Improve robustness of constraint solver (avoid inverse of matrix with zero determinant)
This commit is contained in:
parent
b18e617c76
commit
2e1046f2b8
include/reactphysics3d/mathematics
src
|
@ -92,6 +92,9 @@ class Matrix2x2 {
|
||||||
/// Return the inverse matrix
|
/// Return the inverse matrix
|
||||||
Matrix2x2 getInverse() const;
|
Matrix2x2 getInverse() const;
|
||||||
|
|
||||||
|
/// Return the inverse matrix
|
||||||
|
Matrix2x2 getInverse(decimal determinant) const;
|
||||||
|
|
||||||
/// Return the matrix with absolute values
|
/// Return the matrix with absolute values
|
||||||
Matrix2x2 getAbsoluteMatrix() const;
|
Matrix2x2 getAbsoluteMatrix() const;
|
||||||
|
|
||||||
|
@ -240,6 +243,12 @@ RP3D_FORCE_INLINE Matrix2x2 Matrix2x2::zero() {
|
||||||
return Matrix2x2(0.0, 0.0, 0.0, 0.0);
|
return Matrix2x2(0.0, 0.0, 0.0, 0.0);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Return the inverse matrix
|
||||||
|
RP3D_FORCE_INLINE Matrix2x2 Matrix2x2::getInverse() const {
|
||||||
|
|
||||||
|
return getInverse(getDeterminant());
|
||||||
|
}
|
||||||
|
|
||||||
// Return the matrix with absolute values
|
// Return the matrix with absolute values
|
||||||
RP3D_FORCE_INLINE Matrix2x2 Matrix2x2::getAbsoluteMatrix() const {
|
RP3D_FORCE_INLINE Matrix2x2 Matrix2x2::getAbsoluteMatrix() const {
|
||||||
return Matrix2x2(std::abs(mRows[0][0]), std::abs(mRows[0][1]),
|
return Matrix2x2(std::abs(mRows[0][0]), std::abs(mRows[0][1]),
|
||||||
|
|
|
@ -95,6 +95,9 @@ class Matrix3x3 {
|
||||||
/// Return the inverse matrix
|
/// Return the inverse matrix
|
||||||
Matrix3x3 getInverse() const;
|
Matrix3x3 getInverse() const;
|
||||||
|
|
||||||
|
/// Return the inverse matrix
|
||||||
|
Matrix3x3 getInverse(decimal determinant) const;
|
||||||
|
|
||||||
/// Return the matrix with absolute values
|
/// Return the matrix with absolute values
|
||||||
Matrix3x3 getAbsoluteMatrix() const;
|
Matrix3x3 getAbsoluteMatrix() const;
|
||||||
|
|
||||||
|
@ -253,6 +256,12 @@ RP3D_FORCE_INLINE Matrix3x3 Matrix3x3::zero() {
|
||||||
return Matrix3x3(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
|
return Matrix3x3(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Return the inverse matrix
|
||||||
|
RP3D_FORCE_INLINE Matrix3x3 Matrix3x3::getInverse() const {
|
||||||
|
|
||||||
|
return getInverse(getDeterminant());
|
||||||
|
}
|
||||||
|
|
||||||
// Return a skew-symmetric matrix using a given vector that can be used
|
// Return a skew-symmetric matrix using a given vector that can be used
|
||||||
// to compute cross product with another vector using matrix multiplication
|
// to compute cross product with another vector using matrix multiplication
|
||||||
RP3D_FORCE_INLINE Matrix3x3 Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(const Vector3& vector) {
|
RP3D_FORCE_INLINE Matrix3x3 Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(const Vector3& vector) {
|
||||||
|
|
|
@ -40,10 +40,7 @@ Matrix2x2& Matrix2x2::operator=(const Matrix2x2& matrix) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// Return the inverse matrix
|
// Return the inverse matrix
|
||||||
Matrix2x2 Matrix2x2::getInverse() const {
|
Matrix2x2 Matrix2x2::getInverse(decimal determinant) const {
|
||||||
|
|
||||||
// Compute the determinant of the matrix
|
|
||||||
decimal determinant = getDeterminant();
|
|
||||||
|
|
||||||
// Check if the determinant is equal to zero
|
// Check if the determinant is equal to zero
|
||||||
assert(std::abs(determinant) > MACHINE_EPSILON);
|
assert(std::abs(determinant) > MACHINE_EPSILON);
|
||||||
|
|
|
@ -42,10 +42,7 @@ Matrix3x3& Matrix3x3::operator=(const Matrix3x3& matrix) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// Return the inverse matrix
|
// Return the inverse matrix
|
||||||
Matrix3x3 Matrix3x3::getInverse() const {
|
Matrix3x3 Matrix3x3::getInverse(decimal determinant) const {
|
||||||
|
|
||||||
// Compute the determinant of the matrix
|
|
||||||
decimal determinant = getDeterminant();
|
|
||||||
|
|
||||||
// Check if the determinant is equal to zero
|
// Check if the determinant is equal to zero
|
||||||
assert(determinant != decimal(0.0));
|
assert(determinant != decimal(0.0));
|
||||||
|
|
|
@ -97,9 +97,12 @@ void SolveBallAndSocketJointSystem::initBeforeSolve() {
|
||||||
|
|
||||||
// Compute the inverse mass matrix K^-1
|
// Compute the inverse mass matrix K^-1
|
||||||
mBallAndSocketJointComponents.mInverseMassMatrix[i].setToZero();
|
mBallAndSocketJointComponents.mInverseMassMatrix[i].setToZero();
|
||||||
|
decimal massMatrixDeterminant = massMatrix.getDeterminant();
|
||||||
|
if (std::abs(massMatrixDeterminant) > MACHINE_EPSILON) {
|
||||||
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
||||||
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
||||||
mBallAndSocketJointComponents.mInverseMassMatrix[i] = massMatrix.getInverse();
|
mBallAndSocketJointComponents.mInverseMassMatrix[i] = massMatrix.getInverse(massMatrixDeterminant);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const Vector3& x1 = mRigidBodyComponents.mCentersOfMassWorld[componentIndexBody1];
|
const Vector3& x1 = mRigidBodyComponents.mCentersOfMassWorld[componentIndexBody1];
|
||||||
|
@ -269,9 +272,12 @@ void SolveBallAndSocketJointSystem::solvePositionConstraint() {
|
||||||
skewSymmetricMatrixU1 * mBallAndSocketJointComponents.mI1[i] * skewSymmetricMatrixU1.getTranspose() +
|
skewSymmetricMatrixU1 * mBallAndSocketJointComponents.mI1[i] * skewSymmetricMatrixU1.getTranspose() +
|
||||||
skewSymmetricMatrixU2 * mBallAndSocketJointComponents.mI2[i] * skewSymmetricMatrixU2.getTranspose();
|
skewSymmetricMatrixU2 * mBallAndSocketJointComponents.mI2[i] * skewSymmetricMatrixU2.getTranspose();
|
||||||
mBallAndSocketJointComponents.mInverseMassMatrix[i].setToZero();
|
mBallAndSocketJointComponents.mInverseMassMatrix[i].setToZero();
|
||||||
|
decimal massMatrixDeterminant = massMatrix.getDeterminant();
|
||||||
|
if (std::abs(massMatrixDeterminant) > MACHINE_EPSILON) {
|
||||||
|
|
||||||
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
||||||
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
||||||
mBallAndSocketJointComponents.mInverseMassMatrix[i] = massMatrix.getInverse();
|
mBallAndSocketJointComponents.mInverseMassMatrix[i] = massMatrix.getInverse(massMatrixDeterminant);
|
||||||
}
|
}
|
||||||
|
|
||||||
Vector3& x1 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody1];
|
Vector3& x1 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody1];
|
||||||
|
@ -310,4 +316,5 @@ void SolveBallAndSocketJointSystem::solvePositionConstraint() {
|
||||||
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
||||||
q2.normalize();
|
q2.normalize();
|
||||||
}
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -93,9 +93,12 @@ void SolveFixedJointSystem::initBeforeSolve() {
|
||||||
|
|
||||||
// Compute the inverse mass matrix K^-1 for the 3 translation constraints
|
// Compute the inverse mass matrix K^-1 for the 3 translation constraints
|
||||||
mFixedJointComponents.mInverseMassMatrixTranslation[i].setToZero();
|
mFixedJointComponents.mInverseMassMatrixTranslation[i].setToZero();
|
||||||
|
decimal massMatrixDeterminant = massMatrix.getDeterminant();
|
||||||
|
if (std::abs(massMatrixDeterminant) > MACHINE_EPSILON) {
|
||||||
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
||||||
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
||||||
mFixedJointComponents.mInverseMassMatrixTranslation[i] = massMatrix.getInverse();
|
mFixedJointComponents.mInverseMassMatrixTranslation[i] = massMatrix.getInverse(massMatrixDeterminant);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Get the bodies positions and orientations
|
// Get the bodies positions and orientations
|
||||||
|
@ -113,9 +116,12 @@ void SolveFixedJointSystem::initBeforeSolve() {
|
||||||
|
|
||||||
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation contraints (3x3 matrix)
|
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation contraints (3x3 matrix)
|
||||||
mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mI1[i] + mFixedJointComponents.mI2[i];
|
mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mI1[i] + mFixedJointComponents.mI2[i];
|
||||||
|
decimal massMatrixRotationDeterminant = mFixedJointComponents.mInverseMassMatrixRotation[i].getDeterminant();
|
||||||
|
if (std::abs(massMatrixRotationDeterminant) > MACHINE_EPSILON) {
|
||||||
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
||||||
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
||||||
mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mInverseMassMatrixRotation[i].getInverse();
|
mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mInverseMassMatrixRotation[i].getInverse(massMatrixRotationDeterminant);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Compute the bias "b" for the 3 rotation constraints
|
// Compute the bias "b" for the 3 rotation constraints
|
||||||
|
@ -336,9 +342,12 @@ void SolveFixedJointSystem::solvePositionConstraint() {
|
||||||
skewSymmetricMatrixU1 * mFixedJointComponents.mI1[i] * skewSymmetricMatrixU1.getTranspose() +
|
skewSymmetricMatrixU1 * mFixedJointComponents.mI1[i] * skewSymmetricMatrixU1.getTranspose() +
|
||||||
skewSymmetricMatrixU2 * mFixedJointComponents.mI2[i] * skewSymmetricMatrixU2.getTranspose();
|
skewSymmetricMatrixU2 * mFixedJointComponents.mI2[i] * skewSymmetricMatrixU2.getTranspose();
|
||||||
mFixedJointComponents.mInverseMassMatrixTranslation[i].setToZero();
|
mFixedJointComponents.mInverseMassMatrixTranslation[i].setToZero();
|
||||||
|
decimal massMatrixDeterminant = massMatrix.getDeterminant();
|
||||||
|
if (std::abs(massMatrixDeterminant) > MACHINE_EPSILON) {
|
||||||
|
|
||||||
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
||||||
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
||||||
mFixedJointComponents.mInverseMassMatrixTranslation[i] = massMatrix.getInverse();
|
mFixedJointComponents.mInverseMassMatrixTranslation[i] = massMatrix.getInverse(massMatrixDeterminant);
|
||||||
}
|
}
|
||||||
|
|
||||||
Vector3& x1 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody1];
|
Vector3& x1 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody1];
|
||||||
|
@ -373,15 +382,19 @@ void SolveFixedJointSystem::solvePositionConstraint() {
|
||||||
x2 += v2;
|
x2 += v2;
|
||||||
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
||||||
q2.normalize();
|
q2.normalize();
|
||||||
|
}
|
||||||
|
|
||||||
// --------------- Rotation Constraints --------------- //
|
// --------------- Rotation Constraints --------------- //
|
||||||
|
|
||||||
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
|
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
|
||||||
// contraints (3x3 matrix)
|
// contraints (3x3 matrix)
|
||||||
mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mI1[i] + mFixedJointComponents.mI2[i];
|
mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mI1[i] + mFixedJointComponents.mI2[i];
|
||||||
|
decimal massMatrixRotationDeterminant = mFixedJointComponents.mInverseMassMatrixRotation[i].getDeterminant();
|
||||||
|
if (std::abs(massMatrixRotationDeterminant) > MACHINE_EPSILON) {
|
||||||
|
|
||||||
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
||||||
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
||||||
mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mInverseMassMatrixRotation[i].getInverse();
|
mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mInverseMassMatrixRotation[i].getInverse(massMatrixRotationDeterminant);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Calculate difference in rotation
|
// Calculate difference in rotation
|
||||||
|
@ -416,20 +429,21 @@ void SolveFixedJointSystem::solvePositionConstraint() {
|
||||||
Vector3 lambdaRotation = mFixedJointComponents.mInverseMassMatrixRotation[i] * (-errorRotation);
|
Vector3 lambdaRotation = mFixedJointComponents.mInverseMassMatrixRotation[i] * (-errorRotation);
|
||||||
|
|
||||||
// Compute the impulse P=J^T * lambda for the 3 rotation constraints of body 1
|
// Compute the impulse P=J^T * lambda for the 3 rotation constraints of body 1
|
||||||
angularImpulseBody1 = -lambdaRotation;
|
Vector3 angularImpulseBody1 = -lambdaRotation;
|
||||||
|
|
||||||
// Compute the pseudo velocity of body 1
|
// Compute the pseudo velocity of body 1
|
||||||
w1 = mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody1] * (mFixedJointComponents.mI1[i] * angularImpulseBody1);
|
Vector3 w1 = mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody1] * (mFixedJointComponents.mI1[i] * angularImpulseBody1);
|
||||||
|
|
||||||
// Update the body position/orientation of body 1
|
// Update the body position/orientation of body 1
|
||||||
q1 += Quaternion(0, w1) * q1 * decimal(0.5);
|
q1 += Quaternion(0, w1) * q1 * decimal(0.5);
|
||||||
q1.normalize();
|
q1.normalize();
|
||||||
|
|
||||||
// Compute the pseudo velocity of body 2
|
// Compute the pseudo velocity of body 2
|
||||||
w2 = mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody2] * (mFixedJointComponents.mI2[i] * lambdaRotation);
|
Vector3 w2 = mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody2] * (mFixedJointComponents.mI2[i] * lambdaRotation);
|
||||||
|
|
||||||
// Update the body position/orientation of body 2
|
// Update the body position/orientation of body 2
|
||||||
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
||||||
q2.normalize();
|
q2.normalize();
|
||||||
}
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -110,9 +110,12 @@ void SolveHingeJointSystem::initBeforeSolve() {
|
||||||
skewSymmetricMatrixU2 * mHingeJointComponents.mI2[i] * skewSymmetricMatrixU2.getTranspose();
|
skewSymmetricMatrixU2 * mHingeJointComponents.mI2[i] * skewSymmetricMatrixU2.getTranspose();
|
||||||
Matrix3x3& inverseMassMatrixTranslation = mHingeJointComponents.mInverseMassMatrixTranslation[i];
|
Matrix3x3& inverseMassMatrixTranslation = mHingeJointComponents.mInverseMassMatrixTranslation[i];
|
||||||
inverseMassMatrixTranslation.setToZero();
|
inverseMassMatrixTranslation.setToZero();
|
||||||
|
decimal massMatrixDeterminant = massMatrix.getDeterminant();
|
||||||
|
if (std::abs(massMatrixDeterminant) > MACHINE_EPSILON) {
|
||||||
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
||||||
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
||||||
mHingeJointComponents.mInverseMassMatrixTranslation[i] = massMatrix.getInverse();
|
mHingeJointComponents.mInverseMassMatrixTranslation[i] = massMatrix.getInverse(massMatrixDeterminant);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Get the bodies positions and orientations
|
// Get the bodies positions and orientations
|
||||||
|
@ -141,9 +144,12 @@ void SolveHingeJointSystem::initBeforeSolve() {
|
||||||
const decimal el22 = c2CrossA1.dot(i1C2CrossA1) + c2CrossA1.dot(i2C2CrossA1);
|
const decimal el22 = c2CrossA1.dot(i1C2CrossA1) + c2CrossA1.dot(i2C2CrossA1);
|
||||||
const Matrix2x2 matrixKRotation(el11, el12, el21, el22);
|
const Matrix2x2 matrixKRotation(el11, el12, el21, el22);
|
||||||
mHingeJointComponents.mInverseMassMatrixRotation[i].setToZero();
|
mHingeJointComponents.mInverseMassMatrixRotation[i].setToZero();
|
||||||
|
decimal matrixKRotationDeterminant = matrixKRotation.getDeterminant();
|
||||||
|
if (std::abs(matrixKRotationDeterminant) > MACHINE_EPSILON) {
|
||||||
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
||||||
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
||||||
mHingeJointComponents.mInverseMassMatrixRotation[i] = matrixKRotation.getInverse();
|
mHingeJointComponents.mInverseMassMatrixRotation[i] = matrixKRotation.getInverse(matrixKRotationDeterminant);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// If warm-starting is not enabled
|
// If warm-starting is not enabled
|
||||||
|
@ -500,21 +506,6 @@ void SolveHingeJointSystem::solvePositionConstraint() {
|
||||||
|
|
||||||
// --------------- Translation Constraints --------------- //
|
// --------------- Translation Constraints --------------- //
|
||||||
|
|
||||||
// Compute the matrix K=JM^-1J^t (3x3 matrix) for the 3 translation constraints
|
|
||||||
const decimal body1InverseMass = mRigidBodyComponents.mInverseMasses[componentIndexBody1];
|
|
||||||
const decimal body2InverseMass = mRigidBodyComponents.mInverseMasses[componentIndexBody2];
|
|
||||||
decimal inverseMassBodies = body1InverseMass + body2InverseMass;
|
|
||||||
Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0,
|
|
||||||
0, inverseMassBodies, 0,
|
|
||||||
0, 0, inverseMassBodies) +
|
|
||||||
skewSymmetricMatrixU1 * mHingeJointComponents.mI1[i] * skewSymmetricMatrixU1.getTranspose() +
|
|
||||||
skewSymmetricMatrixU2 * mHingeJointComponents.mI2[i] * skewSymmetricMatrixU2.getTranspose();
|
|
||||||
mHingeJointComponents.mInverseMassMatrixTranslation[i].setToZero();
|
|
||||||
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
|
||||||
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
|
||||||
mHingeJointComponents.mInverseMassMatrixTranslation[i] = massMatrix.getInverse();
|
|
||||||
}
|
|
||||||
|
|
||||||
Vector3& b2CrossA1 = mHingeJointComponents.mB2CrossA1[i];
|
Vector3& b2CrossA1 = mHingeJointComponents.mB2CrossA1[i];
|
||||||
Vector3& c2CrossA1 = mHingeJointComponents.mC2CrossA1[i];
|
Vector3& c2CrossA1 = mHingeJointComponents.mC2CrossA1[i];
|
||||||
|
|
||||||
|
@ -533,6 +524,25 @@ void SolveHingeJointSystem::solvePositionConstraint() {
|
||||||
c2CrossA1 = c2.cross(a1);
|
c2CrossA1 = c2.cross(a1);
|
||||||
mHingeJointComponents.mC2CrossA1[i] = c2CrossA1;
|
mHingeJointComponents.mC2CrossA1[i] = c2CrossA1;
|
||||||
|
|
||||||
|
// Compute the matrix K=JM^-1J^t (3x3 matrix) for the 3 translation constraints
|
||||||
|
const decimal body1InverseMass = mRigidBodyComponents.mInverseMasses[componentIndexBody1];
|
||||||
|
const decimal body2InverseMass = mRigidBodyComponents.mInverseMasses[componentIndexBody2];
|
||||||
|
decimal inverseMassBodies = body1InverseMass + body2InverseMass;
|
||||||
|
Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0,
|
||||||
|
0, inverseMassBodies, 0,
|
||||||
|
0, 0, inverseMassBodies) +
|
||||||
|
skewSymmetricMatrixU1 * mHingeJointComponents.mI1[i] * skewSymmetricMatrixU1.getTranspose() +
|
||||||
|
skewSymmetricMatrixU2 * mHingeJointComponents.mI2[i] * skewSymmetricMatrixU2.getTranspose();
|
||||||
|
mHingeJointComponents.mInverseMassMatrixTranslation[i].setToZero();
|
||||||
|
decimal matrixDeterminant = massMatrix.getDeterminant();
|
||||||
|
if (std::abs(matrixDeterminant) > MACHINE_EPSILON) {
|
||||||
|
|
||||||
|
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
||||||
|
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
||||||
|
mHingeJointComponents.mInverseMassMatrixTranslation[i] = massMatrix.getInverse(matrixDeterminant);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
Vector3& x1 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody1];
|
Vector3& x1 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody1];
|
||||||
Vector3& x2 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody2];
|
Vector3& x2 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody2];
|
||||||
|
|
||||||
|
@ -570,6 +580,7 @@ void SolveHingeJointSystem::solvePositionConstraint() {
|
||||||
x2 += v2;
|
x2 += v2;
|
||||||
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
||||||
q2.normalize();
|
q2.normalize();
|
||||||
|
}
|
||||||
|
|
||||||
// --------------- Rotation Constraints --------------- //
|
// --------------- Rotation Constraints --------------- //
|
||||||
|
|
||||||
|
@ -588,9 +599,11 @@ void SolveHingeJointSystem::solvePositionConstraint() {
|
||||||
c2CrossA1.dot(I2C2CrossA1);
|
c2CrossA1.dot(I2C2CrossA1);
|
||||||
const Matrix2x2 matrixKRotation(el11, el12, el21, el22);
|
const Matrix2x2 matrixKRotation(el11, el12, el21, el22);
|
||||||
mHingeJointComponents.mInverseMassMatrixRotation[i].setToZero();
|
mHingeJointComponents.mInverseMassMatrixRotation[i].setToZero();
|
||||||
|
matrixDeterminant = matrixKRotation.getDeterminant();
|
||||||
|
if (std::abs(matrixDeterminant) > MACHINE_EPSILON) {
|
||||||
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
||||||
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
||||||
mHingeJointComponents.mInverseMassMatrixRotation[i] = matrixKRotation.getInverse();
|
mHingeJointComponents.mInverseMassMatrixRotation[i] = matrixKRotation.getInverse(matrixDeterminant);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Compute the position error for the 3 rotation constraints
|
// Compute the position error for the 3 rotation constraints
|
||||||
|
@ -600,25 +613,27 @@ void SolveHingeJointSystem::solvePositionConstraint() {
|
||||||
Vector2 lambdaRotation = mHingeJointComponents.mInverseMassMatrixRotation[i] * (-errorRotation);
|
Vector2 lambdaRotation = mHingeJointComponents.mInverseMassMatrixRotation[i] * (-errorRotation);
|
||||||
|
|
||||||
// Compute the impulse P=J^T * lambda for the 3 rotation constraints of body 1
|
// Compute the impulse P=J^T * lambda for the 3 rotation constraints of body 1
|
||||||
angularImpulseBody1 = -b2CrossA1 * lambdaRotation.x - c2CrossA1 * lambdaRotation.y;
|
Vector3 angularImpulseBody1 = -b2CrossA1 * lambdaRotation.x - c2CrossA1 * lambdaRotation.y;
|
||||||
|
|
||||||
// Compute the pseudo velocity of body 1
|
// Compute the pseudo velocity of body 1
|
||||||
w1 = mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody1] * (mHingeJointComponents.mI1[i] * angularImpulseBody1);
|
Vector3 w1 = mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody1] * (mHingeJointComponents.mI1[i] * angularImpulseBody1);
|
||||||
|
|
||||||
// Update the body position/orientation of body 1
|
// Update the body position/orientation of body 1
|
||||||
q1 += Quaternion(0, w1) * q1 * decimal(0.5);
|
q1 += Quaternion(0, w1) * q1 * decimal(0.5);
|
||||||
q1.normalize();
|
q1.normalize();
|
||||||
|
|
||||||
// Compute the impulse of body 2
|
// Compute the impulse of body 2
|
||||||
angularImpulseBody2 = b2CrossA1 * lambdaRotation.x + c2CrossA1 * lambdaRotation.y;
|
Vector3 angularImpulseBody2 = b2CrossA1 * lambdaRotation.x + c2CrossA1 * lambdaRotation.y;
|
||||||
|
|
||||||
// Compute the pseudo velocity of body 2
|
// Compute the pseudo velocity of body 2
|
||||||
w2 = mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody2] * (mHingeJointComponents.mI2[i] * angularImpulseBody2);
|
Vector3 w2 = mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody2] * (mHingeJointComponents.mI2[i] * angularImpulseBody2);
|
||||||
|
|
||||||
// Update the body position/orientation of body 2
|
// Update the body position/orientation of body 2
|
||||||
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
||||||
q2.normalize();
|
q2.normalize();
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
// Compute the current angle around the hinge axis
|
// Compute the current angle around the hinge axis
|
||||||
const decimal hingeAngle = computeCurrentHingeAngle(jointEntity, q1, q2);
|
const decimal hingeAngle = computeCurrentHingeAngle(jointEntity, q1, q2);
|
||||||
|
|
||||||
|
|
|
@ -185,19 +185,25 @@ void SolveSliderJointSystem::initBeforeSolve() {
|
||||||
r2CrossN2.dot(I2R2CrossN2);
|
r2CrossN2.dot(I2R2CrossN2);
|
||||||
Matrix2x2 matrixKTranslation(el11, el12, el21, el22);
|
Matrix2x2 matrixKTranslation(el11, el12, el21, el22);
|
||||||
mSliderJointComponents.mInverseMassMatrixTranslation[i].setToZero();
|
mSliderJointComponents.mInverseMassMatrixTranslation[i].setToZero();
|
||||||
|
decimal matrixKTranslationDeterminant = matrixKTranslation.getDeterminant();
|
||||||
|
if (std::abs(matrixKTranslationDeterminant) > MACHINE_EPSILON) {
|
||||||
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
||||||
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
||||||
|
|
||||||
mSliderJointComponents.mInverseMassMatrixTranslation[i] = matrixKTranslation.getInverse();
|
mSliderJointComponents.mInverseMassMatrixTranslation[i] = matrixKTranslation.getInverse(matrixKTranslationDeterminant);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
|
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
|
||||||
// contraints (3x3 matrix)
|
// contraints (3x3 matrix)
|
||||||
mSliderJointComponents.mInverseMassMatrixRotation[i] = i1 + i2;
|
mSliderJointComponents.mInverseMassMatrixRotation[i] = i1 + i2;
|
||||||
|
decimal massMatrixRotationDeterminant = mSliderJointComponents.mInverseMassMatrixRotation[i].getDeterminant();
|
||||||
|
if (std::abs(massMatrixRotationDeterminant) > MACHINE_EPSILON) {
|
||||||
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
|
||||||
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
||||||
|
|
||||||
mSliderJointComponents.mInverseMassMatrixRotation[i] = mSliderJointComponents.mInverseMassMatrixRotation[i].getInverse();
|
mSliderJointComponents.mInverseMassMatrixRotation[i] = mSliderJointComponents.mInverseMassMatrixRotation[i].getInverse(massMatrixRotationDeterminant);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Compute the bias "b" of the rotation constraint
|
// Compute the bias "b" of the rotation constraint
|
||||||
|
@ -609,9 +615,12 @@ void SolveSliderJointSystem::solvePositionConstraint() {
|
||||||
r2CrossN2.dot(I2R2CrossN2);
|
r2CrossN2.dot(I2R2CrossN2);
|
||||||
Matrix2x2 matrixKTranslation(el11, el12, el21, el22);
|
Matrix2x2 matrixKTranslation(el11, el12, el21, el22);
|
||||||
mSliderJointComponents.mInverseMassMatrixTranslation[i].setToZero();
|
mSliderJointComponents.mInverseMassMatrixTranslation[i].setToZero();
|
||||||
|
decimal matrixKTranslationDeterminant = matrixKTranslation.getDeterminant();
|
||||||
|
if (std::abs(matrixKTranslationDeterminant) > MACHINE_EPSILON) {
|
||||||
|
|
||||||
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC || mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC || mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
||||||
|
|
||||||
mSliderJointComponents.mInverseMassMatrixTranslation[i] = matrixKTranslation.getInverse();
|
mSliderJointComponents.mInverseMassMatrixTranslation[i] = matrixKTranslation.getInverse(matrixKTranslationDeterminant);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Compute the position error for the 2 translation constraints
|
// Compute the position error for the 2 translation constraints
|
||||||
|
@ -646,15 +655,19 @@ void SolveSliderJointSystem::solvePositionConstraint() {
|
||||||
x2 += v2;
|
x2 += v2;
|
||||||
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
||||||
q2.normalize();
|
q2.normalize();
|
||||||
|
}
|
||||||
|
|
||||||
// --------------- Rotation Constraints --------------- //
|
// --------------- Rotation Constraints --------------- //
|
||||||
|
|
||||||
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
|
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
|
||||||
// contraints (3x3 matrix)
|
// contraints (3x3 matrix)
|
||||||
mSliderJointComponents.mInverseMassMatrixRotation[i] = mSliderJointComponents.mI1[i] + mSliderJointComponents.mI2[i];
|
mSliderJointComponents.mInverseMassMatrixRotation[i] = mSliderJointComponents.mI1[i] + mSliderJointComponents.mI2[i];
|
||||||
|
decimal massMatrixRotationDeterminant = mSliderJointComponents.mInverseMassMatrixRotation[i].getDeterminant();
|
||||||
|
if (std::abs(massMatrixRotationDeterminant) > MACHINE_EPSILON) {
|
||||||
|
|
||||||
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC || mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC || mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
|
||||||
|
|
||||||
mSliderJointComponents.mInverseMassMatrixRotation[i] = mSliderJointComponents.mInverseMassMatrixRotation[i].getInverse();
|
mSliderJointComponents.mInverseMassMatrixRotation[i] = mSliderJointComponents.mInverseMassMatrixRotation[i].getInverse(massMatrixRotationDeterminant);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Calculate difference in rotation
|
// Calculate difference in rotation
|
||||||
|
@ -689,24 +702,25 @@ void SolveSliderJointSystem::solvePositionConstraint() {
|
||||||
Vector3 lambdaRotation = mSliderJointComponents.mInverseMassMatrixRotation[i] * (-errorRotation);
|
Vector3 lambdaRotation = mSliderJointComponents.mInverseMassMatrixRotation[i] * (-errorRotation);
|
||||||
|
|
||||||
// Compute the impulse P=J^T * lambda for the 3 rotation constraints of body 1
|
// Compute the impulse P=J^T * lambda for the 3 rotation constraints of body 1
|
||||||
angularImpulseBody1 = -lambdaRotation;
|
Vector3 angularImpulseBody1 = -lambdaRotation;
|
||||||
|
|
||||||
// Apply the impulse to the body 1
|
// Apply the impulse to the body 1
|
||||||
w1 = mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody1] * (mSliderJointComponents.mI1[i] * angularImpulseBody1);
|
Vector3 w1 = mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody1] * (mSliderJointComponents.mI1[i] * angularImpulseBody1);
|
||||||
|
|
||||||
// Update the body position/orientation of body 1
|
// Update the body position/orientation of body 1
|
||||||
q1 += Quaternion(0, w1) * q1 * decimal(0.5);
|
q1 += Quaternion(0, w1) * q1 * decimal(0.5);
|
||||||
q1.normalize();
|
q1.normalize();
|
||||||
|
|
||||||
// Compute the impulse P=J^T * lambda for the 3 rotation constraints of body 2
|
// Compute the impulse P=J^T * lambda for the 3 rotation constraints of body 2
|
||||||
angularImpulseBody2 = lambdaRotation;
|
Vector3 angularImpulseBody2 = lambdaRotation;
|
||||||
|
|
||||||
// Apply the impulse to the body 2
|
// Apply the impulse to the body 2
|
||||||
w2 = mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody2] * (mSliderJointComponents.mI2[i] * angularImpulseBody2);
|
Vector3 w2 = mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody2] * (mSliderJointComponents.mI2[i] * angularImpulseBody2);
|
||||||
|
|
||||||
// Update the body position/orientation of body 2
|
// Update the body position/orientation of body 2
|
||||||
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
||||||
q2.normalize();
|
q2.normalize();
|
||||||
|
}
|
||||||
|
|
||||||
// --------------- Limits Constraints --------------- //
|
// --------------- Limits Constraints --------------- //
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user