Remove the use of std::map and fix issues in Map class

This commit is contained in:
Daniel Chappuis 2018-01-26 17:34:26 +01:00
parent 624de80453
commit 220057a587
14 changed files with 321 additions and 100 deletions

View File

@ -48,7 +48,8 @@ using namespace std;
// Constructor
CollisionDetection::CollisionDetection(CollisionWorld* world, MemoryManager& memoryManager)
: mMemoryManager(memoryManager), mWorld(world), mNarrowPhaseInfoList(nullptr), mBroadPhaseAlgorithm(*this),
: mMemoryManager(memoryManager), mWorld(world), mNarrowPhaseInfoList(nullptr),
mOverlappingPairs(mMemoryManager.getPoolAllocator()), mBroadPhaseAlgorithm(*this),
mIsCollisionShapesAdded(false) {
// Set the default collision dispatch configuration
@ -104,7 +105,7 @@ void CollisionDetection::computeMiddlePhase() {
PROFILE("CollisionDetection::computeMiddlePhase()", mProfiler);
// For each possible collision pair of bodies
map<overlappingpairid, OverlappingPair*>::iterator it;
Map<OverlappingPair::OverlappingPairId, OverlappingPair*>::Iterator it;
for (it = mOverlappingPairs.begin(); it != mOverlappingPairs.end(); ) {
OverlappingPair* pair = it->second;
@ -126,14 +127,14 @@ void CollisionDetection::computeMiddlePhase() {
// overlapping pair
if (!mBroadPhaseAlgorithm.testOverlappingShapes(shape1, shape2)) {
std::map<overlappingpairid, OverlappingPair*>::iterator itToRemove = it;
Map<OverlappingPair::OverlappingPairId, OverlappingPair*>::Iterator itToRemove = it;
++it;
// Destroy the overlapping pair
itToRemove->second->~OverlappingPair();
mWorld->mMemoryManager.release(MemoryManager::AllocationType::Pool, itToRemove->second, sizeof(OverlappingPair));
mOverlappingPairs.erase(itToRemove);
mOverlappingPairs.remove(itToRemove);
continue;
}
else {
@ -320,10 +321,10 @@ void CollisionDetection::broadPhaseNotifyOverlappingPair(ProxyShape* shape1, Pro
(shape1->getCollisionCategoryBits() & shape2->getCollideWithMaskBits()) == 0) return;
// Compute the overlapping pair ID
overlappingpairid pairID = OverlappingPair::computeID(shape1, shape2);
OverlappingPair::OverlappingPairId pairID = OverlappingPair::computeID(shape1, shape2);
// Check if the overlapping pair already exists
if (mOverlappingPairs.find(pairID) != mOverlappingPairs.end()) return;
if (mOverlappingPairs.containsKey(pairID)) return;
// Create the overlapping pair and add it into the set of overlapping pairs
OverlappingPair* newPair = new (mMemoryManager.allocate(MemoryManager::AllocationType::Pool, sizeof(OverlappingPair)))
@ -331,11 +332,7 @@ void CollisionDetection::broadPhaseNotifyOverlappingPair(ProxyShape* shape1, Pro
mMemoryManager.getSingleFrameAllocator());
assert(newPair != nullptr);
#ifndef NDEBUG
std::pair<map<overlappingpairid, OverlappingPair*>::iterator, bool> check =
#endif
mOverlappingPairs.insert(make_pair(pairID, newPair));
assert(check.second);
mOverlappingPairs.add(make_pair(pairID, newPair));
// Wake up the two bodies
shape1->getBody()->setIsSleeping(false);
@ -348,11 +345,11 @@ void CollisionDetection::removeProxyCollisionShape(ProxyShape* proxyShape) {
assert(proxyShape->mBroadPhaseID != -1);
// Remove all the overlapping pairs involving this proxy shape
std::map<overlappingpairid, OverlappingPair*>::iterator it;
Map<OverlappingPair::OverlappingPairId, OverlappingPair*>::Iterator it;
for (it = mOverlappingPairs.begin(); it != mOverlappingPairs.end(); ) {
if (it->second->getShape1()->mBroadPhaseID == proxyShape->mBroadPhaseID||
it->second->getShape2()->mBroadPhaseID == proxyShape->mBroadPhaseID) {
std::map<overlappingpairid, OverlappingPair*>::iterator itToRemove = it;
Map<OverlappingPair::OverlappingPairId, OverlappingPair*>::Iterator itToRemove = it;
++it;
// TODO : Remove all the contact manifold of the overlapping pair from the contact manifolds list of the two bodies involved
@ -360,7 +357,7 @@ void CollisionDetection::removeProxyCollisionShape(ProxyShape* proxyShape) {
// Destroy the overlapping pair
itToRemove->second->~OverlappingPair();
mWorld->mMemoryManager.release(MemoryManager::AllocationType::Pool, itToRemove->second, sizeof(OverlappingPair));
mOverlappingPairs.erase(itToRemove);
mOverlappingPairs.remove(itToRemove);
}
else {
++it;
@ -376,7 +373,7 @@ void CollisionDetection::addAllContactManifoldsToBodies() {
PROFILE("CollisionDetection::addAllContactManifoldsToBodies()", mProfiler);
// For each overlapping pairs in contact during the narrow-phase
std::map<overlappingpairid, OverlappingPair*>::iterator it;
Map<OverlappingPair::OverlappingPairId, OverlappingPair*>::Iterator it;
for (it = mOverlappingPairs.begin(); it != mOverlappingPairs.end(); ++it) {
// Add all the contact manifolds of the pair into the list of contact manifolds
@ -427,7 +424,7 @@ void CollisionDetection::processAllPotentialContacts() {
PROFILE("CollisionDetection::processAllPotentialContacts()", mProfiler);
// For each overlapping pairs in contact during the narrow-phase
std::map<overlappingpairid, OverlappingPair*>::iterator it;
Map<OverlappingPair::OverlappingPairId, OverlappingPair*>::Iterator it;
for (it = mOverlappingPairs.begin(); it != mOverlappingPairs.end(); ++it) {
// Process the potential contacts of the overlapping pair
@ -466,7 +463,7 @@ void CollisionDetection::reportAllContacts() {
PROFILE("CollisionDetection::reportAllContacts()", mProfiler);
// For each overlapping pairs in contact during the narrow-phase
std::map<overlappingpairid, OverlappingPair*>::iterator it;
Map<OverlappingPair::OverlappingPairId, OverlappingPair*>::Iterator it;
for (it = mOverlappingPairs.begin(); it != mOverlappingPairs.end(); ++it) {
// If there is a user callback
@ -921,7 +918,7 @@ void CollisionDetection::testCollision(CollisionCallback* callback) {
computeBroadPhase();
// For each possible collision pair of bodies
map<overlappingpairid, OverlappingPair*>::iterator it;
Map<OverlappingPair::OverlappingPairId, OverlappingPair*>::Iterator it;
for (it = mOverlappingPairs.begin(); it != mOverlappingPairs.end(); ++it) {
OverlappingPair* originalPair = it->second;

View File

@ -34,9 +34,9 @@
#include "narrowphase/DefaultCollisionDispatch.h"
#include "memory/MemoryManager.h"
#include "constraint/ContactPoint.h"
#include "containers/Map.h"
#include <set>
#include <utility>
#include <map>
/// ReactPhysics3D namespace
namespace reactphysics3d {
@ -79,7 +79,7 @@ class CollisionDetection {
NarrowPhaseInfo* mNarrowPhaseInfoList;
/// Broad-phase overlapping pairs
std::map<overlappingpairid, OverlappingPair*> mOverlappingPairs;
Map<OverlappingPair::OverlappingPairId, OverlappingPair*> mOverlappingPairs;
/// Broad-phase algorithm
BroadPhaseAlgorithm mBroadPhaseAlgorithm;

View File

@ -25,37 +25,52 @@
// Libraries
#include "HalfEdgeStructure.h"
#include <map>
#include "containers/Map.h"
#include "containers/containers_common.h"
using namespace reactphysics3d;
// Hash function for struct VerticesPair
namespace std {
template <> struct hash<HalfEdgeStructure::VerticesPair> {
size_t operator()(const HalfEdgeStructure::VerticesPair& pair) const {
std::size_t seed = 0;
hash_combine<uint>(seed, pair.vertex1);
hash_combine<uint>(seed, pair.vertex2);
return seed;
}
};
}
// Initialize the structure (when all vertices and faces have been added)
void HalfEdgeStructure::init() {
using edgeKey = std::pair<uint, uint>;
Map<VerticesPair, Edge> edges(mAllocator);
Map<VerticesPair, VerticesPair> nextEdges(mAllocator);
Map<VerticesPair, uint> mapEdgeToStartVertex(mAllocator);
Map<VerticesPair, uint> mapEdgeToIndex(mAllocator);
Map<uint, VerticesPair> mapEdgeIndexToKey(mAllocator);
Map<uint, VerticesPair> mapFaceIndexToEdgeKey(mAllocator);
std::map<edgeKey, Edge> edges;
std::map<edgeKey, edgeKey> nextEdges;
std::map<edgeKey, uint> mapEdgeToStartVertex;
std::map<edgeKey, uint> mapEdgeToIndex;
std::map<uint, edgeKey> mapEdgeIndexToKey;
std::map<uint, edgeKey> mapFaceIndexToEdgeKey;
List<edgeKey> currentFaceEdges(mAllocator, mFaces[0].faceVertices.size());
List<VerticesPair> currentFaceEdges(mAllocator, mFaces[0].faceVertices.size());
// For each face
for (uint f=0; f<mFaces.size(); f++) {
Face face = mFaces[f];
edgeKey firstEdgeKey;
VerticesPair firstEdgeKey;
// For each vertex of the face
for (uint v=0; v < face.faceVertices.size(); v++) {
uint v1Index = face.faceVertices[v];
uint v2Index = face.faceVertices[v == (face.faceVertices.size() - 1) ? 0 : v + 1];
const edgeKey pairV1V2 = std::make_pair(v1Index, v2Index);
const VerticesPair pairV1V2 = VerticesPair(v1Index, v2Index);
// Create a new half-edge
Edge edge;
@ -65,19 +80,19 @@ void HalfEdgeStructure::init() {
firstEdgeKey = pairV1V2;
}
else if (v >= 1) {
nextEdges.insert(std::make_pair(currentFaceEdges[currentFaceEdges.size() - 1], pairV1V2));
nextEdges.add(std::make_pair(currentFaceEdges[currentFaceEdges.size() - 1], pairV1V2));
}
if (v == (face.faceVertices.size() - 1)) {
nextEdges.insert(std::make_pair(pairV1V2, firstEdgeKey));
nextEdges.add(std::make_pair(pairV1V2, firstEdgeKey));
}
edges.insert(std::make_pair(pairV1V2, edge));
edges.add(std::make_pair(pairV1V2, edge));
const edgeKey pairV2V1 = std::make_pair(v2Index, v1Index);
const VerticesPair pairV2V1(v2Index, v1Index);
mapEdgeToStartVertex.insert(std::make_pair(pairV1V2, v1Index));
mapEdgeToStartVertex.insert(std::make_pair(pairV2V1, v2Index));
mapEdgeToStartVertex.add(std::make_pair(pairV1V2, v1Index), true);
mapEdgeToStartVertex.add(std::make_pair(pairV2V1, v2Index), true);
mapFaceIndexToEdgeKey.insert(std::make_pair(f, pairV1V2));
mapFaceIndexToEdgeKey.add(std::make_pair(f, pairV1V2), true);
auto itEdge = edges.find(pairV2V1);
if (itEdge != edges.end()) {
@ -87,14 +102,14 @@ void HalfEdgeStructure::init() {
itEdge->second.twinEdgeIndex = edgeIndex + 1;
edge.twinEdgeIndex = edgeIndex;
mapEdgeIndexToKey[edgeIndex] = pairV2V1;
mapEdgeIndexToKey[edgeIndex + 1] = pairV1V2;
mapEdgeIndexToKey.add(std::make_pair(edgeIndex, pairV2V1));
mapEdgeIndexToKey.add(std::make_pair(edgeIndex + 1, pairV1V2));
mVertices[v1Index].edgeIndex = edgeIndex + 1;
mVertices[v2Index].edgeIndex = edgeIndex;
mapEdgeToIndex.insert(std::make_pair(pairV1V2, edgeIndex + 1));
mapEdgeToIndex.insert(std::make_pair(pairV2V1, edgeIndex));
mapEdgeToIndex.add(std::make_pair(pairV1V2, edgeIndex + 1));
mapEdgeToIndex.add(std::make_pair(pairV2V1, edgeIndex));
mEdges.add(itEdge->second);
mEdges.add(edge);

View File

@ -41,6 +41,25 @@ class HalfEdgeStructure {
public:
/// Pair of vertices
struct VerticesPair {
uint vertex1;
uint vertex2;
/// Constructor
VerticesPair() = default;
/// Constructor
VerticesPair(uint v1, uint v2) : vertex1(v1), vertex2(v2) {}
/// Equality operator
bool operator==(const VerticesPair& pair) const {
return vertex1 == pair.vertex1 && vertex2 == pair.vertex2;
}
};
/// Edge
struct Edge {
uint vertexIndex; // Index of the vertex at the beginning of the edge
uint twinEdgeIndex; // Index of the twin edge
@ -48,6 +67,7 @@ class HalfEdgeStructure {
uint nextEdgeIndex; // Index of the next edge
};
/// Face
struct Face {
uint edgeIndex; // Index of an half-edge of the face
List<uint> faceVertices; // Index of the vertices of the face
@ -59,6 +79,7 @@ class HalfEdgeStructure {
Face(List<uint> vertices) : faceVertices(vertices) {}
};
/// Vertex
struct Vertex {
uint vertexPointIndex; // Index of the vertex point in the origin vertex array
uint edgeIndex; // Index of one edge emanting from this vertex

View File

@ -34,7 +34,6 @@
#include "collision/PolyhedronMesh.h"
#include "collision/narrowphase/GJK/GJKAlgorithm.h"
#include <set>
#include <map>
/// ReactPhysics3D namespace
namespace reactphysics3d {

View File

@ -30,8 +30,11 @@
#include "memory/MemoryAllocator.h"
#include "mathematics/mathematics_functions.h"
#include <cstring>
#include <stdexcept>
#include <functional>
#include <limits>
namespace reactphysics3d {
// Class Map
@ -387,7 +390,15 @@ class Map {
std::memcpy(mBuckets, map.mBuckets, mCapacity * sizeof(int));
// Copy the entries
std::memcpy(mEntries, map.mEntries, mCapacity * sizeof(Entry));
for (int i=0; i < mCapacity; i++) {
new (&mEntries[i]) Entry(map.mEntries[i].hashCode, map.mEntries[i].next);
if (map.mEntries[i].keyValue != nullptr) {
mEntries[i].keyValue = static_cast<std::pair<K,V>*>(mAllocator.allocate(sizeof(std::pair<K, V>)));
new (mEntries[i].keyValue) std::pair<K,V>(*(map.mEntries[i].keyValue));
}
}
}
/// Destructor
@ -417,7 +428,7 @@ class Map {
}
/// Add an element into the map
void add(const std::pair<K,V>& keyValue) {
void add(const std::pair<K,V>& keyValue, bool insertIfAlreadyPresent = false) {
if (mCapacity == 0) {
initialize(0);
@ -435,9 +446,21 @@ class Map {
// If there is already an item with the same key in the map
if (mEntries[i].hashCode == hashCode && mEntries[i].keyValue->first == keyValue.first) {
if (insertIfAlreadyPresent) {
// Destruct the previous key/value
mEntries[i].keyValue->~pair<K, V>();
// Copy construct the new key/value
new (mEntries[i].keyValue) std::pair<K,V>(keyValue);
return;
}
else {
throw std::runtime_error("The key and value pair already exists in the map");
}
}
}
size_t entryIndex;
@ -473,6 +496,13 @@ class Map {
mBuckets[bucket] = entryIndex;
}
/// Remove the element pointed by some iterator
bool remove(const Iterator& it) {
const K& key = it->first;
return remove(key);
}
/// Remove the element from the map with a given key
bool remove(const K& key) {
@ -605,7 +635,9 @@ class Map {
throw std::runtime_error("No item with given key has been found in the map");
}
return mEntries[entry];
assert(mEntries[entry].keyValue != nullptr);
return mEntries[entry].keyValue->second;
}
/// Overloaded equality operator

View File

@ -0,0 +1,44 @@
/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2016 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_CONTAINERS_COMMON_H
#define REACTPHYSICS3D_CONTAINERS_COMMON_H
// Libraries
#include <cstddef>
#include <functional>
namespace reactphysics3d {
/// This method is used to combine two hash values
template <class T>
inline void hash_combine(std::size_t& seed, const T& v) {
std::hash<T> hasher;
seed ^= hasher(v) + 0x9e3779b9 + (seed<<6) + (seed>>2);
}
}
#endif

View File

@ -31,8 +31,6 @@
#include "mathematics/mathematics.h"
#include "constraint/Joint.h"
#include "Island.h"
#include <map>
#include <set>
namespace reactphysics3d {

View File

@ -32,8 +32,6 @@
#include "constraint/Joint.h"
#include "collision/ContactManifold.h"
#include "Island.h"
#include <map>
#include <set>
/// ReactPhysics3D namespace
namespace reactphysics3d {

View File

@ -833,7 +833,7 @@ List<const ContactManifold*> DynamicsWorld::getContactsList() {
List<const ContactManifold*> contactManifolds(mMemoryManager.getPoolAllocator());
// For each currently overlapping pair of bodies
std::map<overlappingpairid, OverlappingPair*>::const_iterator it;
Map<OverlappingPair::OverlappingPairId, OverlappingPair*>::Iterator it;
for (it = mCollisionDetection.mOverlappingPairs.begin();
it != mCollisionDetection.mOverlappingPairs.end(); ++it) {

View File

@ -28,14 +28,17 @@
#include "OverlappingPair.h"
#include "collision/ContactManifoldInfo.h"
#include "collision/NarrowPhaseInfo.h"
#include "containers/containers_common.h"
using namespace reactphysics3d;
// Constructor
OverlappingPair::OverlappingPair(ProxyShape* shape1, ProxyShape* shape2,
MemoryAllocator& persistentMemoryAllocator, MemoryAllocator& temporaryMemoryAllocator)
: mContactManifoldSet(shape1, shape2, persistentMemoryAllocator), mPotentialContactManifolds(nullptr),
mPersistentAllocator(persistentMemoryAllocator), mTempMemoryAllocator(temporaryMemoryAllocator) {
mPersistentAllocator(persistentMemoryAllocator), mTempMemoryAllocator(temporaryMemoryAllocator),
mLastFrameCollisionInfos(mPersistentAllocator) {
}
@ -150,7 +153,8 @@ void OverlappingPair::reducePotentialContactManifolds() {
void OverlappingPair::addLastFrameInfoIfNecessary(uint shapeId1, uint shapeId2) {
// Try to get the corresponding last frame collision info
auto it = mLastFrameCollisionInfos.find(std::make_pair(shapeId1, shapeId2));
const ShapeIdPair shapeIdPair(shapeId1, shapeId2);
auto it = mLastFrameCollisionInfos.find(shapeIdPair);
// If there is no collision info for those two shapes already
if (it == mLastFrameCollisionInfos.end()) {
@ -160,9 +164,7 @@ void OverlappingPair::addLastFrameInfoIfNecessary(uint shapeId1, uint shapeId2)
LastFrameCollisionInfo();
// Add it into the map of collision infos
std::map<std::pair<uint, uint>, LastFrameCollisionInfo*>::iterator it;
auto ret = mLastFrameCollisionInfos.insert(std::make_pair(std::make_pair(shapeId1, shapeId2), collisionInfo));
assert(ret.second);
mLastFrameCollisionInfos.add(std::make_pair(shapeIdPair, collisionInfo));
}
else {
@ -185,7 +187,7 @@ void OverlappingPair::clearObsoleteLastFrameCollisionInfos() {
it->second->~LastFrameCollisionInfo();
mPersistentAllocator.release(it->second, sizeof(LastFrameCollisionInfo));
mLastFrameCollisionInfos.erase(it++);
mLastFrameCollisionInfos.remove(it++);
}
else {
++it;

View File

@ -30,14 +30,12 @@
#include "collision/ContactManifoldSet.h"
#include "collision/ProxyShape.h"
#include "collision/shapes/CollisionShape.h"
#include <map>
#include "containers/Map.h"
#include "containers/containers_common.h"
/// ReactPhysics3D namespace
namespace reactphysics3d {
// Type for the overlapping pair ID
using overlappingpairid = std::pair<uint, uint>;
// Structure LastFrameCollisionInfo
/**
* This structure contains collision info about the last frame.
@ -95,6 +93,38 @@ struct LastFrameCollisionInfo {
*/
class OverlappingPair {
public:
/// Pair of shape ids
struct ShapeIdPair {
uint shapeIdBody1;
uint shapeIdBody2;
/// Constructor
ShapeIdPair(uint id1, uint id2) : shapeIdBody1(id1), shapeIdBody2(id2) {}
/// Equality operator
bool operator==(const ShapeIdPair& pair) const {
return shapeIdBody1 == pair.shapeIdBody1 && shapeIdBody2 == pair.shapeIdBody2;
}
};
/// Pair of broad-phase ids
struct OverlappingPairId {
uint body1Id;
uint body2Id;
/// Constructor
OverlappingPairId(uint id1, uint id2) : body1Id(id1), body2Id(id2) {}
/// Equality operator
bool operator==(const OverlappingPairId& pair) const {
return body1Id == pair.body1Id && body2Id == pair.body2Id;
}
};
private:
// -------------------- Attributes -------------------- //
@ -102,13 +132,6 @@ class OverlappingPair {
/// Set of persistent contact manifolds
ContactManifoldSet mContactManifoldSet;
/// Temporal coherence collision data for each overlapping collision shapes of this pair.
/// Temporal coherence data store collision information about the last frame.
/// If two convex shapes overlap, we have a single collision data but if one shape is concave,
/// we might have collision data for several overlapping triangles. The key in the map is the
/// shape Ids of the two collision shapes.
std::map<std::pair<uint, uint>, LastFrameCollisionInfo*> mLastFrameCollisionInfos;
/// Linked-list of potential contact manifold
ContactManifoldInfo* mPotentialContactManifolds;
@ -118,6 +141,13 @@ class OverlappingPair {
/// Memory allocator used to allocated memory for the ContactManifoldInfo and ContactPointInfo
MemoryAllocator& mTempMemoryAllocator;
/// Temporal coherence collision data for each overlapping collision shapes of this pair.
/// Temporal coherence data store collision information about the last frame.
/// If two convex shapes overlap, we have a single collision data but if one shape is concave,
/// we might have collision data for several overlapping triangles. The key in the map is the
/// shape Ids of the two collision shapes.
Map<ShapeIdPair, LastFrameCollisionInfo*> mLastFrameCollisionInfos;
public:
// -------------------- Methods -------------------- //
@ -142,7 +172,7 @@ class OverlappingPair {
ProxyShape* getShape2() const;
/// Return the last frame collision info
LastFrameCollisionInfo* getLastFrameCollisionInfo(std::pair<uint, uint> shapeIds);
LastFrameCollisionInfo* getLastFrameCollisionInfo(ShapeIdPair& shapeIds);
/// Return the a reference to the contact manifold set
const ContactManifoldSet& getContactManifoldSet();
@ -193,7 +223,7 @@ class OverlappingPair {
void makeLastFrameCollisionInfosObsolete();
/// Return the pair of bodies index
static overlappingpairid computeID(ProxyShape* shape1, ProxyShape* shape2);
static OverlappingPairId computeID(ProxyShape* shape1, ProxyShape* shape2);
/// Return the pair of bodies index of the pair
static bodyindexpair computeBodiesIndexPair(CollisionBody* body1, CollisionBody* body2);
@ -219,8 +249,8 @@ inline void OverlappingPair::addContactManifold(const ContactManifoldInfo* conta
}
// Return the last frame collision info for a given shape id or nullptr if none is found
inline LastFrameCollisionInfo* OverlappingPair::getLastFrameCollisionInfo(std::pair<uint, uint> shapeIds) {
std::map<std::pair<uint, uint>, LastFrameCollisionInfo*>::iterator it = mLastFrameCollisionInfos.find(shapeIds);
inline LastFrameCollisionInfo* OverlappingPair::getLastFrameCollisionInfo(ShapeIdPair& shapeIds) {
Map<ShapeIdPair, LastFrameCollisionInfo*>::Iterator it = mLastFrameCollisionInfos.find(shapeIds);
if (it != mLastFrameCollisionInfos.end()) {
return it->second;
}
@ -240,14 +270,14 @@ inline void OverlappingPair::makeContactsObsolete() {
}
// Return the pair of bodies index
inline overlappingpairid OverlappingPair::computeID(ProxyShape* shape1, ProxyShape* shape2) {
inline OverlappingPair::OverlappingPairId OverlappingPair::computeID(ProxyShape* shape1, ProxyShape* shape2) {
assert(shape1->mBroadPhaseID >= 0 && shape2->mBroadPhaseID >= 0);
// Construct the pair of body index
overlappingpairid pairID = shape1->mBroadPhaseID < shape2->mBroadPhaseID ?
std::make_pair(shape1->mBroadPhaseID, shape2->mBroadPhaseID) :
std::make_pair(shape2->mBroadPhaseID, shape1->mBroadPhaseID);
assert(pairID.first != pairID.second);
OverlappingPairId pairID = shape1->mBroadPhaseID < shape2->mBroadPhaseID ?
OverlappingPairId(shape1->mBroadPhaseID, shape2->mBroadPhaseID) :
OverlappingPairId(shape2->mBroadPhaseID, shape1->mBroadPhaseID);
assert(pairID.body1Id != pairID.body2Id);
return pairID;
}
@ -296,10 +326,38 @@ inline void OverlappingPair::reduceContactManifolds() {
// Return the last frame collision info for a given pair of shape ids
inline LastFrameCollisionInfo* OverlappingPair::getLastFrameCollisionInfo(uint shapeId1, uint shapeId2) const {
return mLastFrameCollisionInfos.at(std::make_pair(shapeId1, shapeId2));
return mLastFrameCollisionInfos[ShapeIdPair(shapeId1, shapeId2)];
}
}
// Hash function for struct ShapeIdPair
namespace std {
template <> struct hash<reactphysics3d::OverlappingPair::ShapeIdPair> {
size_t operator()(const reactphysics3d::OverlappingPair::ShapeIdPair& pair) const {
std::size_t seed = 0;
reactphysics3d::hash_combine<uint>(seed, pair.shapeIdBody1);
reactphysics3d::hash_combine<uint>(seed, pair.shapeIdBody2);
return seed;
}
};
template <> struct hash<reactphysics3d::OverlappingPair::OverlappingPairId> {
size_t operator()(const reactphysics3d::OverlappingPair::OverlappingPairId& pair) const {
std::size_t seed = 0;
reactphysics3d::hash_combine<uint>(seed, pair.body1Id);
reactphysics3d::hash_combine<uint>(seed, pair.body2Id);
return seed;
}
};
}
#endif

View File

@ -211,23 +211,21 @@ class TestRaycast : public Test {
mCapsuleShape = new CapsuleShape(2, 5);
mCapsuleProxyShape = mCapsuleBody->addCollisionShape(mCapsuleShape, mShapeTransform);
// TODO : Create convex mesh shape with new way (polyhedron mesh) to add test again
// Box of extents (2, 3, 4)
mPolyhedronVertices[0] = Vector3(-2, -3, -4);
mPolyhedronVertices[1] = Vector3(2, -3, -4);
mPolyhedronVertices[2] = Vector3(2, -3, 4);
mPolyhedronVertices[3] = Vector3(-2, -3, 4);
mPolyhedronVertices[4] = Vector3(-2, 3, -4);
mPolyhedronVertices[0] = Vector3(-2, -3, 4);
mPolyhedronVertices[1] = Vector3(2, -3, 4);
mPolyhedronVertices[2] = Vector3(2, 3, 4);
mPolyhedronVertices[3] = Vector3(-2, 3, 4);
mPolyhedronVertices[4] = Vector3(2, -3, -4);
mPolyhedronVertices[5] = Vector3(2, 3, -4);
mPolyhedronVertices[6] = Vector3(2, 3, 4);
mPolyhedronVertices[7] = Vector3(-2, 3, 4);
mPolyhedronVertices[6] = Vector3(-2, 3, -4);
mPolyhedronVertices[7] = Vector3(-2, -3, -4);
mPolyhedronIndices[0] = 0; mPolyhedronIndices[1] = 1; mPolyhedronIndices[2] = 2; mPolyhedronIndices[3] = 3;
mPolyhedronIndices[4] = 1; mPolyhedronIndices[5] = 5; mPolyhedronIndices[6] = 6; mPolyhedronIndices[7] = 2;
mPolyhedronIndices[8] = 0; mPolyhedronIndices[9] = 4; mPolyhedronIndices[10] = 5; mPolyhedronIndices[11] = 1;
mPolyhedronIndices[12] = 0; mPolyhedronIndices[13] = 3; mPolyhedronIndices[14] = 7; mPolyhedronIndices[15] = 4;
mPolyhedronIndices[16] = 3; mPolyhedronIndices[17] = 2; mPolyhedronIndices[18] = 6; mPolyhedronIndices[19] = 7;
mPolyhedronIndices[20] = 2; mPolyhedronIndices[21] = 5; mPolyhedronIndices[22] = 4; mPolyhedronIndices[23] = 7;
mPolyhedronIndices[4] = 1; mPolyhedronIndices[5] = 4; mPolyhedronIndices[6] = 5; mPolyhedronIndices[7] = 2;
mPolyhedronIndices[8] = 4; mPolyhedronIndices[9] = 7; mPolyhedronIndices[10] = 6; mPolyhedronIndices[11] = 5;
mPolyhedronIndices[12] = 0; mPolyhedronIndices[13] = 3; mPolyhedronIndices[14] = 6; mPolyhedronIndices[15] = 7;
mPolyhedronIndices[16] = 2; mPolyhedronIndices[17] = 5; mPolyhedronIndices[18] = 6; mPolyhedronIndices[19] = 3;
mPolyhedronIndices[20] = 1; mPolyhedronIndices[21] = 0; mPolyhedronIndices[22] = 7; mPolyhedronIndices[23] = 4;
// Polygon faces descriptions for the polyhedron
for (int f=0; f < 8; f++) {

View File

@ -31,6 +31,30 @@
#include "containers/Map.h"
#include "memory/DefaultAllocator.h"
// Key to test map with always same hash values
namespace reactphysics3d {
struct TestKey {
int key;
TestKey(int k) :key(k) {}
bool operator==(const TestKey& testKey) const {
return key == testKey.key;
}
};
}
// Hash function for struct VerticesPair
namespace std {
template <> struct hash<reactphysics3d::TestKey> {
size_t operator()(const reactphysics3d::TestKey& key) const {
return 1;
}
};
}
/// Reactphysics3D namespace
namespace reactphysics3d {
@ -82,7 +106,6 @@ class TestMap : public Test {
test(map2.size() == 0);
// ----- Copy Constructors ----- //
/*
Map<int, std::string> map3(map1);
test(map3.capacity() == map1.capacity());
test(map3.size() == map1.size());
@ -100,7 +123,6 @@ class TestMap : public Test {
test(map5[1] == 10);
test(map5[2] == 20);
test(map5[3] == 30);
*/
}
void testReserve() {
@ -123,8 +145,6 @@ class TestMap : public Test {
void testAddRemoveClear() {
// TODO : ADD test with values with same hash for keys but different keys
// ----- Test add() ----- //
Map<int, int> map1(mAllocator);
@ -151,21 +171,32 @@ class TestMap : public Test {
test(map1.size() == 3);
test(map1[1] == 10);
map1.add(std::make_pair(56, 34));
test(map1[56] == 34);
test(map1.size() == 4);
map1.add(std::make_pair(56, 13), true);
test(map1[56] == 13);
test(map1.size() == 4);
// ----- Test remove() ----- //
map1.remove(1);
test(!map1.containsKey(1));
test(map1.containsKey(8));
test(map1.containsKey(13));
test(map1.size() == 2);
test(map1.size() == 3);
map1.remove(13);
test(map1.containsKey(8));
test(!map1.containsKey(13));
test(map1.size() == 1);
test(map1.size() == 2);
map1.remove(8);
test(!map1.containsKey(8));
test(map1.size() == 1);
map1.remove(56);
test(!map1.containsKey(56));
test(map1.size() == 0);
isValid = true;
@ -184,6 +215,16 @@ class TestMap : public Test {
map3.remove(i);
}
map3.add(std::make_pair(1, 10));
map3.add(std::make_pair(2, 20));
map3.add(std::make_pair(3, 30));
test(map3.size() == 3);
auto it = map3.begin();
map3.remove(it++);
test(!map3.containsKey(1));
test(map3.size() == 2);
test(it->second == 20);
// ----- Test clear() ----- //
Map<int, int> map4(mAllocator);
@ -201,6 +242,24 @@ class TestMap : public Test {
Map<int, int> map5(mAllocator);
map5.clear();
test(map5.size() == 0);
// ----- Test map with always same hash value for keys ----- //
Map<TestKey, int> map6(mAllocator);
for (int i=0; i < 1000; i++) {
map6.add(std::make_pair(TestKey(i), i));
}
bool isTestValid = true;
for (int i=0; i < 1000; i++) {
if (map6[TestKey(i)] != i) {
isTestValid = false;
}
}
test(isTestValid);
for (int i=0; i < 1000; i++) {
map6.remove(TestKey(i));
}
test(map6.size() == 0);
}
void testContainsKey() {