Fixed bug in FixedJoint and SliderJoint when objects initially have a different rotation. In solvePositionConstraint the error was calculated wrongly causing incorrect simulation.
This commit is contained in:
parent
3109b4e8da
commit
1855e1c121
|
@ -42,11 +42,18 @@ FixedJoint::FixedJoint(const FixedJointInfo& jointInfo)
|
|||
mLocalAnchorPointBody1 = transform1.getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
mLocalAnchorPointBody2 = transform2.getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
|
||||
// Compute the inverse of the initial orientation difference between the two bodies
|
||||
mInitOrientationDifferenceInv = transform2.getOrientation() *
|
||||
transform1.getOrientation().getInverse();
|
||||
mInitOrientationDifferenceInv.normalize();
|
||||
mInitOrientationDifferenceInv.inverse();
|
||||
// Store inverse of initial rotation from body 1 to body 2 in body 1 space:
|
||||
//
|
||||
// q20 = q10 r0
|
||||
// <=> r0 = q10^-1 q20
|
||||
// <=> r0^-1 = q20^-1 q10
|
||||
//
|
||||
// where:
|
||||
//
|
||||
// q20 = initial orientation of body 2
|
||||
// q10 = initial orientation of body 1
|
||||
// r0 = initial rotation rotation from body 1 to body 2
|
||||
mInitOrientationDifferenceInv = transform2.getOrientation().getInverse() * transform1.getOrientation();
|
||||
}
|
||||
|
||||
// Destructor
|
||||
|
@ -110,9 +117,7 @@ void FixedJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDat
|
|||
// Compute the bias "b" for the 3 rotation constraints
|
||||
mBiasRotation.setToZero();
|
||||
if (mPositionCorrectionTechnique == BAUMGARTE_JOINTS) {
|
||||
Quaternion currentOrientationDifference = orientationBody2 * orientationBody1.getInverse();
|
||||
currentOrientationDifference.normalize();
|
||||
const Quaternion qError = currentOrientationDifference * mInitOrientationDifferenceInv;
|
||||
const Quaternion qError = orientationBody2 * mInitOrientationDifferenceInv * orientationBody1.getInverse();
|
||||
mBiasRotation = biasFactor * decimal(2.0) * qError.getVectorV();
|
||||
}
|
||||
|
||||
|
@ -300,10 +305,32 @@ void FixedJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
|
|||
mInverseMassMatrixRotation = mInverseMassMatrixRotation.getInverse();
|
||||
}
|
||||
|
||||
// Compute the position error for the 3 rotation constraints
|
||||
Quaternion currentOrientationDifference = q2 * q1.getInverse();
|
||||
currentOrientationDifference.normalize();
|
||||
const Quaternion qError = currentOrientationDifference * mInitOrientationDifferenceInv;
|
||||
// Calculate difference in rotation
|
||||
//
|
||||
// The rotation should be:
|
||||
//
|
||||
// q2 = q1 r0
|
||||
//
|
||||
// But because of drift the actual rotation is:
|
||||
//
|
||||
// q2 = qError q1 r0
|
||||
// <=> qError = q2 r0^-1 q1^-1
|
||||
//
|
||||
// Where:
|
||||
// q1 = current rotation of body 1
|
||||
// q2 = current rotation of body 2
|
||||
// qError = error that needs to be reduced to zero
|
||||
Quaternion qError = q2 * mInitOrientationDifferenceInv * q1.getInverse();
|
||||
|
||||
// A quaternion can be seen as:
|
||||
//
|
||||
// q = [sin(theta / 2) * v, cos(theta/2)]
|
||||
//
|
||||
// Where:
|
||||
// v = rotation vector
|
||||
// theta = rotation angle
|
||||
//
|
||||
// If we assume theta is small (error is small) then sin(x) = x so an approximation of the error angles is:
|
||||
const Vector3 errorRotation = decimal(2.0) * qError.getVectorV();
|
||||
|
||||
// Compute the Lagrange multiplier lambda for the 3 rotation constraints
|
||||
|
|
|
@ -51,11 +51,18 @@ SliderJoint::SliderJoint(const SliderJointInfo& jointInfo)
|
|||
mLocalAnchorPointBody1 = transform1.getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
mLocalAnchorPointBody2 = transform2.getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
|
||||
// Compute the inverse of the initial orientation difference between the two bodies
|
||||
mInitOrientationDifferenceInv = transform2.getOrientation() *
|
||||
transform1.getOrientation().getInverse();
|
||||
mInitOrientationDifferenceInv.normalize();
|
||||
mInitOrientationDifferenceInv.inverse();
|
||||
// Store inverse of initial rotation from body 1 to body 2 in body 1 space:
|
||||
//
|
||||
// q20 = q10 r0
|
||||
// <=> r0 = q10^-1 q20
|
||||
// <=> r0^-1 = q20^-1 q10
|
||||
//
|
||||
// where:
|
||||
//
|
||||
// q20 = initial orientation of body 2
|
||||
// q10 = initial orientation of body 1
|
||||
// r0 = initial rotation rotation from body 1 to body 2
|
||||
mInitOrientationDifferenceInv = transform2.getOrientation().getInverse() * transform1.getOrientation();
|
||||
|
||||
// Compute the slider axis in local-space of body 1
|
||||
mSliderAxisBody1 = mBody1->getTransform().getOrientation().getInverse() *
|
||||
|
@ -162,9 +169,7 @@ void SliderJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDa
|
|||
// Compute the bias "b" of the rotation constraint
|
||||
mBRotation.setToZero();
|
||||
if (mPositionCorrectionTechnique == BAUMGARTE_JOINTS) {
|
||||
Quaternion currentOrientationDifference = orientationBody2 * orientationBody1.getInverse();
|
||||
currentOrientationDifference.normalize();
|
||||
const Quaternion qError = currentOrientationDifference * mInitOrientationDifferenceInv;
|
||||
const Quaternion qError = orientationBody2 * mInitOrientationDifferenceInv * orientationBody1.getInverse();
|
||||
mBRotation = biasFactor * decimal(2.0) * qError.getVectorV();
|
||||
}
|
||||
|
||||
|
@ -544,10 +549,32 @@ void SliderJoint::solvePositionConstraint(const ConstraintSolverData& constraint
|
|||
mInverseMassMatrixRotationConstraint = mInverseMassMatrixRotationConstraint.getInverse();
|
||||
}
|
||||
|
||||
// Compute the position error for the 3 rotation constraints
|
||||
Quaternion currentOrientationDifference = q2 * q1.getInverse();
|
||||
currentOrientationDifference.normalize();
|
||||
const Quaternion qError = currentOrientationDifference * mInitOrientationDifferenceInv;
|
||||
// Calculate difference in rotation
|
||||
//
|
||||
// The rotation should be:
|
||||
//
|
||||
// q2 = q1 r0
|
||||
//
|
||||
// But because of drift the actual rotation is:
|
||||
//
|
||||
// q2 = qError q1 r0
|
||||
// <=> qError = q2 r0^-1 q1^-1
|
||||
//
|
||||
// Where:
|
||||
// q1 = current rotation of body 1
|
||||
// q2 = current rotation of body 2
|
||||
// qError = error that needs to be reduced to zero
|
||||
Quaternion qError = q2 * mInitOrientationDifferenceInv * q1.getInverse();
|
||||
|
||||
// A quaternion can be seen as:
|
||||
//
|
||||
// q = [sin(theta / 2) * v, cos(theta/2)]
|
||||
//
|
||||
// Where:
|
||||
// v = rotation vector
|
||||
// theta = rotation angle
|
||||
//
|
||||
// If we assume theta is small (error is small) then sin(x) = x so an approximation of the error angles is:
|
||||
const Vector3 errorRotation = decimal(2.0) * qError.getVectorV();
|
||||
|
||||
// Compute the Lagrange multiplier lambda for the 3 rotation constraints
|
||||
|
|
Loading…
Reference in New Issue
Block a user