Add the reactphysics3d directory

git-svn-id: https://reactphysics3d.googlecode.com/svn/trunk@10 92aac97c-a6ce-11dd-a772-7fcde58d38e6
This commit is contained in:
chappuis.daniel 2009-01-26 23:05:51 +00:00
parent e8de11f141
commit 06a4c392a3
16 changed files with 1901 additions and 0 deletions

View File

@ -0,0 +1,3 @@
[Dolphin]
Timestamp=2008,12,9,0,4,45
ViewMode=1

View File

@ -0,0 +1,3 @@
[Dolphin]
Timestamp=2008,12,9,0,4,54
ViewMode=1

View File

@ -0,0 +1,394 @@
/****************************************************************************
* Copyright (C) 2008 Daniel Chappuis *
****************************************************************************
* This file is part of ReactPhysics3D. *
* *
* ReactPhysics3D is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* ReactPhysics3D is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with ReactPhysics3D. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
// Libraries
#include "Matrix.h"
// Constructor of the class Matrix
Matrix::Matrix(int nbRow, int nbColumn) throw(std::invalid_argument)
:nbRow(nbRow),nbColumn(nbColumn) {
// Check the arguments
if (nbRow>0 && nbColumn>0) {
// Create the two dimensional dynamic array
array = new double*[nbRow];
for(int i=0; i<nbRow; ++i) {
array[i] = new double[nbColumn];
}
// Fill the matrix with zero's
for (int i=0; i<nbRow; ++i) {
for(int j=0; j<nbColumn; ++j) {
setValue(i,j, 0.0);
}
}
}
else {
// Throw an exception
throw std::invalid_argument("Exception : The size of the matrix has to be positive !");
}
}
// Copy-constructor of the class Matrix
Matrix::Matrix(const Matrix& matrix)
:nbRow(matrix.nbRow), nbColumn(matrix.nbColumn) {
// Create the two dimensional dynamic array
array = new double*[nbRow];
for(int i=0; i<nbRow; ++i) {
array[i] = new double[nbColumn];
}
// Copy the matrix
for (int i=0; i<nbRow; ++i) {
for(int j=0; j<nbColumn; ++j) {
setValue(i,j, matrix.getValue(i,j));
}
}
}
// Destructor of the class Matrix
Matrix::~Matrix() {
// Destruction of the dynamic array
for(int i=0; i<nbRow; ++i) {
delete array[i];
}
delete this->array;
}
// Function that return the cofactor matrix by removing row i and column j
Matrix Matrix::getCofactor(int i, int j) const throw(std::invalid_argument) {
// If i and j are in the matrix
if (0<= i && i < nbRow && 0<= j && j<nbColumn) {
// Create the cofactor matrix
Matrix cofactor(nbRow-1,nbColumn-1);
int u=0; // Row coordinate in the cofactor matrix
int v=0; // Column coordinate in the cofactor matrix
// For every element in the matrix
for (int s=0; s<nbColumn; ++s) {
for(int r=0; r<nbRow; ++r) {
// If the element is not in row i or in column j
if (r!=i && s!=j) {
// Add the element in the cofactor matrix
cofactor.setValue(u,v, getValue(r,s));
++u;
if (u==cofactor.nbRow) {
u = 0;
++v;
}
}
}
}
// Return the cofactor matrix
return cofactor;
}
else {
// We Throw an out_of_range exception
throw std::invalid_argument("Exception : The index i or j is outside the matrix size !");
}
}
// This function return the transposed matrix
Matrix Matrix::getTranspose() const {
// Create the new matrix
Matrix transposedMatrix(nbColumn, nbRow);
// Transposition of the matrix
for (int i=0; i<nbRow; ++i) {
for(int j=0; j<nbColumn; ++j) {
transposedMatrix.setValue(j,i, array[i][j]);
}
}
// Return the transposed matrix
return transposedMatrix;
}
// Function that return the inverse of the matrix if there exists
Matrix Matrix::getInverse() const throw(MatrixException) {
// Check if the matrix is a square-matrix
if (nbRow==nbColumn) {
// Compute the determinant of the matrix
double determinant = getDeterminant();
// Check if the matrix is invertible
if (determinant != 0.0) {
// Create a temp matrix
Matrix tempMatrix(nbRow, nbColumn);
double k=1.0;
// Compute the inverse matrix
for(int i=0; i<nbRow; ++i) {
for(int j=0; j<nbColumn; ++j) {
if ( (i+j) % 2 == 0) {
k=1.0;
}
else {
k=-1.0;
}
tempMatrix.setValue(i,j, k * getCofactor(i,j).getDeterminant());
}
}
// Create the inverse matrix
Matrix inverseMatrix = tempMatrix.getTranspose() * (1.0 / determinant);
// Return the inverse matrix
return inverseMatrix;
}
else {
// We throw an Matrix Exception
throw MatrixException("Exception : Inverse of the matrix can't be computed because the determinant is zero !");
}
}
else {
// We throw an Matrix Exception
throw MatrixException("Exception : Inverse can't be computed for a non-square matrix !");
}
}
// Function that return the determinant of the matrix
double Matrix::getDeterminant() const throw(MatrixException) {
// If the matrix is a square matrix
if (nbRow == nbColumn) {
if(nbRow == 1) {
return getValue(0,0);
}
else if (nbRow == 2) {
return (getValue(0,0) * getValue(1,1) - getValue(1,0) * getValue(0,1));
}
else {
double determinant = 0.0;
double k=1.0;
// For every element in the first row
for(int j=0; j<nbColumn; ++j) {
determinant = determinant + k * getValue(0,j) * getCofactor(0,j).getDeterminant();
if (k==1.0) {
k=-1.0;
}
else {
k=1.0;
}
}
// Return the determinant value
return determinant;
}
}
else {
// Throw a Matrix Multiplication Exception
throw MatrixException("Exception : The determinant of a non-square matrix isn't computable !");
}
}
// Return the trace of the matrix
// TODO Matrix::getTrace() : Test this method
double Matrix::getTrace() const {
double sum = 0.0;
// Compute the trace of the matrix
for(int i=0; i<nbRow; ++i) {
for(int j=0; j<nbColumn; ++j) {
sum = sum + array[i][j];
}
}
// Return the trace
return sum;
}
// Static function that return a identity matrix of size nxn
Matrix Matrix::identityMatrix(int dimension) throw(std::invalid_argument) {
// Argument verification
if (dimension>0) {
// Create a new matrix
Matrix identityMatrix(dimension,dimension);
// Fill in the identity matrix
for(int i=0; i<dimension; ++i) {
for(int j=0; j<dimension; ++j) {
if (i==j) {
identityMatrix.setValue(i, j, 1.0);
}
else {
identityMatrix.setValue(i, j, 0.0);
}
}
}
// Return the identity matrix
return identityMatrix;
}
else {
// Throw an exception
throw std::invalid_argument("Exception : The argument of identityMatrix has to be positive !");
}
}
// Definition of the operator + for the sum of two matrices with references
Matrix Matrix::operator + (const Matrix& matrix2) const throw(MatrixException) {
if (nbRow == matrix2.nbRow && nbColumn == matrix2.nbColumn) {
// Create a new matrix
Matrix sumMatrix(nbRow,nbColumn);
// Sum the two matrices
for(int i=0; i<nbRow; ++i) {
for(int j=0; j<nbColumn; ++j) {
sumMatrix.setValue(i, j, this->getValue(i,j) + matrix2.getValue(i,j));
}
}
// Return the sum matrix
return sumMatrix;
}
else {
// We throw an Matrix Exception
throw MatrixException("Exception : Addition of the matrices isn't possible beacause the size of the matrices aren't the same");
}
}
// Definition of the operator - for the substraction of two matrices with references
Matrix Matrix::operator - (const Matrix& matrix2) const throw(MatrixException) {
if (nbRow == matrix2.nbRow && nbColumn == matrix2.nbColumn) {
// Create a new matrix
Matrix sumMatrix(nbRow, nbColumn);
// Substract the two matrices
for(int i=0; i<nbRow; ++i) {
for(int j=0; j<this->nbColumn; ++j) {
sumMatrix.setValue(i, j, this->getValue(i,j) - matrix2.getValue(i,j));
}
}
// Return the sum matrix
return sumMatrix;
}
else {
// We throw an Matrix Exception
throw MatrixException("Exception : Substraction of the matrices isn't possible beacause the size of the matrices aren't the same");
}
}
// Overloaded operator * for the multiplication of the matrix with a number
Matrix Matrix::operator * (double nb) const {
// Creation of the result matrix
Matrix result(nbRow,nbColumn);
// Multiplication of the matrix with the number
for(int i=0; i<nbRow; ++i) {
for(int j=0; j<nbColumn; ++j) {
result.setValue(i,j, getValue(i,j) * nb);
}
}
// Return the result matrix
return result;
}
// Overloaded operator for multiplication with a matrix
Matrix Matrix::operator * (const Matrix& matrix2) const throw(MatrixException) {
// Check the sizes of the matrices
if (nbColumn == matrix2.nbRow) {
// Compute the result of the multiplication
Matrix result(nbRow, matrix2.nbColumn);
double sum;
for(int i=0; i<nbRow; ++i) {
for(int j=0; j<matrix2.nbColumn; ++j) {
sum = 0.0;
for(int k=0; k<nbColumn; ++k) {
sum = sum + array[i][k] * matrix2.array[k][j];
}
result.array[i][j] = sum;
}
}
// Return the result matrix
return result;
}
else {
// Throw an exception because the multiplication is impossible
throw MatrixException("Exception : The sizes of the matrices aren't compatible for the multiplication");
}
}
// Overloaded operator = for the assignment
Matrix& Matrix::operator = (const Matrix& matrix2) throw(MatrixException) {
// Check the size of the matrix
if (nbRow==matrix2.nbRow && nbColumn==matrix2.nbColumn) {
// Check for self-assignment
if (this != &matrix2) {
for(int i=0; i<nbRow; ++i) {
for(int j=0; j<nbColumn; ++j) {
this->setValue(i,j, matrix2.getValue(i,j));
}
}
}
// Return a reference to the matrix
return *this;
}
else {
// Throw a Matrix Exception
throw MatrixException("Exception : Assignment impossible because the size of the matrices aren't the same !");
}
}
// Overloaded operator for equality condition
bool Matrix::operator == (const Matrix& matrix2) const throw(MatrixException) {
// Check if the matrices dimensions are compatible
if (nbRow == matrix2.nbRow && nbColumn == matrix2.nbColumn) {
for (int i=0; i<nbRow; ++i) {
for(int j=0; j<nbColumn; ++j) {
if (array[i][j] != matrix2.array[i][j]) {
return false;
}
}
}
return true;
}
else {
// Throw an exception because the matrices dimensions aren't the same
throw MatrixException("Exception : Impossible to check if the matrices are equal because they don't have the same dimension");
}
}
// TO DELETE, THIS IS JUST FOR TESTING MATRICES
void Matrix::display() const {
for(int i=0; i<nbRow; ++i) {
for(int j=0; j<nbColumn; ++j) {
std::cout << array[i][j] << " ";
}
std::cout << std::endl;
}
}

View File

@ -0,0 +1,107 @@
/****************************************************************************
* Copyright (C) 2008 Daniel Chappuis *
****************************************************************************
* This file is part of ReactPhysics3D. *
* *
* ReactPhysics3D is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* ReactPhysics3D is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with ReactPhysics3D. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifndef MATRIX_H
#define MATRIX_H
// Libraries
#include "exceptions.h"
#include <stdexcept>
#include <iostream>
/* -------------------------------------------------------------------
Class Matrix :
This class represents a matrix.
-------------------------------------------------------------------
*/
class Matrix {
private :
int nbRow; // Number of row in the matrix
int nbColumn; // Number of colum in the matrix
double** array; // Dynamic array that contains the values of the matrix
public :
Matrix(int nbRow, int nbColum) throw(std::invalid_argument); // Constructor of the class Matrix
Matrix(const Matrix& matrix); // Copy constructor of the class Matrix
virtual ~Matrix(); // Destructor of the class Matrix
double getValue(int i, int j) const throw(std::invalid_argument); // Return a value in the matrix
void setValue(int i, int j, double value) throw(std::invalid_argument); // Set a value in the matrix
int getNbRow() const; // Return the number of row of the matrix
int getNbColumn() const; // Return the number of column of the matrix
Matrix getCofactor(int i, int j) const throw(std::invalid_argument); // Return the cofactor matrix by removing row i and column j
Matrix getTranspose() const; // Return the transposed matrixs
Matrix getInverse() const throw(MatrixException); // Return the inverse of the matrix if there exists
double getDeterminant() const throw(MatrixException); // Return the determinant of the matrix
double getTrace() const; // Return the trace of the matrix
static Matrix identityMatrix(int dimension) throw(std::invalid_argument); // Return the identity matrix I of the given dimension
void display() const; // TO DELETE
// --- Overloaded operators --- //
Matrix operator + (const Matrix& matrix2) const throw(MatrixException); // Overloaded operator for addition
Matrix operator - (const Matrix& matrix2) const throw(MatrixException); // Overloaded operator for substraction
Matrix operator * (double nb) const; // Overloaded operator for multiplication with a number
Matrix operator * (const Matrix& matrix2) const throw(MatrixException); // Overloaded operator for multiplication with a matrix
Matrix& operator = (const Matrix& matrix2) throw(MatrixException); // Overloaded operator for assignment
bool operator == (const Matrix& matrix2) const throw(MatrixException); // Overloaded operator for equality condition
};
// Function to get a value in the matrix (inline)
inline double Matrix::getValue(int i, int j) const throw(std::invalid_argument) {
if (0 <= i && i < nbRow && 0 <= j && j < nbColumn) {
// get the value in the matrix
return array[i][j];
}
else {
// We Throw an out_of_range exception
throw std::invalid_argument("Exception : The index i or j is outside the matrix size !");
}
}
// Function to set a value in the matrix (inline)
inline void Matrix::setValue(int i, int j, double value) throw(std::invalid_argument) {
if (0 <= i && i < nbRow && 0 <= j && j < nbColumn) {
// Set the value in the matrix
this->array[i][j] = value;
}
else {
// We Throw an out_of_range exception
throw std::invalid_argument("Exception : The index i or j is outside the matrix size !");
}
}
// Function that return the number of row of the matrix (inline)
inline int Matrix::getNbRow() const {
return nbRow;
}
// Function that return the number of colum of the matrix (inline)
inline int Matrix::getNbColumn() const {
return nbColumn;
}
// Overloaded operator for multiplication between a number and a Matrix (inline)
inline Matrix operator * (double number, const Matrix& matrix) {
// Return the result matrix
return matrix * number;
}
#endif

View File

@ -0,0 +1,201 @@
/****************************************************************************
* Copyright (C) 2008 Daniel Chappuis *
****************************************************************************
* This file is part of ReactPhysics3D. *
* *
* ReactPhysics3D is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* ReactPhysics3D is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with ReactPhysics3D. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
// Libraries
#include <iostream>
#include "Matrix3x3.h"
// Constructor of the class Matrix3x3
Matrix3x3::Matrix3x3() {
// Initialize all values in the matrix to zero
setAllValues(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
}
// Constructor with arguments
Matrix3x3::Matrix3x3(double a1, double a2, double a3, double b1, double b2, double b3, double c1, double c2, double c3) {
// Initialize the matrix with the values
setAllValues(a1, a2, a3, b1, b2, b3, c1, c2, c3);
}
// Copy-constructor
Matrix3x3::Matrix3x3(const Matrix3x3& matrix2) {
// Copy the values in the matrix
setAllValues(matrix2.array[0][0], matrix2.array[0][1], matrix2.array[0][2],
matrix2.array[1][0], matrix2.array[1][1], matrix2.array[1][2],
matrix2.array[2][0], matrix2.array[2][1], matrix2.array[2][2]);
}
// Create a Matrix3x3 from a quaternion
Matrix3x3::Matrix3x3(const Quaternion& quaternion) {
double x = quaternion.getX();
double y = quaternion.getY();
double z = quaternion.getZ();
double w = quaternion.getW();
double nQ = x*x + y*y + z*z + w*w;
double s = 0.0;
if (nQ > 0.0) {
s = 2.0/nQ;
}
// Create the matrix corresponding to the quaternion
Matrix3x3(1.0-y*y*s-z*z*s, x*y*s-w*z*s, z*x*s + w*y*s, x*y*s + w*z*s, 1.0-x*x*s-z*z*s, y*z*s-w*x*s,
z*x*s-w*y*s, y*z*s + w*x*s, 1.0-x*x*s-y*y*s);
}
// Destructor
Matrix3x3::~Matrix3x3() {
}
// Return the inverse matrix
Matrix3x3 Matrix3x3::getInverse() const throw(MatrixException) {
// Compute the determinant of the matrix
double determinant = getDeterminant();
// Check if the determinant is equal to zero
if (determinant != 0) {
double invDeterminant = 1.0 / determinant;
Matrix3x3 tempMatrix;
// Compute the inverse of the matrix
tempMatrix.setAllValues((array[1][1]*array[2][2]-array[2][1]*array[1][2]), -(array[1][0]*array[2][2]-array[2][0]*array[1][2]), (array[1][0]*array[2][1]-array[2][0]*array[1][1]),
-(array[0][1]*array[2][2]-array[2][1]*array[0][2]), (array[0][0]*array[2][2]-array[2][0]*array[0][2]), -(array[0][0]*array[2][1]-array[2][0]*array[0][1]),
(array[0][1]*array[1][2]-array[0][2]*array[1][1]), -(array[0][0]*array[1][2]-array[1][0]*array[0][2]), (array[0][0]*array[1][1]-array[0][1]*array[1][0]));
// Return the inverse matrix
return (invDeterminant * tempMatrix.getTranspose());
}
else {
// Throw an exception because the inverse of the matrix doesn't exist if the determinant is equal to zero
throw MatrixException("Exception : Impossible to compute the inverse of the matrix because the determinant is equal to zero");
}
}
// Return the quaternion corresponding to the matrix (it returns a unit quaternion)
Quaternion Matrix3x3::getQuaternion() const {
// Get the trace of the matrix
double trace = getTrace();
double r;
double s;
if (trace < 0.0) {
// TODO Matrix3x3::getQuaternion() : End the implementation of this ...
if (array[1][1] > array[0][0]) {
if(array[2][2] > array[1][1]) {
r = sqrt(array[2][2] - array[0][0] - array[1][1] + 1.0);
s = 0.5 / r;
return Quaternion((array[0][1] + array[1][0])*s, , (array[1][2] + array[2][1])*s, 0.5 * r);
}
else {
r = sqrt(array[1][1] - array[2][2] - array[0][0] + 1.0);
s = 0.5 / r;
return Quaternion((array[2][0] + array[0][2])*s, (array[1][2] + array[2][1])*s, 0.5 * r, (array[1][0] + array[0][1])*s);
}
}
else if (array[2][2] > array[0][0]) {
}
else {
}
}
else {
r = sqrt(trace + 1.0);
s = 0.5/r;
return Quaternion((array[2][1]-array[1][2])*s, (array[0][2]-array[2][0])*s, (array[1][0]-array[0][1])*s, 0.5 * r);
}
}
// Return the 3x3 identity matrix
Matrix3x3 Matrix3x3::identityMatrix() {
// Return the identity matrix
return Matrix3x3(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0);
}
// TO DELETE, THIS IS JUST FOR TESTING MATRICES
void Matrix3x3::display() const {
for(int i=0; i<3; ++i) {
for(int j=0; j<3; ++j) {
std::cout << array[i][j] << " ";
}
std::cout << std::endl;
}
}
// Overloaded operator for addition
Matrix3x3 Matrix3x3::operator + (const Matrix3x3& matrix2) const {
// Return the sum matrix
return Matrix3x3(array[0][0] + matrix2.array[0][0], array[0][1] + matrix2.array[0][1], array[0][2] + matrix2.array[0][2],
array[1][0] + matrix2.array[1][0], array[1][1] + matrix2.array[1][1], array[1][2] + matrix2.array[1][2],
array[2][0] + matrix2.array[2][0], array[2][1] + matrix2.array[2][1], array[2][2] + matrix2.array[2][2]);
}
// Overloaded operator for substraction
Matrix3x3 Matrix3x3::operator - (const Matrix3x3& matrix2) const {
// Return the substraction matrix
return Matrix3x3(array[0][0] - matrix2.array[0][0], array[0][1] - matrix2.array[0][1], array[0][2] - matrix2.array[0][2],
array[1][0] - matrix2.array[1][0], array[1][1] - matrix2.array[1][1], array[1][2] - matrix2.array[1][2],
array[2][0] - matrix2.array[2][0], array[2][1] - matrix2.array[2][1], array[2][2] - matrix2.array[2][2]);
}
// Overloaded operator for multiplication with a number
Matrix3x3 Matrix3x3::operator * (double nb) const {
// Return multiplied matrix
return Matrix3x3(array[0][0] * nb, array[0][1] * nb, array[0][2] * nb,
array[1][0] * nb, array[1][1] * nb, array[1][2] * nb,
array[2][0] * nb, array[2][1] * nb, array[2][2] * nb);
}
// Overloaded operator for multiplication with a matrix
Matrix3x3 Matrix3x3::operator * (const Matrix3x3& matrix2) const {
// Compute and return the multiplication of the matrices
return Matrix3x3(array[0][0]*matrix2.array[0][0] + array[0][1]*matrix2.array[1][0] + array[0][2]*matrix2.array[2][0],
array[0][0]*matrix2.array[0][1] + array[0][1]*matrix2.array[1][1] + array[0][2]*matrix2.array[2][1],
array[0][0]*matrix2.array[0][2] + array[0][1]*matrix2.array[1][2] + array[0][2]*matrix2.array[2][2],
array[1][0]*matrix2.array[0][0] + array[1][1]*matrix2.array[1][0] + array[1][2]*matrix2.array[2][0],
array[1][0]*matrix2.array[0][1] + array[1][1]*matrix2.array[1][1] + array[1][2]*matrix2.array[2][1],
array[1][0]*matrix2.array[0][2] + array[1][1]*matrix2.array[1][2] + array[1][2]*matrix2.array[2][2],
array[2][0]*matrix2.array[0][0] + array[2][1]*matrix2.array[1][0] + array[2][2]*matrix2.array[2][0],
array[2][0]*matrix2.array[0][1] + array[2][1]*matrix2.array[1][1] + array[2][2]*matrix2.array[2][1],
array[2][0]*matrix2.array[0][2] + array[2][1]*matrix2.array[1][2] + array[2][2]*matrix2.array[2][2]);
}
// Overloaded operator for assignment
Matrix3x3& Matrix3x3::operator = (const Matrix3x3& matrix2) {
// Check for self-assignment
if (this != &matrix2) {
setAllValues(matrix2.array[0][0], matrix2.array[0][1], matrix2.array[0][2],
matrix2.array[1][0], matrix2.array[1][1], matrix2.array[1][2],
matrix2.array[2][0], matrix2.array[2][1], matrix2.array[2][2]);
}
// Return a reference to the matrix
return *this;
}

View File

@ -0,0 +1,146 @@
/****************************************************************************
* Copyright (C) 2008 Daniel Chappuis *
****************************************************************************
* This file is part of ReactPhysics3D. *
* *
* ReactPhysics3D is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* ReactPhysics3D is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with ReactPhysics3D. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifndef MATRIX3X3_H
#define MATRIX3X3_H
// Libraries
#include "exceptions.h"
#include "Quaternion.h"
/* -------------------------------------------------------------------
Class Matrix3x3 :
This class represents a 3x3 matrix.
-------------------------------------------------------------------
*/
class Matrix3x3 {
private :
double array[3][3]; // Array with the values of the matrix
public :
Matrix3x3(); // Constructor of the class Matrix3x3
Matrix3x3(double a1, double a2, double a3, double b1, double b2, double b3,
double c1, double c2, double c3); // Constructor with arguments
Matrix3x3(const Matrix3x3& matrix); // Copy-constructor
Matrix3x3(const Quaternion& quaternion); // Create a Matrix3x3 from a Quaternion
virtual ~Matrix3x3(); // Destructor
double getValue(int i, int j) const throw(std::invalid_argument); // Get a value in the matrix
void setValue(int i, int j, double value) throw(std::invalid_argument); // Set a value in the matrix
void setAllValues(double a1, double a2, double a3, double b1, double b2, double b3,
double c1, double c2, double c3); // Set all the values in the matrix
Matrix3x3 getTranspose() const; // Return the transpose matrix
double getDeterminant() const; // Return the determinant of the matrix
double getTrace() const; // Return the trace of the matrix
Matrix3x3 getInverse() const throw(MatrixException); // Return the inverse matrix
Quaternion getQuaternion() const; // Return the quaternion corresponding to the matrix (it returns a unit quaternion)
static Matrix3x3 identityMatrix(); // Return the 3x3 identity matrix
void display() const; // TO DELETE
// --- Overloaded operators --- //
Matrix3x3 operator + (const Matrix3x3& matrix2) const; // Overloaded operator for addition
Matrix3x3 operator - (const Matrix3x3& matrix2) const ; // Overloaded operator for substraction
Matrix3x3 operator * (double nb) const; // Overloaded operator for multiplication with a number
Matrix3x3 operator * (const Matrix3x3& matrix2) const; // Overloaded operator for multiplication with a matrix
Matrix3x3& operator = (const Matrix3x3& matrix2); // Overloaded operator for assignment
bool operator == (const Matrix3x3& matrix2) const; // Overloaded operator for equality condition
};
// Method to get a value in the matrix (inline)
inline double Matrix3x3::getValue(int i, int j) const throw(std::invalid_argument) {
// Check the argument
if (i>=0 && i<3 && j>=0 && j<3) {
// Return the value
return array[i][j];
}
else {
// Throw an exception because of the wrong argument
throw MatrixException("Exception : The argument isn't in the bounds of the 3x3 matrix");
}
}
// Method to set a value in the matrix (inline)
inline void Matrix3x3::setValue(int i, int j, double value) throw(std::invalid_argument) {
// Check the argument
if (i>=0 && i<3 && j>=0 && j<3) {
// Set the value
array[i][j] = value;
}
else {
// Throw an exception because of the wrong argument
throw MatrixException("Exception : The argument isn't in the bounds of the 3x3 matrix");
}
} // End of the dcmaths namespace
// Method to set all the values in the matrix
inline void Matrix3x3::setAllValues(double a1, double a2, double a3, double b1, double b2, double b3,
double c1, double c2, double c3) {
// Set all the values of the matrix
array[0][0] = a1;
array[0][1] = a2;
array[0][2] = a3;
array[1][0] = b1;
array[1][1] = b2;
array[1][2] = b3;
array[2][0] = c1;
array[2][1] = c2;
array[2][2] = c3;
}
// Return the transpose matrix
inline Matrix3x3 Matrix3x3::getTranspose() const {
// Return the transpose matrix
return Matrix3x3(array[0][0], array[1][0], array[2][0],
array[0][1], array[1][1], array[2][1],
array[0][2], array[1][2], array[2][2]);
}
// Return the determinant of the matrix
inline double Matrix3x3::getDeterminant() const {
// Compute and return the determinant of the matrix
return (array[0][0]*(array[1][1]*array[2][2]-array[2][1]*array[1][2]) - array[0][1]*(array[1][0]*array[2][2]-array[2][0]*array[1][2]) +
array[0][2]*(array[1][0]*array[2][1]-array[2][0]*array[1][1]));
}
// Return the trace of the matrix
// TODO Matrix3x3::getTrace() : Test this method
inline double Matrix3x3::getTrace() const {
// Compute and return the trace
return (array[0][0] + array[1][1] + array[2][2]);
}
// Overloaded operator for multiplication between a number and a Matrix3x3 (inline)
inline Matrix3x3 operator * (double number, const Matrix3x3& matrix) {
// Return the multiplied matrix
return matrix * number;
}
// Overloaded operator for equality condition
inline bool Matrix3x3::operator == (const Matrix3x3& matrix2) const {
return (array[0][0] == matrix2.array[0][0] && array[0][1] == matrix2.array[0][1] && array[0][2] == matrix2.array[0][2] &&
array[1][0] == matrix2.array[1][0] && array[1][1] == matrix2.array[1][1] && array[1][2] == matrix2.array[1][2] &&
array[2][0] == matrix2.array[2][0] && array[2][1] == matrix2.array[2][1] && array[2][2] == matrix2.array[2][2]);
}
#endif

View File

@ -0,0 +1,52 @@
/****************************************************************************
* Copyright (C) 2008 Daniel Chappuis *
****************************************************************************
* This file is part of ReactPhysics3D. *
* *
* ReactPhysics3D is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* ReactPhysics3D is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with ReactPhysics3D. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
// Libraries
#include "Quaternion.h"
// Constructor of the class
Quaternion::Quaternion()
:x(0.0), y(0.0), z(0.0), w(0.0) {
}
// Constructor with arguments
Quaternion::Quaternion(double x, double y, double z, double w)
:x(x), y(y), z(z), w(w) {
}
// Constructor with the component w and the vector v=(x y z)
Quaternion::Quaternion(double w, const Vector3D& v)
:x(v.getX()), y(v.getY()), z(v.getZ()), w(w) {
}
// Copy-constructor
Quaternion::Quaternion(const Quaternion& quaternion)
:x(quaternion.x), y(quaternion.y), z(quaternion.z), w(quaternion.w) {
}
// Destructor
Quaternion::~Quaternion() {
}

View File

@ -0,0 +1,200 @@
/****************************************************************************
* Copyright (C) 2008 Daniel Chappuis *
****************************************************************************
* This file is part of ReactPhysics3D. *
* *
* ReactPhysics3D is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* ReactPhysics3D is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with ReactPhysics3D. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifndef QUATERNION_H
#define QUATERNION_H
// Libraries
#include <cmath>
#include "Vector3D.h"
#include "exceptions.h"
// TODO : Test the Quaternion implementation
// TODO : Test == operator of all classes
// TODO : In every operator= overloading, we don't check for self-assignment, it's an error
/* -------------------------------------------------------------------
Class Quaternion :
This class represents a quaternion.
-------------------------------------------------------------------
*/
class Quaternion
{
private :
double x; // Component x of the quaternion
double y; // Component y of the quaternion
double z; // Component z of the quaternion
double w; // Component w of the quaternion
public :
Quaternion(); // Constructor
Quaternion(double x, double y, double z, double w); // Constructor with arguments
Quaternion(double w, const Vector3D& v); // Constructor with the component w and the vector v=(x y z)
Quaternion(const Quaternion& quaternion); // Copy-constructor
~Quaternion(); // Destructor
double getX() const; // Return the component x of the quaternion
double getY() const; // Return the component y of the quaternion
double getZ() const; // Return the component z of the quaternion
double getW() const; // Return the component w of the quaternion
void setX(double x); // Set the value x
void setY(double y); // Set the value y
void setZ(double z); // Set the value z
void setW(double w); // Set the value w
Vector3D vectorV() const; // Return the vector v=(x y z) of the quaternion
double length() const; // Return the length of the quaternion
Quaternion getUnit() const throw (QuaternionException); // Return the unit quaternion
Quaternion getConjugate() const; // Return the conjugate quaternion
Quaternion getInverse() const throw (QuaternionException); // Return the inverse of the quaternion
// --- Overloaded operators --- //
Quaternion operator + (const Quaternion& quaternion) const; // Overloaded operator for the addition
Quaternion operator - (const Quaternion& quaternion) const; // Overloaded operator for the substraction
Quaternion operator * (const Quaternion& quaternion) const; // Overloaded operator for the multiplication
Quaternion& operator = (const Quaternion& quaternion); // Overloaded operator for assignment
bool operator == (const Quaternion& quaternion) const; // Overloaded operator for equality condition
};
// Get the value x (inline)
inline double Quaternion::getX() const {
return x;
}
// Get the value y (inline)
inline double Quaternion::getY() const {
return y;
}
// Get the value z (inline)
inline double Quaternion::getZ() const {
return z;
}
// Get the value w (inline)
inline double Quaternion::getW() const {
return w;
}
// Set the value x (inline)
inline void Quaternion::setX(double x) {
this->x = x;
}
// Set the value y (inline)
inline void Quaternion::setY(double y) {
this->y = y;
}
// Set the value z (inline)
inline void Quaternion::setZ(double z) {
this->z = z;
}
// Set the value w (inline)
inline void Quaternion::setW(double w) {
this->w = w;
}
// Return the vector v=(x y z) of the quaternion
inline Vector3D Quaternion::vectorV() const {
// Return the vector v
return Vector3D(x, y, z);
}
// Return the length of the quaternion (inline)
inline double Quaternion::length() const {
return sqrt(x*x + y*y + z*z + w*w);
}
// Return the unit quaternion
inline Quaternion Quaternion::getUnit() const throw(QuaternionException) {
double lengthQuaternion = length();
// Check if the length is not equal to zero
if (lengthQuaternion != 0.0) {
// Compute and return the unit quaternion
return Quaternion(x/lengthQuaternion, y/lengthQuaternion, z/lengthQuaternion, w/lengthQuaternion);
}
else {
// Throw an exception because it's impossible to compute a unit quaternion if its length is equal to zero
throw QuaternionException("Exception : Impossible to compute the unit quaternion if the length of the quaternion is zero");
}
}
// Return the conjugate of the quaternion (inline)
inline Quaternion Quaternion::getConjugate() const {
return Quaternion(x, -y, -z, -w);
}
// Return the inverse of the quaternion (inline)
inline Quaternion Quaternion::getInverse() const throw(QuaternionException) {
double lengthQuaternion = length();
lengthQuaternion = lengthQuaternion * lengthQuaternion;
// Check if the length is not equal to zero
if (lengthQuaternion != 0.0) {
// Compute and return the inverse quaternion
return Quaternion(x/lengthQuaternion, y/lengthQuaternion, z/lengthQuaternion, w/lengthQuaternion);
}
else {
// Throw an exception because the inverse cannot be computed
throw QuaternionException("Exception : Impossible to compute the inverse of the quaternion because it's length is zero");
}
}
// Overloaded operator for the addition of two quaternions
inline Quaternion Quaternion::operator + (const Quaternion& quaternion) const {
// Return the result quaternion
return Quaternion(x + quaternion.x, y + quaternion.y, z + quaternion.z, w + quaternion.w);
}
// Overloaded operator for the substraction of two quaternions
inline Quaternion Quaternion::operator - (const Quaternion& quaternion) const {
// Return the result of the substraction
return Quaternion(x-quaternion.x, y - quaternion.y, z - quaternion.z, w - quaternion.w);
}
// Overloaded operator for the multiplication of two quaternions
inline Quaternion Quaternion::operator * (const Quaternion& quaternion) const {
// Return the result of the multiplication
return Quaternion(w*quaternion.w - vectorV().scalarProduct(quaternion.vectorV()), w*quaternion.vectorV()+quaternion.w*vectorV() + vectorV().crossProduct(quaternion.vectorV()));
}
// Overloaded operator for the assignment
inline Quaternion& Quaternion::operator = (const Quaternion& quaternion) {
// Check for self-assignment
if (this != &quaternion) {
x = quaternion.x;
y = quaternion.y;
z = quaternion.z;
w = quaternion.w;
}
// Return this quaternion
return *this;
}
// Overloaded operator for equality condition
inline bool Quaternion::operator == (const Quaternion& quaternion) const {
return (x == quaternion.x && y == quaternion.y && z == quaternion.z && w == quaternion.w);
}
#endif

View File

@ -0,0 +1,221 @@
/****************************************************************************
* Copyright (C) 2008 Daniel Chappuis *
****************************************************************************
* This file is part of ReactPhysics3D. *
* *
* ReactPhysics3D is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* ReactPhysics3D is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with ReactPhysics3D. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
// Libraries
#include "Vector.h"
// Constructor of the class Vector
Vector::Vector(int n) throw(std::invalid_argument) {
// Check the argument
if (n > 0) {
// Create the array that contains the values of the vector
nbComponent = n;
tab = new double[nbComponent];
// Fill the array with zero's value
for(int i=0; i<nbComponent; ++i) {
tab[i] = 0.0;
}
}
else {
// Throw an exception because of the wrong argument
throw std::invalid_argument("Exception : The size of the vector has to be positive !");
}
}
// Copy-constructor of the class Vector
Vector::Vector(const Vector& vector) {
nbComponent = vector.nbComponent;
tab = new double[nbComponent];
// Fill the array with the value of the vector
for (int i=0; i<nbComponent; ++i) {
tab[i] = vector.tab[i];
}
}
// Destructor of the class Vector
Vector::~Vector() {
// Erase the array with the values of the vector
delete [] tab;
}
// Return the corresponding unit vector
Vector Vector::getUnit() const throw(VectorException) {
double lengthVector = length();
// Check if the length of the vector is equal to zero
if (lengthVector!= 0) {
double lengthInv = 1.0 / lengthVector;
Vector unitVector(nbComponent);
// Compute the unit vector
for(int i=0; i<nbComponent; ++i) {
unitVector.setValue(i, getValue(i) * lengthInv);
}
// Return the unit vector
return unitVector;
}
else {
// Throw an exception because the length of the vector is zero
throw VectorException("Exception : Impossible to compute the unit vector because the length of the vector is zero");
}
}
// Method to compute the scalar product of two vectors
double Vector::scalarProduct(const Vector& vector) const throw(VectorException) {
// Check the sizes of the two vectors
if (nbComponent == vector.nbComponent) {
double result = 0.0;
// Compute the scalar product
for (int i=0; i<nbComponent; ++i) {
result = result + vector.tab[i] * tab[i];
}
// Return the result of the scalar product
return result;
}
else {
// Throw an exception because the two vectors haven't the same size
throw VectorException("Exception : Impossible to compute the scalar product because the vectors haven't the same size");
}
}
// Method to compute the cross product of two vectors
Vector Vector::crossProduct(const Vector& vector) const throw(VectorException) {
// Check if the vectors have 3 components
if (nbComponent == 3 && vector.nbComponent == 3) {
Vector result(3);
// Compute the cross product
result.tab[0] = tab[1] * vector.tab[2] - tab[2] * vector.tab[1];
result.tab[1] = tab[2] * vector.tab[0] - tab[0] * vector.tab[2];
result.tab[2] = tab[0] * vector.tab[1] - tab[1] * vector.tab[0];
// Return the result of the cross product
return result;
}
else {
// Throw an exception because the vectors haven't three components
throw VectorException("Exception : Impossible to compute the cross product because the vectors haven't 3 components");
}
}
// TO DELETE
void Vector::display() const {
for (int i=0; i<nbComponent; ++i) {
std::cout << tab[i] << std::endl;
}
}
// Overloaded operator for addition
Vector Vector::operator + (const Vector& vector) const throw(VectorException) {
// Check the size of the two vectors
if (nbComponent == vector.nbComponent) {
Vector sum(nbComponent);
// Compute the sum of the two vectors
for (int i=0; i<nbComponent; ++i) {
sum.setValue(i, vector.tab[i] + tab[i]);
}
// Return the sum vector
return sum;
}
else {
// Throw an exception because the sizes of the two vectors aren't the same
throw VectorException("Exception : Impossible two sum the two vectors because the sizes aren't the same !");
}
}
// Overloaded operator for substraction
Vector Vector::operator - (const Vector& vector) const throw(VectorException) {
// Check the size of the two vectors
if (nbComponent == vector.nbComponent) {
Vector substraction(nbComponent);
// Compute the subraction of the two vectors
for (int i=0; i<nbComponent; ++i) {
substraction.setValue(i, tab[i] - vector.tab[i]);
}
// Return the subraction vector
return substraction;
}
else {
// Throw an exception because the sizes of the two vectors aren't the same
throw VectorException("Exception : Impossible two substract the two vectors because the sizes aren't the same !");
}
}
// Overloaded operator for multiplication with a number
Vector Vector::operator * (double number) const {
Vector result(nbComponent);
// Compute the multiplication
for (int i=0; i<nbComponent; ++i) {
result.setValue(i, number * tab[i]);
}
// Return the result vector
return result;
}
// Overloaded operator for assigment to a Vector
Vector& Vector::operator = (const Vector& vector) throw(VectorException) {
// Check the size of the vectors
if (nbComponent == vector.nbComponent) {
// Check for self-assignment
if (this != &vector) {
for (int i=0; i<nbComponent; ++i) {
tab[i] = vector.tab[i];
}
}
// Return a reference to the vector
return *this;
}
else {
// Throw an exception because the sizes of the vectors aren't the same
throw VectorException("Exception : The assigment to a Vector is impossible because the size of the vectors aren't the same");
}
}
// Overloaded operator for the equality condition
bool Vector::operator == (const Vector& vector) const throw(VectorException) {
// Check if the sizes of the vectors are compatible
if (nbComponent == vector.nbComponent) {
for (int i=0; i<nbComponent; ++i) {
if (tab[i] != vector.tab[i]) {
return false;
}
}
return true;
}
else {
// Throw an exception because the sizes of the vectors aren't the same
throw VectorException("Exception : Impossible to check if the vectors are equal because they don't have the same size");
}
}

View File

@ -0,0 +1,116 @@
/****************************************************************************
* Copyright (C) 2008 Daniel Chappuis *
****************************************************************************
* This file is part of ReactPhysics3D. *
* *
* ReactPhysics3D is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* ReactPhysics3D is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with ReactPhysics3D. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifndef VECTOR_H
#define VECTOR_H
// Libraries
#include "exceptions.h"
#include <cmath>
#include <iostream>
/* -------------------------------------------------------------------
Class Vector :
This class represents a Vector.
-------------------------------------------------------------------
*/
class Vector {
private :
double* tab; // Array of the vector's components
int nbComponent; // number of components in the vector
public :
Vector(int n) throw(std::invalid_argument); // Constructor of the class Vector
Vector(const Vector& vector); // Copy-constructor of the class Vector
virtual ~Vector(); // Destructor of the class Vector
double getValue(int n) const throw(std::invalid_argument); // Get a component of the vector
void setValue(int n, double value) throw(std::invalid_argument); // Set the value of a component of the vector
int getNbComponent() const; // Get the number of components in the vector
double length() const; // Get the length of the vector
Vector getUnit() const throw(VectorException); // Return the corresponding unit vector
double scalarProduct(const Vector& vector) const throw(VectorException); // Scalar product of two vectors
Vector crossProduct(const Vector& vector) const throw(VectorException); // Cross product of two vectors (in 3D only)
void display() const; // TO DELETE
// --- Overloaded operators --- //
Vector operator + (const Vector& vector) const throw(VectorException); // Overloaded operator for addition
Vector operator - (const Vector& vector) const throw(VectorException); // Overloaded operator for substraction
Vector operator * (double number) const; // Overloaded operator for multiplication with a number
Vector& operator = (const Vector& vector) throw(VectorException); // Overloaded operator for the assignement to a Vector
bool operator == (const Vector& vector) const throw(VectorException); // Overloaded operator for the equality condition
};
// ------ Definition of inlines functions ------ //
// Method to get the value of a component of the vector (inline)
inline double Vector::getValue(int n) const throw(std::invalid_argument) {
// Check the argument
if (n>=0 && n<nbComponent) {
// Return the value of the component
return tab[n];
}
else {
// Throw an exception because of the wrong argument
throw std::invalid_argument("The argument is outside the bounds of the Vector");
}
}
// Method to set the value of a component of the vector
inline void Vector::setValue(int n, double value) throw(std::invalid_argument) {
// Check the argument
if (n >= 0 && n<nbComponent) {
// Set the value
tab[n] = value;
}
else {
// Throw an exception because of the wrong argument
throw std::invalid_argument("Exception : The argument is outside the bounds of the Vector");
}
}
// Method to get the number of components in the vector (inline)
inline int Vector::getNbComponent() const {
// Return the number of components in the vector
return nbComponent;
}
// Method to get the length of the vector
inline double Vector::length() const {
// Compute the length of the vector
double sum = 0.0;
for(int i=0; i<nbComponent; ++i) {
sum = sum + tab[i] * tab[i];
}
// Return the length of the vector
return sqrt(sum);
}
// Overloaded operator for multiplication between a number and a Vector (inline)
inline Vector operator * (double number, const Vector& vector) {
// Compute and return the result
return vector * number;
}
#endif

View File

@ -0,0 +1,100 @@
/****************************************************************************
* Copyright (C) 2008 Daniel Chappuis *
****************************************************************************
* This file is part of ReactPhysics3D. *
* *
* ReactPhysics3D is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* ReactPhysics3D is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with ReactPhysics3D. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
// Libraries
#include "Vector3D.h"
#include <iostream>
// Constructor of the class Vector3D
Vector3D::Vector3D()
:x(0.0), y(0.0), z(0.0) {
}
// Constructor with arguments
Vector3D::Vector3D(double x, double y, double z)
:x(x), y(y), z(z) {
}
// Copy-constructor
Vector3D::Vector3D(const Vector3D& vector)
:x(vector.x), y(vector.y), z(vector.z) {
}
// Destructor
Vector3D::~Vector3D() {
}
// Return the corresponding unit vector
Vector3D Vector3D::getUnit() const throw(VectorException) {
double lengthVector = length();
// Check if the length is equal to zero
if (lengthVector != 0) {
// Compute and return the unit vector
double lengthInv = 1.0 / lengthVector;
return Vector3D(x * lengthInv, y * lengthInv, z*lengthInv);
}
else {
// Throw an exception because the length of the vector is zero
throw VectorException("Exception : Impossible to compute the unit vector because the length of the vector is zero");
}
}
// TO DELETE THIS IS JUST FOR TESTS
void Vector3D::display() const {
std::cout << x << std::endl << y << std::endl << z << std::endl;
}
// Overloaded operator for addition
Vector3D Vector3D::operator + (const Vector3D& vector) const {
// Compute and return the sum of the two vectors
return Vector3D(x + vector.x, y + vector.y, z + vector.z);
}
// Overloaded operator for substraction
Vector3D Vector3D::operator - (const Vector3D& vector) const {
// Compute and return the substraction of the two vectors
return Vector3D(x - vector.x, y - vector.y, z - vector.z);
}
// Overloaded operator for multiplication with a number
Vector3D Vector3D::operator * (double number) const {
// Compute and return the result
return Vector3D(x * number, y * number, z * number);
}
// Overloaded operator for the assignement to a Vector
Vector3D& Vector3D::operator = (const Vector3D& vector) {
// Check for self-assignment
if (this != &vector) {
// Copy the vector
x = vector.x;
y = vector.y;
z = vector.z;
}
// Return a reference to the vector
return *this;
}

View File

@ -0,0 +1,135 @@
/****************************************************************************
* Copyright (C) 2008 Daniel Chappuis *
****************************************************************************
* This file is part of ReactPhysics3D. *
* *
* ReactPhysics3D is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* ReactPhysics3D is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with ReactPhysics3D. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifndef VECTOR3D_H
#define VECTOR3D_H
// Libraries
#include <cmath>
#include "exceptions.h"
/* -------------------------------------------------------------------
Class Vector3D :
This classrepresents 3 dimensionnal vector in space.
-------------------------------------------------------------------
*/
class Vector3D {
private :
double x; // X component of the vector
double y; // Y component of the vector
double z; // Z component of the vector
public :
Vector3D(); // Constructor of the class Vector3D
Vector3D(double x, double y, double z); // Constructor with arguments
Vector3D(const Vector3D& vector); // Copy-constructor
virtual ~Vector3D(); // Destructor
double getX() const; // Get the x component of the vector
double getY() const; // Get the y component of the vector
double getZ() const; // Get the z component of the vector
void setX(double x); // Set the x component of the vector
void setY(double y); // Set the y component of the vector
void setZ(double z); // Set the z component of the vector
void setAllValues(double x, double y, double z); // Set all the values of the vector
double length() const; // Return the lenght of the vector
Vector3D getUnit() const throw(VectorException); // Return the corresponding unit vector
double scalarProduct(const Vector3D& vector) const; // Scalar product of two vectors
Vector3D crossProduct(const Vector3D& vector) const; // Cross product of two vectors
void display() const; // TO DELETE
// --- Overloaded operators --- //
Vector3D operator + (const Vector3D& vector) const; // Overloaded operator for addition
Vector3D operator - (const Vector3D& vector) const ; // Overloaded operator for substraction
Vector3D operator * (double number) const; // Overloaded operator for multiplication with a number
Vector3D& operator = (const Vector3D& vector); // Overloaded operator for the assignement to a Vector
bool operator == (const Vector3D& vector) const; // Overloaded operator for the equality condition
};
// Get the x component of the vector (inline)
inline double Vector3D::getX() const {
return x;
}
// Get the y component of the vector (inline)
inline double Vector3D::getY() const {
return y;
}
// Get the z component of the vector (inline)
inline double Vector3D::getZ() const {
return z;
}
// Set the x component of the vector (inline)
inline void Vector3D::setX(double x) {
this->x = x;
}
// Set the y component of the vector (inline)
inline void Vector3D::setY(double y) {
this->y = y;
}
// Set the z component of the vector (inline)
inline void Vector3D::setZ(double z) {
this->z = z;
}
// Set all the values of the vector (inline)
inline void Vector3D::setAllValues(double x, double y, double z) {
this->x = x;
this->y = y;
this->z = z;
}
// Return the length of the vector (inline)
inline double Vector3D::length() const {
// Compute and return the length of the vector
return sqrt(x*x + y*y + z*z);
}
// Scalar product of two vectors (inline)
inline double Vector3D::scalarProduct(const Vector3D& vector) const {
// Compute and return the result of the scalar product
return (x * vector.x + y * vector.y + z * vector.z);
}
// Cross product of two vectors (inline)
inline Vector3D Vector3D::crossProduct(const Vector3D& vector) const {
// Compute and return the cross product
return Vector3D(y * vector.z - z * vector.y, z * vector.x - x * vector.z , x * vector.y - y * vector.x);
}
// Overloaded operator for multiplication between a number and a Vector3D (inline)
inline Vector3D operator * (double number, const Vector3D& vector) {
// Compute and return the result vector
return vector * number;
}
// Overloaded operator for the equality condition
inline bool Vector3D::operator == (const Vector3D& vector) const {
return (x == vector.x && y == vector.y && z == vector.z);
}
#endif

View File

@ -0,0 +1,87 @@
/****************************************************************************
* Copyright (C) 2008 Daniel Chappuis *
****************************************************************************
* This file is part of ReactPhysics3D. *
* *
* ReactPhysics3D is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* ReactPhysics3D is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with ReactPhysics3D. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
// Libraries
#include "exceptions.h"
// Constructor of the MathException class
MathException::MathException(const std::string& msg)
:std::runtime_error(msg) {
}
// Destructor of the MathException class
MathException::~MathException() throw() {
}
// Overriden exception base class method
const char* MathException::what() const throw() {
return std::runtime_error::what();
}
// Constructor of the DivisionByZeroException class
DivisionByZeroException::DivisionByZeroException(const std::string& msg)
:MathException(msg) {
}
// Destructor of the DivisionByZeroException class
DivisionByZeroException::~DivisionByZeroException() throw() {
}
// Overriden exception base class method
const char* DivisionByZeroException::what() const throw() {
return MathException::what();
}
// Construtor of the MatrixException class
MatrixException::MatrixException(const std::string& msg)
:MathException(msg) {
}
// Destructor of the MatrixException class
MatrixException::~MatrixException() throw() {
}
// Overriden exception base class method
const char* MatrixException::what() const throw() {
return MathException::what();
}
// Constructor of the VectorException class
VectorException::VectorException(const std::string& msg)
:std::runtime_error(msg) {
}
// Destructor of the VectorException class
VectorException::~VectorException() throw() {
}
// Overidden exception base class method
const char* VectorException::what() const throw() {
return std::runtime_error::what();
}

View File

@ -0,0 +1,75 @@
/****************************************************************************
* Copyright (C) 2008 Daniel Chappuis *
****************************************************************************
* This file is part of ReactPhysics3D. *
* *
* ReactPhysics3D is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* ReactPhysics3D is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with ReactPhysics3D. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
// TODO exceptions.h : Check if all expressions are usefull and are correct (in Matrix3x3.h methods throw std::invalid_argument MatrixException doesn't inherit from
// std::invalid_argument
#ifndef EXCEPTIONS_H
#define EXCEPTIONS_H
// Libraries
#include <stdexcept>
/* -------------------------------------------------------------------
Exception class for the mathematics library
-------------------------------------------------------------------
*/
// MathException
class MathException : public std::runtime_error {
public:
MathException(const std::string& msg="MathException"); // Constructor
virtual ~MathException() throw(); // Destructor
virtual const char* what() const throw(); // Overriding the base exception method
};
// DivisionByZeroException
class DivisionByZeroException : public MathException {
public:
DivisionByZeroException(const std::string& msg="DivisionByZeroException : Division by zero !"); // Constructor
virtual ~DivisionByZeroException() throw(); // Destructor
virtual const char* what() const throw(); // Overriding the base exception method
};
// Matrix Exception class
class MatrixException : public MathException {
public:
MatrixException(const std::string& msg="MatrixException"); // Constructor
virtual ~MatrixException() throw(); // Destructor
virtual const char* what() const throw(); // Overriden exception base class method
};
// VectorException class
class VectorException : public std::runtime_error {
public :
VectorException(const std::string& msg="VectorException"); // Constructor of the VectorException class
virtual ~VectorException() throw(); // Destructor of the VectorException class
virtual const char* what() const throw(); // Overriding the base exception method
};
// QuaternionException class
class QuaternionException : public std::runtime_error {
public :
QuaternionException(const std::string& msg="QuaternionException"); // Constructor of the QuaternionException class
virtual ~QuaternionException() throw(); // Destructor of the QuaternionException class
virtual const char* what() const throw(); // Overriding the base exception method
};
#endif

View File

@ -0,0 +1,25 @@
#include "dcmaths.h"
#include <iostream>
#include <stdexcept>
using namespace std;
int main(int argc, char *argv[])
{
Matrix matrix(3,3);
matrix.setValue(0, 0, 4);
matrix.setValue(0, 1, 64);
matrix.setValue(0, 2, 6);
matrix.setValue(1, 0, 73);
matrix.setValue(1, 1, -64);
matrix.setValue(1, 2, 5);
matrix.setValue(2, 0, 3);
matrix.setValue(2, 1, 976);
matrix.setValue(2, 2, 70);
matrix.getInverse().display();
}

View File

@ -0,0 +1,36 @@
/****************************************************************************
* Copyright (C) 2008 Daniel Chappuis *
****************************************************************************
* This file is part of ReactPhysics3D. *
* *
* ReactPhysics3D is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* ReactPhysics3D is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with ReactPhysics3D. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
// TODO : Mathematics library : We have to use assert to debug
// TODO : Mathematics library : Check everywhere that in member methods we use attributes access instead of getter and setter.
// Mathematics library used in the react project
#ifndef DCMATHS_H
#define DCMATHS_H
// Libraries
#include "Matrix.h"
#include "Matrix3x3.h"
#include "Quaternion.h"
#include "Vector.h"
#include "Vector3D.h"
#include "exceptions.h"
#endif