Small optimizations

This commit is contained in:
Daniel Chappuis 2020-09-26 15:07:20 +02:00
parent fa722c129d
commit 21f9b39bc4
4 changed files with 81 additions and 73 deletions

View File

@ -312,6 +312,71 @@ RP3D_FORCE_INLINE decimal TriangleShape::getVolume() const {
return decimal(0.0);
}
// Get a smooth contact normal for collision for a triangle of the mesh
/// This is used to avoid the internal edges issue that occurs when a shape is colliding with
/// several triangles of a concave mesh. If the shape collide with an edge of the triangle for instance,
/// the computed contact normal from this triangle edge is not necessarily in the direction of the surface
/// normal of the mesh at this point. The idea to solve this problem is to use the real (smooth) surface
/// normal of the mesh at this point as the contact normal. This technique is described in the chapter 5
/// of the Game Physics Pearl book by Gino van der Bergen and Dirk Gregorius. The vertices normals of the
/// mesh are either provided by the user or precomputed if the user did not provide them. Note that we only
/// use the interpolated normal if the contact point is on an edge of the triangle. If the contact is in the
/// middle of the triangle, we return the true triangle normal.
RP3D_FORCE_INLINE Vector3 TriangleShape::computeSmoothLocalContactNormalForTriangle(const Vector3& localContactPoint) const {
// Compute the barycentric coordinates of the point in the triangle
decimal u, v, w;
computeBarycentricCoordinatesInTriangle(mPoints[0], mPoints[1], mPoints[2], localContactPoint, u, v, w);
// If the contact is in the middle of the triangle face (not on the edges)
if (u > MACHINE_EPSILON && v > MACHINE_EPSILON && w > MACHINE_EPSILON) {
// We return the true triangle face normal (not the interpolated one)
return mNormal;
}
// We compute the contact normal as the barycentric interpolation of the three vertices normals
const Vector3 interpolatedNormal = u * mVerticesNormals[0] + v * mVerticesNormals[1] + w * mVerticesNormals[2];
// If the interpolated normal is degenerated
if (interpolatedNormal.lengthSquare() < MACHINE_EPSILON) {
// Return the original normal
return mNormal;
}
return interpolatedNormal.getUnit();
}
// This method compute the smooth mesh contact with a triangle in case one of the two collision
// shapes is a triangle. The idea in this case is to use a smooth vertex normal of the triangle mesh
// at the contact point instead of the triangle normal to avoid the internal edge collision issue.
// This method will return the new smooth world contact
// normal of the triangle and the the local contact point on the other shape.
RP3D_FORCE_INLINE void TriangleShape::computeSmoothTriangleMeshContact(const CollisionShape* shape1, const CollisionShape* shape2,
Vector3& localContactPointShape1, Vector3& localContactPointShape2,
const Transform& shape1ToWorld, const Transform& shape2ToWorld,
decimal penetrationDepth, Vector3& outSmoothVertexNormal) {
assert(shape1->getName() != CollisionShapeName::TRIANGLE || shape2->getName() != CollisionShapeName::TRIANGLE);
// If one the shape is a triangle
bool isShape1Triangle = shape1->getName() == CollisionShapeName::TRIANGLE;
if (isShape1Triangle || shape2->getName() == CollisionShapeName::TRIANGLE) {
const TriangleShape* triangleShape = isShape1Triangle ? static_cast<const TriangleShape*>(shape1):
static_cast<const TriangleShape*>(shape2);
// Compute the smooth triangle mesh contact normal and recompute the local contact point on the other shape
triangleShape->computeSmoothMeshContact(isShape1Triangle ? localContactPointShape1 : localContactPointShape2,
isShape1Triangle ? shape1ToWorld : shape2ToWorld,
isShape1Triangle ? shape2ToWorld.getInverse() : shape1ToWorld.getInverse(),
penetrationDepth, isShape1Triangle,
isShape1Triangle ? localContactPointShape2 : localContactPointShape1,
outSmoothVertexNormal);
}
}
}
#endif

View File

@ -55,8 +55,7 @@ SATAlgorithm::SATAlgorithm(bool clipWithPreviousAxisIfStillColliding, MemoryAllo
}
// Test collision between a sphere and a convex mesh
bool SATAlgorithm::testCollisionSphereVsConvexPolyhedron(NarrowPhaseInfoBatch& narrowPhaseInfoBatch,
uint batchStartIndex, uint batchNbItems) const {
bool SATAlgorithm::testCollisionSphereVsConvexPolyhedron(NarrowPhaseInfoBatch& narrowPhaseInfoBatch, uint batchStartIndex, uint batchNbItems) const {
bool isCollisionFound = false;
@ -895,11 +894,20 @@ bool SATAlgorithm::computePolyhedronVsPolyhedronFaceContactPoints(bool isMinPene
RP3D_PROFILE("SATAlgorithm::computePolyhedronVsPolyhedronFaceContactPoints", mProfiler);
const ConvexPolyhedronShape* referencePolyhedron = isMinPenetrationFaceNormalPolyhedron1 ? polyhedron1 : polyhedron2;
const ConvexPolyhedronShape* incidentPolyhedron = isMinPenetrationFaceNormalPolyhedron1 ? polyhedron2 : polyhedron1;
const ConvexPolyhedronShape* referencePolyhedron;
const ConvexPolyhedronShape* incidentPolyhedron;
const Transform& referenceToIncidentTransform = isMinPenetrationFaceNormalPolyhedron1 ? polyhedron1ToPolyhedron2 : polyhedron2ToPolyhedron1;
const Transform& incidentToReferenceTransform = isMinPenetrationFaceNormalPolyhedron1 ? polyhedron2ToPolyhedron1 : polyhedron1ToPolyhedron2;
if (isMinPenetrationFaceNormalPolyhedron1) {
referencePolyhedron = polyhedron1;
incidentPolyhedron = polyhedron2;
}
else {
referencePolyhedron = polyhedron2;
incidentPolyhedron = polyhedron1;
}
const Vector3 axisReferenceSpace = referencePolyhedron->getFaceNormal(minFaceIndex);
const Vector3 axisIncidentSpace = referenceToIncidentTransform.getOrientation() * axisReferenceSpace;
@ -972,7 +980,7 @@ bool SATAlgorithm::computePolyhedronVsPolyhedronFaceContactPoints(bool isMinPene
// the maximal penetration depth of any contact point for this separating axis
decimal penetrationDepth = (referenceFaceVertex - clipPolygonVertices[i]).dot(axisReferenceSpace);
// If the clip point is bellow the reference face
// If the clip point is below the reference face
if (penetrationDepth > decimal(0.0)) {
contactPointsFound = true;

View File

@ -45,10 +45,11 @@ uint ConvexPolyhedronShape::findMostAntiParallelFace(const Vector3& direction) c
uint mostAntiParallelFace = 0;
// For each face of the polyhedron
for (uint i=0; i < getNbFaces(); i++) {
uint32 nbFaces = getNbFaces();
for (uint32 i=0; i < nbFaces; i++) {
// Get the face normal
decimal dotProduct = getFaceNormal(i).dot(direction);
const decimal dotProduct = getFaceNormal(i).dot(direction);
if (dotProduct < minDotProduct) {
minDotProduct = dotProduct;
mostAntiParallelFace = i;

View File

@ -122,36 +122,6 @@ TriangleShape::TriangleShape(const Vector3* vertices, const Vector3* verticesNor
mId = shapeId;
}
// This method compute the smooth mesh contact with a triangle in case one of the two collision
// shapes is a triangle. The idea in this case is to use a smooth vertex normal of the triangle mesh
// at the contact point instead of the triangle normal to avoid the internal edge collision issue.
// This method will return the new smooth world contact
// normal of the triangle and the the local contact point on the other shape.
void TriangleShape::computeSmoothTriangleMeshContact(const CollisionShape* shape1, const CollisionShape* shape2,
Vector3& localContactPointShape1, Vector3& localContactPointShape2,
const Transform& shape1ToWorld, const Transform& shape2ToWorld,
decimal penetrationDepth, Vector3& outSmoothVertexNormal) {
assert(shape1->getName() != CollisionShapeName::TRIANGLE || shape2->getName() != CollisionShapeName::TRIANGLE);
// If one the shape is a triangle
bool isShape1Triangle = shape1->getName() == CollisionShapeName::TRIANGLE;
if (isShape1Triangle || shape2->getName() == CollisionShapeName::TRIANGLE) {
const TriangleShape* triangleShape = isShape1Triangle ? static_cast<const TriangleShape*>(shape1):
static_cast<const TriangleShape*>(shape2);
// Compute the smooth triangle mesh contact normal and recompute the local contact point on the other shape
triangleShape->computeSmoothMeshContact(isShape1Triangle ? localContactPointShape1 : localContactPointShape2,
isShape1Triangle ? shape1ToWorld : shape2ToWorld,
isShape1Triangle ? shape2ToWorld.getInverse() : shape1ToWorld.getInverse(),
penetrationDepth, isShape1Triangle,
isShape1Triangle ? localContactPointShape2 : localContactPointShape1,
outSmoothVertexNormal);
}
}
// This method implements the technique described in Game Physics Pearl book
// by Gino van der Bergen and Dirk Gregorius to get smooth triangle mesh collision. The idea is
// to replace the contact normal of the triangle shape with the precomputed normal of the triangle
@ -186,42 +156,6 @@ void TriangleShape::computeSmoothMeshContact(Vector3 localContactPointTriangle,
outNewLocalContactPointOtherShape.setAllValues(otherShapePoint.x, otherShapePoint.y, otherShapePoint.z);
}
// Get a smooth contact normal for collision for a triangle of the mesh
/// This is used to avoid the internal edges issue that occurs when a shape is colliding with
/// several triangles of a concave mesh. If the shape collide with an edge of the triangle for instance,
/// the computed contact normal from this triangle edge is not necessarily in the direction of the surface
/// normal of the mesh at this point. The idea to solve this problem is to use the real (smooth) surface
/// normal of the mesh at this point as the contact normal. This technique is described in the chapter 5
/// of the Game Physics Pearl book by Gino van der Bergen and Dirk Gregorius. The vertices normals of the
/// mesh are either provided by the user or precomputed if the user did not provide them. Note that we only
/// use the interpolated normal if the contact point is on an edge of the triangle. If the contact is in the
/// middle of the triangle, we return the true triangle normal.
Vector3 TriangleShape::computeSmoothLocalContactNormalForTriangle(const Vector3& localContactPoint) const {
// Compute the barycentric coordinates of the point in the triangle
decimal u, v, w;
computeBarycentricCoordinatesInTriangle(mPoints[0], mPoints[1], mPoints[2], localContactPoint, u, v, w);
// If the contact is in the middle of the triangle face (not on the edges)
if (u > MACHINE_EPSILON && v > MACHINE_EPSILON && w > MACHINE_EPSILON) {
// We return the true triangle face normal (not the interpolated one)
return mNormal;
}
// We compute the contact normal as the barycentric interpolation of the three vertices normals
Vector3 interpolatedNormal = u * mVerticesNormals[0] + v * mVerticesNormals[1] + w * mVerticesNormals[2];
// If the interpolated normal is degenerated
if (interpolatedNormal.lengthSquare() < MACHINE_EPSILON) {
// Return the original normal
return mNormal;
}
return interpolatedNormal.getUnit();
}
// Update the AABB of a body using its collision shape
/**
* @param[out] aabb The axis-aligned bounding box (AABB) of the collision shape