoundingVolume* const boundingVolume2, Contact** contact) { bool NarrowPhaseSATAlgorithm::testCollision(const BoundingVolume* const boundingVolume1, const BoundingVolume* const boundingVolume2, Contact** contact) {
/*
assert(boundingVolume1 != boundingVolume2); assert(boundingVolume1 != boundingVolume2);
assert(*contact == 0); assert(*contact == 0);
@ -71,28 +71,26 @@ bool NarrowPhaseSATAlgorithm::testCollision(const BoundingVolume* const bounding
} }
// Return true and compute a collision contact if the two OBB collide. // This method returns true and computes a collision contact if the two OBB intersect.
// This method implements the separating algorithm between two OBB. The goal of this method is to compute the // This method implements the separating algorithm between two OBB. The goal of this method is to test if the
// time (in the interval [0, timeMax] at wich the two bodies will collide if they will collide. If they will // two OBBs intersect or not. If they intersect we report a collision contact and the method returns true. If
// collide we report a collision contact. "velocity1" and "velocity2" are the velocity vectors of the two bodies. // they don't intersect, the method returns false. The separation axis that have to be tested for two
// If they collide, timeFirst will contain the first collision time of the two bodies and timeLast will contain
// the time when the two bodies separate after the collision. The separation axis that have to be tested for two
// OBB are the six face normals (3 for each OBB) and the nine vectors V = Ai x Bj where Ai is the ith face normal // OBB are the six face normals (3 for each OBB) and the nine vectors V = Ai x Bj where Ai is the ith face normal
// vector of OBB 1 and Bj is the jth face normal vector of OBB 2. We will use the notation Ai for the ith face // vector of OBB 1 and Bj is the jth face normal vector of OBB 2. We will use the notation Ai for the ith face
// normal of OBB 1 and Bj for the jth face normal of OBB 2. // normal of OBB 1 and Bj for the jth face normal of OBB 2.
bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const OBB* const obb2, Contact** contact) { bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const OBB* const obb2, Contact** contact) {
double center; // Center double center; // Center of a projection interval
double radius1; // Radius of projection interval [min1, max1] double radius1; // Radius of projection interval [min1, max1]
double radius2; // Radius of projection interval [min2, max2] double radius2; // Radius of projection interval [min2, max2]
double min1; // Minimum of interval 1 double min1; // Minimum of interval 1
double max1; // Maximum of interval 1 double max1; // Maximum of interval 1
double min2; // Minimm of interval 2 double min2; // Minimm of interval 2
double max2; // Maximum of interval 2 double max2; // Maximum of interval 2
ProjectionInterval currentInterval1; // Current projection interval 1 (correspond to the minimum penetration depth) Vector3D normal; // Contact normal (correspond to the separation axis with the smallest positive penetration depth)
ProjectionInterval currentInterval2; // Current projection interval 2 (correspond to the minimum penetration depth) // 
ContactType contactType; // Current contact type of the contact found so far
double minPenetrationDepth = 0.0; // Minimum penetration depth detected among all separated axis double minPenetrationDepth = 0.0; // Minimum penetration depth detected among all separated axis
bool side; // True if the collision is between max1 and min2 and false if it's between max2 and min1
const double cutoff = 0.999999; // Cutoff for cosine of angles between box axes const double cutoff = 0.999999; // Cutoff for cosine of angles between box axes
bool existsParallelPair = false; // True if there exists two face normals that are parallel. bool existsParallelPair = false; // True if there exists two face normals that are parallel.
// This is used because if a parallel pair exists, it is sufficient // This is used because if a parallel pair exists, it is sufficient
@ -106,7 +104,7 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
double udc1[3]; // DotProduct(obb1.Ai, obb2.center - obb1.center) double udc1[3]; // DotProduct(obb1.Ai, obb2.center - obb1.center)
double udc2[3]; // DotProduct(obb2.Ai, obb2.center - obb1.center) double udc2[3]; // DotProduct(obb2.Ai, obb2.center - obb1.center)
Vector3D boxDistance = obb2->getCenter() - obb1->getCenter(); // Distance between the centers of the OBBs Vector3D boxDistance = obb2->getCenter() - obb1->getCenter(); // Vector between the centers of the OBBs
// Axis A0 // Axis A0
for (int i=0; i<3; ++i) { for (int i=0; i<3; ++i) {
@ -124,17 +122,10 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
max1 = radius1; max1 = radius1;
min2 = center - radius2; min2 = center - radius2;
max2 = center + radius2; max2 = center + radius2;
double penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth, side); double penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth);
if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide
return false; return false;
} }
else if (penetrationDepth < minPenetrationDepth) { // Test if the penetration depth on this axis is smaller that the others
minPenetrationDepth = penetrationDepth; // Update the minimum penetration depth
// Construct the two new colliding intervals
currentInterval1 = computeProjectionInterval(min1, max1, obb1, obb1->getAxis(0));
currentInterval2 = computeProjectionInterval(min2, max2, obb2, obb1->getAxis(0));
}
// TODO : Delete this // TODO : Delete this
std::cout << "Speed : " << speed << std::endl; std::cout << "Speed : " << speed << std::endl;
@ -143,13 +134,6 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
std::cout << "min2 : " << min2 << std::endl; std::cout << "min2 : " << min2 << std::endl;
std::cout << "max2 : " << max2 << std::endl; std::cout << "max2 : " << max2 << std::endl;
if(0 > computePenetrationDepth(currentInterval1, currentInterval2, interval1, interval2, side)) {
// We have found a separation axis, therefore the two OBBs don't collide
//std::cout << "SEPARATION AXIS : A0 " << std::endl;
return false;
}
// Axis A1 // Axis A1
//std::cout << "----- AXIS A1 -----" << std::endl; //std::cout << "----- AXIS A1 -----" << std::endl;
for (int i=0; i<3; ++i) { for (int i=0; i<3; ++i) {
@ -167,8 +151,10 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
max1 = radius1; max1 = radius1;
min2 = center - radius2; min2 = center - radius2;
max2 = center + radius2; max2 = center + radius2;
interval1 = computeProjectionInterval(min1, max1, obb1, obb1->getAxis(1)); penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth);
interval2 = computeProjectionInterval(min2, max2, obb2, obb1->getAxis(1)); if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide
return false;
}
// TODO : Delete this // TODO : Delete this
std::cout << "speed : " << speed << std::endl; std::cout << "speed : " << speed << std::endl;
@ -177,13 +163,6 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
std::cout << "min2 : " << min2 << std::endl; std::cout << "min2 : " << min2 << std::endl;
std::cout << "max2 : " << max2 << std::endl; std::cout << "max2 : " << max2 << std::endl;
if(0 > computePenetrationDepth(currentInterval1, currentInterval2, interval1, interval2, timeFirst, timeLast, side)) {
// We have found a separation axis, therefore the two OBBs don't collide
//std::cout << "SEPARATION AXIS : A1 " << std::endl;
return false;
}
// Axis A2 // Axis A2
for (int i=0; i<3; ++i) { for (int i=0; i<3; ++i) {
c[2][i] = obb1->getAxis(2).scalarProduct(obb2->getAxis(i)); c[2][i] = obb1->getAxis(2).scalarProduct(obb2->getAxis(i));
@ -200,8 +179,10 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
max1 = radius1; max1 = radius1;
min2 = center - radius2; min2 = center - radius2;
max2 = center + radius2; max2 = center + radius2;
interval1 = computeProjectionInterval(min1, max1, obb1, obb1->getAxis(2)); penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth);
interval2 = computeProjectionInterval(min2, max2, obb2, obb1->getAxis(2)); if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide
return false;
}
// TODO : Delete this // TODO : Delete this
std::cout << "Speed : " << speed << std::endl; std::cout << "Speed : " << speed << std::endl;
@ -210,13 +191,6 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
std::cout << "min2 : " << min2 << std::endl; std::cout << "min2 : " << min2 << std::endl;
std::cout << "max2 : " << max2 << std::endl; std::cout << "max2 : " << max2 << std::endl;
if(0 > computePenetrationDepth(currentInterval1, currentInterval2, interval1, interval2, side)) {
// We have found a separation axis, therefore the two OBBs don't collide
//std::cout << "SEPARATION AXIS : A2 " << std::endl;
return false;
}
// Axis B0 // Axis B0
udc2[0] = obb2->getAxis(0).scalarProduct(boxDistance); udc2[0] = obb2->getAxis(0).scalarProduct(boxDistance);
center = udc2[0]; center = udc2[0];
@ -226,12 +200,8 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
max1 = radius1; max1 = radius1;
min2 = center - radius2; min2 = center - radius2;
max2 = center + radius2; max2 = center + radius2;
interval1 = computeProjectionInterval(min1, max1, obb1, obb2->getAxis(0)); penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth);
interval2 = computeProjectionInterval(min2, max2, obb2, obb2->getAxis(0)); if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide
if(0 > computePenetrationDepth(currentInterval1, currentInterval2, interval1, interval2, side)) {
// We have found a separation axis, therefore the two OBBs don't collide
//std::cout << "SEPARATION AXIS : B0 " << std::endl;
return false; return false;
} }
@ -245,20 +215,15 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
max1 = radius1; max1 = radius1;
min2 = center - radius2; min2 = center - radius2;
max2 = center + radius2; max2 = center + radius2;
interval1 = computeProjectionInterval(min1, max1, obb1, obb2->getAxis(1));
interval2 = computeProjectionInterval(min2, max2, obb2, obb2->getAxis(1));
std::cout << "Speed : " << speed << std::endl; std::cout << "Speed : " << speed << std::endl;
std::cout << "min1 : " << min1 << std::endl; std::cout << "min1 : " << min1 << std::endl;
std::cout << "max1 : " << max1 << std::endl; std::cout << "max1 : " << max1 << std::endl;
std::cout << "min2 : " << min2 << std::endl; std::cout << "min2 : " << min2 << std::endl;
std::cout << "max2 : " << max2 << std::endl; std::cout << "max2 : " << max2 << std::endl;
if(0 > computePenetrationDepth(currentInterval1, currentInterval2, interval1, interval2, side)) { penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth);
// We have found a separation axis, therefore the two OBBs don't collide if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide
//std::cout << "SEPARATION AXIS : B1 " << std::endl;
return false; return false;
} }
//std::cout << "----- FIN AXIS B1 -----" << std::endl;
// Axis B2 // Axis B2
@ -270,12 +235,8 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
max1 = radius1; max1 = radius1;
min2 = center - radius2; min2 = center - radius2;
max2 = center + radius2; max2 = center + radius2;
interval1 = computeProjectionInterval(min1, max1, obb1, obb2->getAxis(2)); penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth);
interval2 = computeProjectionInterval(min2, max2, obb2, obb2->getAxis(2)); if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide
if(0 > computePenetrationDepth(currentInterval1, currentInterval2, interval1, interval2, side)) {
// We have found a separation axis, therefore the two OBBs don't collide
//std::cout << "SEPARATION AXIS : B2 " << std::endl;
return false; return false;
} }
@ -290,9 +251,7 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
//std::cout << "Timefirst : " << timeFirst.getValue() << std::endl; //std::cout << "Timefirst : " << timeFirst.getValue() << std::endl;
std::cout << "CONTACT FOUND AND TIMEFIRST IS " << timeFirst.getValue() << std::endl; std::cout << "CONTACT FOUND AND TIMEFIRST IS " << timeFirst.getValue() << std::endl;
// TODO : Construct a face-face contact here // TODO : The normal has to be unit before passing it to the computeContact() method
//(*contact) = new Contact(obb1->getBodyPointer(), obb2->getBodyPointer(), Vector3D(1,0,0), timeFirst);
computeContact(currentInterval1, currentInterval2, velocity1, velocity2, timeFirst, side, contact); computeContact(currentInterval1, currentInterval2, velocity1, velocity2, timeFirst, side, contact);
//std::cout << "Contact 1 : " << contact << std::endl; //std::cout << "Contact 1 : " << contact << std::endl;
@ -308,11 +267,9 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
max1 = radius1; max1 = radius1;
min2 = center - radius2; min2 = center - radius2;
max2 = center + radius2; max2 = center + radius2;
Vector3D axis = obb1->getAxis(0).crossProduct(obb2->getAxis(0)); //Vector3D axis = obb1->getAxis(0).crossProduct(obb2->getAxis(0));
interval1 = computeProjectionInterval(min1, max1, obb1, axis); penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth);
interval2 = computeProjectionInterval(min2, max2, obb2, axis); if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide
if(0 > computePenetrationDepth(currentInterval1, currentInterval2, interval1, interval2, side)) {
// We have found a separation axis, therefore the two OBBs don't collide
return false; return false;
} }
@ -324,11 +281,9 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
max1 = radius1; max1 = radius1;
min2 = center - radius2; min2 = center - radius2;
max2 = center + radius2; max2 = center + radius2;
axis = obb1->getAxis(0).crossProduct(obb2->getAxis(1)); //axis = obb1->getAxis(0).crossProduct(obb2->getAxis(1));
interval1 = computeProjectionInterval(min1, max1, obb1, axis); penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth);
interval2 = computeProjectionInterval(min2, max2, obb2, axis); if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide
if(0 > computePenetrationDepth(currentInterval1, currentInterval2, interval1, interval2, side)) {
// We have found a separation axis, therefore the two OBBs don't collide
return false; return false;
} }
@ -340,11 +295,9 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
max1 = radius1; max1 = radius1;
min2 = center - radius2; min2 = center - radius2;
max2 = center + radius2; max2 = center + radius2;
axis = obb1->getAxis(0).crossProduct(obb2->getAxis(2)); //axis = obb1->getAxis(0).crossProduct(obb2->getAxis(2));
interval1 = computeProjectionInterval(min1, max1, obb1, axis); penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth);
interval2 = computeProjectionInterval(min2, max2, obb2, axis); if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide
if(0 > computePenetrationDepth(currentInterval1, currentInterval2, interval1, interval2, side)) {
// We have found a separation axis, therefore the two OBBs don't collide
return false; return false;
} }
@ -356,11 +309,9 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
max1 = radius1; max1 = radius1;
min2 = center - radius2; min2 = center - radius2;
max2 = center + radius2; max2 = center + radius2;
axis = obb1->getAxis(1).crossProduct(obb2->getAxis(0)); //axis = obb1->getAxis(1).crossProduct(obb2->getAxis(0));
interval1 = computeProjectionInterval(min1, max1, obb1, axis); penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth);
interval2 = computeProjectionInterval(min2, max2, obb2, axis); if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide
if(0 > computePenetrationDepth(currentInterval1, currentInterval2, interval1, interval2, side)) {
// We have found a separation axis, therefore the two OBBs don't collide
return false; return false;
} }
@ -372,11 +323,9 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
max1 = radius1; max1 = radius1;
min2 = center - radius2; min2 = center - radius2;
max2 = center + radius2; max2 = center + radius2;
axis = obb1->getAxis(1).crossProduct(obb2->getAxis(1)); //axis = obb1->getAxis(1).crossProduct(obb2->getAxis(1));
interval1 = computeProjectionInterval(min1, max1, obb1, axis); penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth);
interval2 = computeProjectionInterval(min2, max2, obb2, axis); if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide
if(0 > computePenetrationDepth(currentInterval1, currentInterval2, interval1, interval2, side)) {
// We have found a separation axis, therefore the two OBBs don't collide
return false; return false;
} }
@ -388,11 +337,9 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
max1 = radius1; max1 = radius1;
min2 = center - radius2; min2 = center - radius2;
max2 = center + radius2; max2 = center + radius2;
axis = obb1->getAxis(1).crossProduct(obb2->getAxis(2)); //axis = obb1->getAxis(1).crossProduct(obb2->getAxis(2));
interval1 = computeProjectionInterval(min1, max1, obb1, axis); penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth);
interval2 = computeProjectionInterval(min2, max2, obb2, axis); if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide
if(0 > computePenetrationDepth(currentInterval1, currentInterval2, interval1, interval2, side)) {
// We have found a separation axis, therefore the two OBBs don't collide
return false; return false;
} }
@ -404,11 +351,9 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
max1 = radius1; max1 = radius1;
min2 = center - radius2; min2 = center - radius2;
max2 = center + radius2; max2 = center + radius2;
axis = obb1->getAxis(2).crossProduct(obb2->getAxis(0)); //axis = obb1->getAxis(2).crossProduct(obb2->getAxis(0));
interval1 = computeProjectionInterval(min1, max1, obb1, axis); penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth);
interval2 = computeProjectionInterval(min2, max2, obb2, axis); if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide
if(0 > computePenetrationDepth(currentInterval1, currentInterval2, interval1, interval2, side)) {
// We have found a separation axis, therefore the two OBBs don't collide
return false; return false;
} }
@ -420,11 +365,9 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
max1 = radius1; max1 = radius1;
min2 = center - radius2; min2 = center - radius2;
max2 = center + radius2; max2 = center + radius2;
axis = obb1->getAxis(2).crossProduct(obb2->getAxis(1)); //axis = obb1->getAxis(2).crossProduct(obb2->getAxis(1));
interval1 = computeProjectionInterval(min1, max1, obb1, axis); penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth);
interval2 = computeProjectionInterval(min2, max2, obb2, axis); if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide
if(0 > computePenetrationDepth(currentInterval1, currentInterval2, interval1, interval2, side)) {
// We have found a separation axis, therefore the two OBBs don't collide
return false; return false;
} }
@ -436,11 +379,9 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
max1 = radius1; max1 = radius1;
min2 = center - radius2; min2 = center - radius2;
max2 = center + radius2; max2 = center + radius2;
axis = obb1->getAxis(2).crossProduct(obb2->getAxis(2)); //axis = obb1->getAxis(2).crossProduct(obb2->getAxis(2));
interval1 = computeProjectionInterval(min1, max1, obb1, axis); penetrationDepth = computePenetrationDepth(min1, max1, min2, max2, minPenetrationDepth);
interval2 = computeProjectionInterval(min2, max2, obb2, axis); if (penetrationDepth < 0) { // We have found a separation axis, therefore the two OBBs don't collide
if(0 > computePenetrationDepth(currentInterval1, currentInterval2, interval1, interval2, side)) {
// We have found a separation axis, therefore the two OBBs don't collide
return false; return false;
} }
@ -450,60 +391,42 @@ bool NarrowPhaseSATAlgorithm::computeCollisionTest(const OBB* const obb1, const
std::cout << "CONTACT FOUND AND TIMEFIRST IS " << timeFirst.getValue() << std::endl; std::cout << "CONTACT FOUND AND TIMEFIRST IS " << timeFirst.getValue() << std::endl;
// Compute the collision contact // Compute the collision contact
computeContact(currentInterval1, currentInterval2, velocity1, velocity2, timeFirst, side, contact); // TODO : The normal has to be unit before passing it to the computeContact() method
computeContact(contact);
// We have found no separation axis, therefore the two OBBs must collide // We have found no separation axis, therefore the two OBBs must collide
assert(*contact != 0); assert(*contact != 0);
*/
return true; return true;
} }
// This method computes penetration depth between two intervals. It will return a positive value // This method computes penetration depth between two intervals and update the minimum penetration
// if the two intervals overlap and a negative value if the intervals are separated. // depth found so far if the computed penetration depth is positive (the penetration depth in case
// The speed is the speed of interval2 relative to interval1. // of collision has to be positive) and smaller than the current minimum penetration
// This method returns true if the computed penetration depth is smaller than the current // depth. This method returns the computed penetration depth (note that it could return a negative
// minimum penetration depth but it's positive (a penetration occurs). // penetration depth if the intervals are separated.
bool NarrowPhaseSATAlgorithm::computePenetrationDepth(double min1, double max1, double min2, double max2, double NarrowPhaseSATAlgorithm::computePenetrationDepth(double min1, double max1, double min2, double max2, double& minPenetrationDepth) {
double& minPenetrationDepth, bool& side) {
double penetrationDepth;
bool currentSide;
/* // Compute the length of both intervals
// TODO : Use the speed to compute a more robust penetration depth and compute the side value double lengthInterval1 = max1 - min1;
if (min1 <= min2 && max1 < max2) { double lengthInterval2 = max2 - min2;
penetrationDepth = max1 - min2;
currentSide = true;
}
else if (min1 <= min2 && max1 >= max2) { // interval2 is inside interval1
if (speed <=0) {
penetrationDepth = max1 - min2;
} // Compute the total length of both intervals
else { double minExtreme = min(min1, min2);
penetrationDepth = max2 - min1; double maxExtreme = max(max1, max2);
} double lengthBothIntervals = maxExtreme - minExtreme;
else if (min2 <= min1 && max2 >=) { // interval1 is inside interval2
if (speed <=0) {
penetrationDepth = max1 - min2;
}
else {
penetrationDepth = max2 - min1;
}
}
else if (min1 >= min2 && && max1 >= min1) {
penetrationDepth = max2 - min1;
}
// If a penestration occurs and we have found a smaller penetration depth on this axis // Compute the current penetration depth
if (penetrationDepth >= 0 && penetrationDepth < minPenetrationDepth) { double penetrationDepth = (lengthInterval1 + lengthInterval2) - lengthBothIntervals;
// If the current penetration depth is smaller than the minimum penetration depth
if (penetrationDepth < minPenetrationDepth && penetrationDepth >= 0) {
minPenetrationDepth = penetrationDepth; minPenetrationDepth = penetrationDepth;
side = currentSide; side = currentSide;
return true;
} }
*/
return false; // Return the computed penetration depth
return penetrationDepth;
} }
// Compute a new collision contact between two projection intervals. // Compute a new collision contact between two projection intervals.
@ -615,30 +538,3 @@ void NarrowPhaseSATAlgorithm::computeContact(const ProjectionInterval& interval1
} }
*/ */
} }
// Compute a new projection interval
ProjectionInterval NarrowPhaseSATAlgorithm::computeProjectionInterval(double min, double max, const OBB* const obb, const Vector3D& axis) const {
ExtremeType minExtremeType;
ExtremeType maxExtremeType;
std::vector<Vector3D> minProjectedVertices; // Vertices of the OBB that are projected on the minimum of an interval
std::vector<Vector3D> maxProjectedVertices; // Vertices of the OBB that are projected on the minimum of an interval
// Compute the extreme vertices of the OBB that are projected at the extreme of the interval
int nbExtremeVerticesMin = obb->getExtremeVertices(axis.getOpposite(), minProjectedVertices);
int nbExtremeVerticesMax = obb->getExtremeVertices(axis, maxProjectedVertices);
// Compute the type of the extremes of the interval
switch(nbExtremeVerticesMin) {
case 1 : minExtremeType = VERTEX; break;
case 2 : minExtremeType = EDGE; break;
case 4 : minExtremeType = FACE; break;
}
switch(nbExtremeVerticesMax) {
case 1 : maxExtremeType = VERTEX; break;
case 2 : maxExtremeType = EDGE; break;
case 4 : maxExtremeType = FACE; break;
}
// Compute and return a projection interval
return ProjectionInterval(obb, min, max, minExtremeType, maxExtremeType, minProjectedVertices, maxProjectedVertices);
}

View File

@ -22,10 +22,16 @@
// Libraries // Libraries
#include "NarrowPhaseAlgorithm.h" #include "NarrowPhaseAlgorithm.h"
#include "ProjectionInterval.h"
#include "../constraint/Contact.h" #include "../constraint/Contact.h"
#include "../body/OBB.h" #include "../body/OBB.h"
// Enumeration for the contact type
enum ContactType {
EDGE_EDGE, // Contact between an edge of OBB1 and an edge of OBB2
FACEOBB1_SOMETHING, // Contact between a face of OBB1 and eiter a vertex, an edge or a face of OBB2
FACEOBB2_SOMETHING // Contact between a face of OBB2 and either a vertex, an edge or a face of OBB1
}
// ReactPhysics3D namespace // ReactPhysics3D namespace
namespace reactphysics3d { namespace reactphysics3d {
@ -46,10 +52,9 @@ namespace reactphysics3d {
class NarrowPhaseSATAlgorithm : public NarrowPhaseAlgorithm { class NarrowPhaseSATAlgorithm : public NarrowPhaseAlgorithm {
private : private :
bool computeCollisionTest(const OBB* const obb1, const OBB* const obb2, Contact** contact); // Return true and compute a collision contact if the two OBB collide bool computeCollisionTest(const OBB* const obb1, const OBB* const obb2, Contact** contact); // Return true and compute a collision contact if the two OBB collide
bool computePenetrationDepth(double min1, double max1, double min2, double max2, double computePenetrationDepth(double min1, double max1, double min2, double max2, double& minPenetrationDepth); // Compute the penetration depth of two projection intervals
double& minPenetrationDepth, bool& side); // Compute the penetration depth of two projection intervals void computeContact(const OBB* const obb1, const OBB* const obb2, const Vector3D normal, double penetrationDepth,
void computeContact(const ProjectionInterval& interval1, const ProjectionInterval& interval2, bool side, Contact** contact); // Compute a new collision contact between two projection intervals ContactType contactType,Contact** contact); // Compute a new collision contact between two projection intervals
ProjectionInterval computeProjectionInterval(double min, double max, const OBB* const obb, const Vector3D& axis) const; // Compute a new projection interval
public : public :
NarrowPhaseSATAlgorithm(); // Constructor NarrowPhaseSATAlgorithm(); // Constructor