git-svn-id: https://reactphysics3d.googlecode.com/svn/trunk@37 92aac97c-a6ce-11dd-a772-7fcde58d38e6
This commit is contained in:
chappuis.daniel 2009-02-04 12:48:10 +00:00
parent 8c5810b404
commit 0c125f3a0d
8 changed files with 39 additions and 31 deletions

View File

@ -22,7 +22,6 @@
// Libraries
#include "exceptions.h"
#include <stdexcept>
#include <iostream>
@ -52,8 +51,8 @@ class Matrix {
Matrix getTranspose() const; // Return the transposed matrixs
Matrix getInverse() const throw(MathematicsException); // Return the inverse of the matrix if there exists
double getDeterminant() const throw(MathematicsException); // Return the determinant of the matrix
double getTrace() const; // Return the trace of the matrix
static Matrix identityMatrix(int dimension) throw(std::invalid_argument); // Return the identity matrix I of the given dimension
double getTrace() const throw(MathematicsException); // Return the trace of a square matrix
static Matrix identity(int dimension) throw(std::invalid_argument); // Return the identity matrix I of the given dimension
void display() const; // TO DELETE

View File

@ -44,7 +44,7 @@ Matrix3x3::Matrix3x3(const Matrix3x3& matrix2) {
matrix2.array[2][0], matrix2.array[2][1], matrix2.array[2][2]);
}
// Create a Matrix3x3 from a quaternion
// Create a Matrix3x3 from a quaternion (the quaternion can be non-unit)
Matrix3x3::Matrix3x3(const Quaternion& quaternion) {
double x = quaternion.getX();
double y = quaternion.getY();
@ -58,9 +58,24 @@ Matrix3x3::Matrix3x3(const Quaternion& quaternion) {
s = 2.0/nQ;
}
// Computations used for optimization (less multiplications)
double xs = x*s;
double ys = y*s;
double zs = z*s;
double wxs = w*xs;
double wys = w*ys;
double wzs = w*zs;
double xxs = x*xs;
double xys = x*ys;
double xzs = x*zs;
double yys = y*ys;
double yzs = y*zs;
double zzs = z*zs;
// Create the matrix corresponding to the quaternion
Matrix3x3(1.0-y*y*s-z*z*s, x*y*s-w*z*s, z*x*s + w*y*s, x*y*s + w*z*s, 1.0-x*x*s-z*z*s, y*z*s-w*x*s,
z*x*s-w*y*s, y*z*s + w*x*s, 1.0-x*x*s-y*y*s);
setAllValues(1.0-yys-zzs, xys-wzs, xzs + wys,
xys + wzs, 1.0-xxs-zzs, yzs-wxs,
xzs-wys, yzs + wxs, 1.0-xxs-yys);
}
// Destructor
@ -128,13 +143,13 @@ Quaternion Matrix3x3::getQuaternion() const {
else {
r = sqrt(trace + 1.0);
s = 0.5/r;
return Quaternion(0.5 * r, (array[0][1]-array[1][0])*s, (array[2][0]-array[0][2])*s, (array[2][1]-array[1][2])*s);
return Quaternion((array[2][1]-array[1][2])*s, (array[0][2]-array[2][0])*s, (array[1][0]-array[0][1])*s, 0.5 * r);
}
}
// Return the 3x3 identity matrix
Matrix3x3 Matrix3x3::identityMatrix() {
// Return the identity matrix
Matrix3x3 Matrix3x3::identity() {
// Return the isdentity matrix
return Matrix3x3(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0);
}

View File

@ -53,8 +53,8 @@ class Matrix3x3 {
double getDeterminant() const; // Return the determinant of the matrix
double getTrace() const; // Return the trace of the matrix
Matrix3x3 getInverse() const throw(MathematicsException); // Return the inverse matrix
Quaternion getQuaternion() const; // Return the quaternion corresponding to the matrix (it returns a unit quaternion)
static Matrix3x3 identityMatrix(); // Return the 3x3 identity matrix
Quaternion getQuaternion() const; // Return the unit quaternion corresponding to the matrix
static Matrix3x3 identity(); // Return the 3x3 identity matrix
void display() const; // TO DELETE

View File

@ -30,7 +30,8 @@ namespace reactphysics3d {
/* -------------------------------------------------------------------
Class Quaternion :
This class represents a quaternion.
This class represents a quaternion. We use the notation :
q = (x*i, y*j, z*k, w) to represent a quaternion.
-------------------------------------------------------------------
*/
class Quaternion
@ -64,6 +65,7 @@ class Quaternion
// --- Overloaded operators --- //
Quaternion operator+(const Quaternion& quaternion) const; // Overloaded operator for the addition
Quaternion operator-(const Quaternion& quaternion) const; // Overloaded operator for the substraction
Quaternion operator*(double nb) const; // Overloaded operator for the multiplication with a constant
Quaternion operator*(const Quaternion& quaternion) const; // Overloaded operator for the multiplication
Quaternion& operator=(const Quaternion& quaternion); // Overloaded operator for assignment
bool operator==(const Quaternion& quaternion) const; // Overloaded operator for equality condition
@ -127,6 +129,7 @@ inline Quaternion Quaternion::getUnit() const throw(MathematicsException) {
// Check if the length is not equal to zero
if (lengthQuaternion != 0.0) {
// Compute and return the unit quaternion
return Quaternion(x/lengthQuaternion, y/lengthQuaternion, z/lengthQuaternion, w/lengthQuaternion);
}
@ -138,7 +141,7 @@ inline Quaternion Quaternion::getUnit() const throw(MathematicsException) {
// Return the conjugate of the quaternion (inline)
inline Quaternion Quaternion::getConjugate() const {
return Quaternion(x, -y, -z, -w);
return Quaternion(-x, -y, -z, w);
}
// Return the inverse of the quaternion (inline)
@ -148,8 +151,9 @@ inline Quaternion Quaternion::getInverse() const throw(MathematicsException) {
// Check if the length is not equal to zero
if (lengthQuaternion != 0.0) {
// Compute and return the inverse quaternion
return Quaternion(x/lengthQuaternion, y/lengthQuaternion, z/lengthQuaternion, w/lengthQuaternion);
return Quaternion(-x/lengthQuaternion, -y/lengthQuaternion, -z/lengthQuaternion, w/lengthQuaternion);
}
else {
// Throw an exception because the inverse cannot be computed
@ -169,6 +173,12 @@ inline Quaternion Quaternion::operator-(const Quaternion& quaternion) const {
return Quaternion(x-quaternion.x, y - quaternion.y, z - quaternion.z, w - quaternion.w);
}
// Overloaded operator for the multiplication with a constant
inline Quaternion Quaternion::operator*(double nb) const {
// Return the result
return Quaternion(nb*x, nb*y, nb*z, nb*w);
}
// Overloaded operator for the multiplication of two quaternions
inline Quaternion Quaternion::operator*(const Quaternion& quaternion) const {
// Return the result of the multiplication

View File

@ -124,13 +124,6 @@ Vector Vector::crossProduct(const Vector& vector) const throw(MathematicsExcepti
}
}
// TO DELETE
void Vector::display() const {
for (int i=0; i<nbComponent; ++i) {
std::cout << tab[i] << std::endl;
}
}
// Overloaded operator for addition
Vector Vector::operator+(const Vector& vector) const throw(MathematicsException) {
// Check the size of the two vectors

View File

@ -50,8 +50,6 @@ class Vector {
double scalarProduct(const Vector& vector) const throw(MathematicsException); // Scalar product of two vectors
Vector crossProduct(const Vector& vector) const throw(MathematicsException); // Cross product of two vectors (in 3D only)
void display() const; // TO DELETE
// --- Overloaded operators --- //
Vector operator+(const Vector& vector) const throw(MathematicsException); // Overloaded operator for addition
Vector operator-(const Vector& vector) const throw(MathematicsException); // Overloaded operator for substraction

View File

@ -63,11 +63,6 @@ Vector3D Vector3D::getUnit() const throw(MathematicsException) {
}
}
// TO DELETE THIS IS JUST FOR TESTS
void Vector3D::display() const {
std::cout << x << std::endl << y << std::endl << z << std::endl;
}
// Overloaded operator for addition
Vector3D Vector3D::operator+(const Vector3D& vector) const {
// Compute and return the sum of the two vectors

View File

@ -56,8 +56,6 @@ class Vector3D {
double scalarProduct(const Vector3D& vector) const; // Scalar product of two vectors
Vector3D crossProduct(const Vector3D& vector) const; // Cross product of two vectors
void display() const; // TO DELETE
// --- Overloaded operators --- //
Vector3D operator+(const Vector3D& vector) const; // Overloaded operator for addition
Vector3D operator-(const Vector3D& vector) const ; // Overloaded operator for substraction