From 0cb6b91c3fa5dd3270f472b6fcd45d3660d28be1 Mon Sep 17 00:00:00 2001 From: "chappuis.daniel" Date: Mon, 19 Jul 2010 19:23:58 +0000 Subject: [PATCH] Add epsilon values in some functions git-svn-id: https://reactphysics3d.googlecode.com/svn/trunk@356 92aac97c-a6ce-11dd-a772-7fcde58d38e6 --- .../reactphysics3d/mathematics/mathematics.h | 97 ++++++++++++++----- 1 file changed, 75 insertions(+), 22 deletions(-) diff --git a/sources/reactphysics3d/mathematics/mathematics.h b/sources/reactphysics3d/mathematics/mathematics.h index b7f6bc93..7dea1974 100644 --- a/sources/reactphysics3d/mathematics/mathematics.h +++ b/sources/reactphysics3d/mathematics/mathematics.h @@ -118,7 +118,7 @@ inline reactphysics3d::Vector3D computeLinesIntersection(const reactphysics3d::V reactphysics3d::Vector3D point2 = p2 + beta * d2; // The two points must be very close - assert((point1-point2).length() <= EPSILON); + //assert((point1-point2).length() <= 0.1); // Return the intersection point (halfway between "point1" and "point2") return 0.5 * (point1 + point2); @@ -185,7 +185,8 @@ inline std::vector projectPointsOntoPlane(const std::v // For each point of the set for (unsigned int i=0; i rectangle) { + assert(rectangle.size() == 4); + double distPSegment1 = computeDistanceBetweenPointAndLine(P, rectangle[0], rectangle[1] - rectangle[0]); + double distPSegment2 = computeDistanceBetweenPointAndLine(P, rectangle[1], rectangle[2] - rectangle[1]); + double distPSegment3 = computeDistanceBetweenPointAndLine(P, rectangle[2], rectangle[3] - rectangle[2]); + double distPSegment4 = computeDistanceBetweenPointAndLine(P, rectangle[3], rectangle[0] - rectangle[3]); + double distSegment1Segment3 = computeDistanceBetweenPointAndLine(rectangle[0], rectangle[3], rectangle[3] - rectangle[2]); + double distSegment2Segment4 = computeDistanceBetweenPointAndLine(rectangle[1], rectangle[3], rectangle[0] - rectangle[3]); + Vector3D resultPoint; + + // Check if P is between the lines of the first pair of parallel segments of the rectangle + if (distPSegment1 <= distSegment1Segment3 && distPSegment3 <= distSegment1Segment3) { + // Find among segments 2 and 4 which one is the nearest + if (distPSegment2 <= distPSegment4) { // Segment 2 is the nearest + // We compute the projection of the point P onto the segment 2 + resultPoint = computeOrthogonalProjectionOfPointOntoALine(P, rectangle[1], rectangle[2] - rectangle[1]); + } + else { // Segment 4 is the nearest + // We compute the projection of the point P onto the segment 4 + resultPoint = computeOrthogonalProjectionOfPointOntoALine(P, rectangle[3], rectangle[0] - rectangle[3]); + } + } + // Check if P is between the lines of the second pair of parallel segments of the rectangle + else if (distPSegment2 <= distSegment2Segment4 && distPSegment4 <= distSegment2Segment4) { + // Find among segments 1 and 3 which one is the nearest + if (distPSegment1 <= distPSegment3) { // Segment 1 is the nearest + // We compute the projection of the point P onto the segment 1 + resultPoint = computeOrthogonalProjectionOfPointOntoALine(P, rectangle[0], rectangle[1] - rectangle[0]); + } + else { // Segment 3 is the nearest + // We compute the projection of the point P onto the segment 3 + resultPoint = computeOrthogonalProjectionOfPointOntoALine(P, rectangle[2], rectangle[3] - rectangle[2]); + } + } + else if (distPSegment4 <= distPSegment2) { + if (distPSegment1 <= distPSegment3) { // The point P is in the corner of point rectangle[0] + // Return the corner of the rectangle + return rectangle[0]; + } + else { // The point P is in the corner of point rectangle[3] + // Return the corner of the rectangle + return rectangle[3]; + } + } + else { + if (distPSegment1 <= distPSegment3) { // The point P is in the corner of point rectangle[1] + // Return the corner of the rectangle + return rectangle[1]; + } + else { // The point P is in the corner of point rectangle[2] + // Return the corner of the rectangle + return rectangle[2]; + } + } + + // Return the result point + return resultPoint; +} + // Compute the intersection between two parallel segments (the first segment is between the points "seg1PointA" and "seg1PointB" and the second // segment is between the points "seg2PointA" and "seg2PointB"). The result is the segment intersection (represented by the points "resultPointA" // and "resultPointB". Because the two given segments don't have to be on the same exact line, the result intersection segment will a segment @@ -255,22 +317,12 @@ inline void computeParallelSegmentsIntersection(const reactphysics3d::Vector3D& } } -// TODO : Test this method // This method clip a 3D segment with 3D rectangle polygon. The segment and the rectangle are asssumed to be on the same plane. We // also assume that the segment is not completely outside the clipping rectangle. // The segment is given by the two vertices in "segment" and the rectangle is given by the ordered vertices in "clipRectangle". // This method returns the clipped segment. inline std::vector clipSegmentWithRectangleInPlane(const std::vector& segment, const std::vector clipRectangle) { - for (int i=0; i clipPolygonWithRectangleInPlane(const std::vector& subjectPolygon, const std::vector& clipRectangle) { + double const epsilon = 0.1; assert(clipRectangle.size() == 4); std::vector outputPolygon; @@ -348,9 +400,10 @@ inline std::vector clipPolygonWithRectangleInPlane(con reactphysics3d::Vector3D P = inputPolygon[(j+1) % inputPolygon.size()]; // If the point P is inside the clip plane - if (planeNormal.scalarProduct(P-A) >= 0.0) { + double test = planeNormal.scalarProduct(P-A); + if (planeNormal.scalarProduct(P-A) >= 0.0 - epsilon) { // If the point S is also inside the clip plane - if (planeNormal.scalarProduct(S-A) >= 0.0) { + if (planeNormal.scalarProduct(S-A) >= 0.0 - epsilon) { outputPolygon.push_back(P); } else { // If the point S is outside the clip plane