Fix issue with ConvexMeshShape and BoxShape falling through ConcaveMeshShape and HeightFieldShape
This commit is contained in:
parent
5a2f84295e
commit
45f86ea543
|
@ -479,10 +479,7 @@ bool SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron(NarrowPhaseIn
|
|||
Vector3 separatingEdge1A, separatingEdge1B;
|
||||
Vector3 separatingEdge2A, separatingEdge2B;
|
||||
Vector3 minEdgeVsEdgeSeparatingAxisPolyhedron2Space;
|
||||
|
||||
// True if the shapes were overlapping in the previous frame and are
|
||||
// still overlapping on the same axis in this frame
|
||||
bool isTemporalCoherenceValid = false;
|
||||
bool isShape1Triangle = polyhedron1->getName() == CollisionShapeName::TRIANGLE;
|
||||
|
||||
LastFrameCollisionInfo* lastFrameCollisionInfo = narrowPhaseInfo->getLastFrameCollisionInfo();
|
||||
|
||||
|
@ -499,18 +496,16 @@ bool SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron(NarrowPhaseIn
|
|||
|
||||
decimal penetrationDepth = testSingleFaceDirectionPolyhedronVsPolyhedron(polyhedron1, polyhedron2, polyhedron1ToPolyhedron2,
|
||||
lastFrameCollisionInfo->satMinAxisFaceIndex);
|
||||
// If the previous axis is a separating axis
|
||||
if (penetrationDepth <= decimal(0.0)) {
|
||||
|
||||
// Return no collision
|
||||
// If the previous axis was a separating axis and is still a separating axis in this frame
|
||||
if (!lastFrameCollisionInfo->wasColliding && penetrationDepth <= decimal(0.0)) {
|
||||
|
||||
// Return no collision without running the whole SAT algorithm
|
||||
return false;
|
||||
}
|
||||
|
||||
// The two shapes are overlapping as in the previous frame and on the same axis, therefore
|
||||
// we will skip the entire SAT algorithm because the minimum separating axis did not change
|
||||
isTemporalCoherenceValid = lastFrameCollisionInfo->wasColliding;
|
||||
|
||||
if (isTemporalCoherenceValid) {
|
||||
// The two shapes were overlapping in the previous frame and still seem to overlap in this one
|
||||
if (lastFrameCollisionInfo->wasColliding && penetrationDepth > decimal(0.0)) {
|
||||
|
||||
minPenetrationDepth = penetrationDepth;
|
||||
minFaceIndex = lastFrameCollisionInfo->satMinAxisFaceIndex;
|
||||
|
@ -518,7 +513,6 @@ bool SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron(NarrowPhaseIn
|
|||
isMinPenetrationFaceNormalPolyhedron1 = true;
|
||||
|
||||
// Compute the contact points between two faces of two convex polyhedra.
|
||||
// If contact points have been found, we report them without running the whole SAT algorithm
|
||||
if(computePolyhedronVsPolyhedronFaceContactPoints(isMinPenetrationFaceNormalPolyhedron1, polyhedron1, polyhedron2,
|
||||
polyhedron1ToPolyhedron2, polyhedron2ToPolyhedron1, minFaceIndex,
|
||||
narrowPhaseInfo, minPenetrationDepth)) {
|
||||
|
@ -527,13 +521,12 @@ bool SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron(NarrowPhaseIn
|
|||
lastFrameCollisionInfo->satIsAxisFacePolyhedron2 = !isMinPenetrationFaceNormalPolyhedron1;
|
||||
lastFrameCollisionInfo->satMinAxisFaceIndex = minFaceIndex;
|
||||
|
||||
// The shapes are still overlapping in the previous axis (the contact manifold is not empty).
|
||||
// Therefore, we can return without running the whole SAT algorithm
|
||||
return true;
|
||||
}
|
||||
else { // Contact points have not been found (the set of clipped points was empty)
|
||||
|
||||
// Therefore, we need to run the whole SAT algorithm again
|
||||
isTemporalCoherenceValid = false;
|
||||
}
|
||||
// The contact manifold is empty. Therefore, we have to run the whole SAT algorithm again
|
||||
}
|
||||
}
|
||||
else if (lastFrameCollisionInfo->satIsAxisFacePolyhedron2) { // If the previous separating axis (or axis with minimum penetration depth)
|
||||
|
@ -542,18 +535,15 @@ bool SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron(NarrowPhaseIn
|
|||
decimal penetrationDepth = testSingleFaceDirectionPolyhedronVsPolyhedron(polyhedron2, polyhedron1, polyhedron2ToPolyhedron1,
|
||||
lastFrameCollisionInfo->satMinAxisFaceIndex);
|
||||
|
||||
// If the previous axis is a separating axis
|
||||
if (penetrationDepth <= decimal(0.0)) {
|
||||
// If the previous axis was a separating axis and is still a separating axis in this frame
|
||||
if (!lastFrameCollisionInfo->wasColliding && penetrationDepth <= decimal(0.0)) {
|
||||
|
||||
// Return no collision
|
||||
// Return no collision without running the whole SAT algorithm
|
||||
return false;
|
||||
}
|
||||
|
||||
// The two shapes are overlapping as in the previous frame and on the same axis, therefore
|
||||
// we will skip the entire SAT algorithm because the minimum separating axis did not change
|
||||
isTemporalCoherenceValid = lastFrameCollisionInfo->wasColliding;
|
||||
|
||||
if (isTemporalCoherenceValid) {
|
||||
// The two shapes were overlapping in the previous frame and still seem to overlap in this one
|
||||
if (lastFrameCollisionInfo->wasColliding && penetrationDepth > decimal(0.0)) {
|
||||
|
||||
minPenetrationDepth = penetrationDepth;
|
||||
minFaceIndex = lastFrameCollisionInfo->satMinAxisFaceIndex;
|
||||
|
@ -561,7 +551,6 @@ bool SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron(NarrowPhaseIn
|
|||
isMinPenetrationFaceNormalPolyhedron1 = false;
|
||||
|
||||
// Compute the contact points between two faces of two convex polyhedra.
|
||||
// If contact points have been found, we report them without running the whole SAT algorithm
|
||||
if(computePolyhedronVsPolyhedronFaceContactPoints(isMinPenetrationFaceNormalPolyhedron1, polyhedron1, polyhedron2,
|
||||
polyhedron1ToPolyhedron2, polyhedron2ToPolyhedron1, minFaceIndex,
|
||||
narrowPhaseInfo, minPenetrationDepth)) {
|
||||
|
@ -570,13 +559,12 @@ bool SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron(NarrowPhaseIn
|
|||
lastFrameCollisionInfo->satIsAxisFacePolyhedron2 = !isMinPenetrationFaceNormalPolyhedron1;
|
||||
lastFrameCollisionInfo->satMinAxisFaceIndex = minFaceIndex;
|
||||
|
||||
// The shapes are still overlapping in the previous axis (the contact manifold is not empty).
|
||||
// Therefore, we can return without running the whole SAT algorithm
|
||||
return true;
|
||||
}
|
||||
else { // Contact points have not been found (the set of clipped points was empty)
|
||||
|
||||
// Therefore, we need to run the whole SAT algorithm again
|
||||
isTemporalCoherenceValid = false;
|
||||
}
|
||||
// The contact manifold is empty. Therefore, we have to run the whole SAT algorithm again
|
||||
}
|
||||
}
|
||||
else { // If the previous separating axis (or axis with minimum penetration depth) was the cross product of two edges
|
||||
|
@ -584,8 +572,6 @@ bool SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron(NarrowPhaseIn
|
|||
const HalfEdgeStructure::Edge& edge1 = polyhedron1->getHalfEdge(lastFrameCollisionInfo->satMinEdge1Index);
|
||||
const HalfEdgeStructure::Edge& edge2 = polyhedron2->getHalfEdge(lastFrameCollisionInfo->satMinEdge2Index);
|
||||
|
||||
Vector3 separatingAxisPolyhedron2Space;
|
||||
|
||||
const Vector3 edge1A = polyhedron1ToPolyhedron2 * polyhedron1->getVertexPosition(edge1.vertexIndex);
|
||||
const Vector3 edge1B = polyhedron1ToPolyhedron2 * polyhedron1->getVertexPosition(polyhedron1->getHalfEdge(edge1.nextEdgeIndex).vertexIndex);
|
||||
const Vector3 edge1Direction = edge1B - edge1A;
|
||||
|
@ -593,138 +579,174 @@ bool SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron(NarrowPhaseIn
|
|||
const Vector3 edge2B = polyhedron2->getVertexPosition(polyhedron2->getHalfEdge(edge2.nextEdgeIndex).vertexIndex);
|
||||
const Vector3 edge2Direction = edge2B - edge2A;
|
||||
|
||||
// Compute the penetration depth
|
||||
decimal penetrationDepth = computeDistanceBetweenEdges(edge1A, edge2A, polyhedron2->getCentroid(),
|
||||
edge1Direction, edge2Direction, separatingAxisPolyhedron2Space);
|
||||
// If the two edges build a minkowski face (and the cross product is
|
||||
// therefore a candidate for separating axis
|
||||
if (testEdgesBuildMinkowskiFace(polyhedron1, edge1, polyhedron2, edge2, polyhedron1ToPolyhedron2)) {
|
||||
|
||||
// If the previous axis is a separating axis
|
||||
if (penetrationDepth <= decimal(0.0)) {
|
||||
Vector3 separatingAxisPolyhedron2Space;
|
||||
|
||||
// Return no collision
|
||||
return false;
|
||||
}
|
||||
// Compute the penetration depth along the previous axis
|
||||
const Vector3 polyhedron1Centroid = polyhedron1ToPolyhedron2 * polyhedron1->getCentroid();
|
||||
decimal penetrationDepth = computeDistanceBetweenEdges(edge1A, edge2A, polyhedron1Centroid, polyhedron2->getCentroid(),
|
||||
edge1Direction, edge2Direction, isShape1Triangle, separatingAxisPolyhedron2Space);
|
||||
|
||||
// The two shapes are overlapping as in the previous frame and on the same axis, therefore
|
||||
// we will skip the entire SAT algorithm because the minimum separating axis did not change
|
||||
isTemporalCoherenceValid = lastFrameCollisionInfo->wasColliding;
|
||||
// If the shapes were not overlapping in the previous frame and are still not
|
||||
// overlapping in the current one
|
||||
if (!lastFrameCollisionInfo->wasColliding && penetrationDepth <= decimal(0.0)) {
|
||||
|
||||
// Temporal coherence is valid only if the two edges build a minkowski
|
||||
// face (and the cross product is therefore a candidate for separating axis
|
||||
if (isTemporalCoherenceValid && !testEdgesBuildMinkowskiFace(polyhedron1, edge1, polyhedron2, edge2, polyhedron1ToPolyhedron2)) {
|
||||
isTemporalCoherenceValid = false;
|
||||
}
|
||||
// We have found a separating axis without running the whole SAT algorithm
|
||||
return false;
|
||||
}
|
||||
|
||||
if (isTemporalCoherenceValid) {
|
||||
// If the shapes were overlapping on the previous axis and still seem to overlap in this frame
|
||||
if (lastFrameCollisionInfo->wasColliding && penetrationDepth > decimal(0.0)) {
|
||||
|
||||
minPenetrationDepth = penetrationDepth;
|
||||
isMinPenetrationFaceNormal = false;
|
||||
isMinPenetrationFaceNormalPolyhedron1 = false;
|
||||
minSeparatingEdge1Index = lastFrameCollisionInfo->satMinEdge1Index;
|
||||
minSeparatingEdge2Index = lastFrameCollisionInfo->satMinEdge2Index;
|
||||
separatingEdge1A = edge1A;
|
||||
separatingEdge1B = edge1B;
|
||||
separatingEdge2A = edge2A;
|
||||
separatingEdge2B = edge2B;
|
||||
minEdgeVsEdgeSeparatingAxisPolyhedron2Space = separatingAxisPolyhedron2Space;
|
||||
// Compute the closest points between the two edges (in the local-space of poylhedron 2)
|
||||
Vector3 closestPointPolyhedron1Edge, closestPointPolyhedron2Edge;
|
||||
computeClosestPointBetweenTwoSegments(edge1A, edge1B, edge2A, edge2B,
|
||||
closestPointPolyhedron1Edge, closestPointPolyhedron2Edge);
|
||||
|
||||
// Here we try to project the closest point on edge1 onto the segment of edge 2 to see if
|
||||
// the projected point falls onto the segment. We also try to project the closest point
|
||||
// on edge 2 to see if it falls onto the segment of edge 1. If one of the point does not
|
||||
// fall onto the opposite segment, it means the edges are not colliding (the contact manifold
|
||||
// is empty). Therefore, we need to run the whole SAT algorithm again.
|
||||
const Vector3 vec1 = closestPointPolyhedron1Edge - edge2A;
|
||||
const Vector3 vec2 = closestPointPolyhedron2Edge - edge1A;
|
||||
const decimal edge1LengthSquare = edge1Direction.lengthSquare();
|
||||
const decimal edge2LengthSquare = edge2Direction.lengthSquare();
|
||||
decimal t1 = vec1.dot(edge2Direction) / edge2LengthSquare;
|
||||
decimal t2 = vec2.dot(edge1Direction) / edge1LengthSquare;
|
||||
if (t1 >= decimal(0.0) && t1 <= decimal(1) && t2 >= decimal(0.0) && t2 <= decimal(1.0)) {
|
||||
|
||||
// Compute the contact point on polyhedron 1 edge in the local-space of polyhedron 1
|
||||
Vector3 closestPointPolyhedron1EdgeLocalSpace = polyhedron2ToPolyhedron1 * closestPointPolyhedron1Edge;
|
||||
|
||||
// Compute the world normal
|
||||
// We use the direction from the centroid to the edge of the shape that is not a triangle
|
||||
// to avoid possible degeneracies when axis direction is orthogonal to triangle normal
|
||||
Vector3 normal;
|
||||
if (isShape1Triangle) {
|
||||
normal = polyhedron2->getCentroid() - closestPointPolyhedron2Edge;
|
||||
}
|
||||
else {
|
||||
normal = polyhedron1ToPolyhedron2.getOrientation() * ((polyhedron2ToPolyhedron1 * closestPointPolyhedron1Edge) - polyhedron1->getCentroid());
|
||||
}
|
||||
|
||||
//Vector3 normalWorld = narrowPhaseInfo->shape2ToWorldTransform.getOrientation() * minEdgeVsEdgeSeparatingAxisPolyhedron2Space;
|
||||
Vector3 normalWorld = narrowPhaseInfo->shape2ToWorldTransform.getOrientation() * normal.getUnit();
|
||||
|
||||
// Compute smooth triangle mesh contact if one of the two collision shapes is a triangle
|
||||
TriangleShape::computeSmoothTriangleMeshContact(narrowPhaseInfo->collisionShape1, narrowPhaseInfo->collisionShape2,
|
||||
closestPointPolyhedron1EdgeLocalSpace, closestPointPolyhedron2Edge,
|
||||
narrowPhaseInfo->shape1ToWorldTransform, narrowPhaseInfo->shape2ToWorldTransform,
|
||||
penetrationDepth, normalWorld);
|
||||
|
||||
// Create the contact point
|
||||
narrowPhaseInfo->addContactPoint(normalWorld, penetrationDepth,
|
||||
closestPointPolyhedron1EdgeLocalSpace, closestPointPolyhedron2Edge);
|
||||
|
||||
// The shapes are overlapping on the previous axis (the contact manifold is not empty). Therefore
|
||||
// we return without running the whole SAT algorithm
|
||||
return true;
|
||||
}
|
||||
|
||||
// The contact manifold is empty. Therefore, we have to run the whole SAT algorithm again
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// We the shapes are still overlapping in the same axis as in
|
||||
// the previous frame, we skip the whole SAT algorithm
|
||||
if (!isTemporalCoherenceValid) {
|
||||
// Test all the face normals of the polyhedron 1 for separating axis
|
||||
uint faceIndex;
|
||||
decimal penetrationDepth = testFacesDirectionPolyhedronVsPolyhedron(polyhedron1, polyhedron2, polyhedron1ToPolyhedron2, faceIndex);
|
||||
if (penetrationDepth <= decimal(0.0)) {
|
||||
|
||||
// Test all the face normals of the polyhedron 1 for separating axis
|
||||
uint faceIndex;
|
||||
decimal penetrationDepth = testFacesDirectionPolyhedronVsPolyhedron(polyhedron1, polyhedron2, polyhedron1ToPolyhedron2, faceIndex);
|
||||
if (penetrationDepth <= decimal(0.0)) {
|
||||
lastFrameCollisionInfo->satIsAxisFacePolyhedron1 = true;
|
||||
lastFrameCollisionInfo->satIsAxisFacePolyhedron2 = false;
|
||||
lastFrameCollisionInfo->satMinAxisFaceIndex = faceIndex;
|
||||
|
||||
lastFrameCollisionInfo->satIsAxisFacePolyhedron1 = true;
|
||||
lastFrameCollisionInfo->satIsAxisFacePolyhedron2 = false;
|
||||
lastFrameCollisionInfo->satMinAxisFaceIndex = faceIndex;
|
||||
// We have found a separating axis
|
||||
return false;
|
||||
}
|
||||
if (penetrationDepth < minPenetrationDepth - SAME_SEPARATING_AXIS_BIAS) {
|
||||
isMinPenetrationFaceNormal = true;
|
||||
minPenetrationDepth = penetrationDepth;
|
||||
minFaceIndex = faceIndex;
|
||||
isMinPenetrationFaceNormalPolyhedron1 = true;
|
||||
}
|
||||
|
||||
// We have found a separating axis
|
||||
return false;
|
||||
}
|
||||
if (penetrationDepth < minPenetrationDepth - SAME_SEPARATING_AXIS_BIAS) {
|
||||
isMinPenetrationFaceNormal = true;
|
||||
minPenetrationDepth = penetrationDepth;
|
||||
minFaceIndex = faceIndex;
|
||||
isMinPenetrationFaceNormalPolyhedron1 = true;
|
||||
}
|
||||
// Test all the face normals of the polyhedron 2 for separating axis
|
||||
penetrationDepth = testFacesDirectionPolyhedronVsPolyhedron(polyhedron2, polyhedron1, polyhedron2ToPolyhedron1, faceIndex);
|
||||
if (penetrationDepth <= decimal(0.0)) {
|
||||
|
||||
// Test all the face normals of the polyhedron 2 for separating axis
|
||||
penetrationDepth = testFacesDirectionPolyhedronVsPolyhedron(polyhedron2, polyhedron1, polyhedron2ToPolyhedron1, faceIndex);
|
||||
if (penetrationDepth <= decimal(0.0)) {
|
||||
lastFrameCollisionInfo->satIsAxisFacePolyhedron1 = false;
|
||||
lastFrameCollisionInfo->satIsAxisFacePolyhedron2 = true;
|
||||
lastFrameCollisionInfo->satMinAxisFaceIndex = faceIndex;
|
||||
|
||||
lastFrameCollisionInfo->satIsAxisFacePolyhedron1 = false;
|
||||
lastFrameCollisionInfo->satIsAxisFacePolyhedron2 = true;
|
||||
lastFrameCollisionInfo->satMinAxisFaceIndex = faceIndex;
|
||||
// We have found a separating axis
|
||||
return false;
|
||||
}
|
||||
if (penetrationDepth < minPenetrationDepth - SAME_SEPARATING_AXIS_BIAS) {
|
||||
isMinPenetrationFaceNormal = true;
|
||||
minPenetrationDepth = penetrationDepth;
|
||||
minFaceIndex = faceIndex;
|
||||
isMinPenetrationFaceNormalPolyhedron1 = false;
|
||||
}
|
||||
|
||||
// We have found a separating axis
|
||||
return false;
|
||||
}
|
||||
if (penetrationDepth < minPenetrationDepth - SAME_SEPARATING_AXIS_BIAS) {
|
||||
isMinPenetrationFaceNormal = true;
|
||||
minPenetrationDepth = penetrationDepth;
|
||||
minFaceIndex = faceIndex;
|
||||
isMinPenetrationFaceNormalPolyhedron1 = false;
|
||||
}
|
||||
// Test the cross products of edges of polyhedron 1 with edges of polyhedron 2 for separating axis
|
||||
for (uint i=0; i < polyhedron1->getNbHalfEdges(); i += 2) {
|
||||
|
||||
// Test the cross products of edges of polyhedron 1 with edges of polyhedron 2 for separating axis
|
||||
for (uint i=0; i < polyhedron1->getNbHalfEdges(); i += 2) {
|
||||
// Get an edge of polyhedron 1
|
||||
const HalfEdgeStructure::Edge& edge1 = polyhedron1->getHalfEdge(i);
|
||||
|
||||
// Get an edge of polyhedron 1
|
||||
const HalfEdgeStructure::Edge& edge1 = polyhedron1->getHalfEdge(i);
|
||||
const Vector3 edge1A = polyhedron1ToPolyhedron2 * polyhedron1->getVertexPosition(edge1.vertexIndex);
|
||||
const Vector3 edge1B = polyhedron1ToPolyhedron2 * polyhedron1->getVertexPosition(polyhedron1->getHalfEdge(edge1.nextEdgeIndex).vertexIndex);
|
||||
const Vector3 edge1Direction = edge1B - edge1A;
|
||||
|
||||
const Vector3 edge1A = polyhedron1ToPolyhedron2 * polyhedron1->getVertexPosition(edge1.vertexIndex);
|
||||
const Vector3 edge1B = polyhedron1ToPolyhedron2 * polyhedron1->getVertexPosition(polyhedron1->getHalfEdge(edge1.nextEdgeIndex).vertexIndex);
|
||||
const Vector3 edge1Direction = edge1B - edge1A;
|
||||
for (uint j=0; j < polyhedron2->getNbHalfEdges(); j += 2) {
|
||||
|
||||
for (uint j=0; j < polyhedron2->getNbHalfEdges(); j += 2) {
|
||||
// Get an edge of polyhedron 2
|
||||
const HalfEdgeStructure::Edge& edge2 = polyhedron2->getHalfEdge(j);
|
||||
|
||||
// Get an edge of polyhedron 2
|
||||
const HalfEdgeStructure::Edge& edge2 = polyhedron2->getHalfEdge(j);
|
||||
const Vector3 edge2A = polyhedron2->getVertexPosition(edge2.vertexIndex);
|
||||
const Vector3 edge2B = polyhedron2->getVertexPosition(polyhedron2->getHalfEdge(edge2.nextEdgeIndex).vertexIndex);
|
||||
const Vector3 edge2Direction = edge2B - edge2A;
|
||||
|
||||
const Vector3 edge2A = polyhedron2->getVertexPosition(edge2.vertexIndex);
|
||||
const Vector3 edge2B = polyhedron2->getVertexPosition(polyhedron2->getHalfEdge(edge2.nextEdgeIndex).vertexIndex);
|
||||
const Vector3 edge2Direction = edge2B - edge2A;
|
||||
// If the two edges build a minkowski face (and the cross product is
|
||||
// therefore a candidate for separating axis
|
||||
if (testEdgesBuildMinkowskiFace(polyhedron1, edge1, polyhedron2, edge2, polyhedron1ToPolyhedron2)) {
|
||||
|
||||
// If the two edges build a minkowski face (and the cross product is
|
||||
// therefore a candidate for separating axis
|
||||
if (testEdgesBuildMinkowskiFace(polyhedron1, edge1, polyhedron2, edge2, polyhedron1ToPolyhedron2)) {
|
||||
Vector3 separatingAxisPolyhedron2Space;
|
||||
|
||||
Vector3 separatingAxisPolyhedron2Space;
|
||||
// Compute the penetration depth
|
||||
const Vector3 polyhedron1Centroid = polyhedron1ToPolyhedron2 * polyhedron1->getCentroid();
|
||||
decimal penetrationDepth = computeDistanceBetweenEdges(edge1A, edge2A, polyhedron1Centroid, polyhedron2->getCentroid(),
|
||||
edge1Direction, edge2Direction, isShape1Triangle, separatingAxisPolyhedron2Space);
|
||||
|
||||
// Compute the penetration depth
|
||||
decimal penetrationDepth = computeDistanceBetweenEdges(edge1A, edge2A, polyhedron2->getCentroid(),
|
||||
edge1Direction, edge2Direction, separatingAxisPolyhedron2Space);
|
||||
if (penetrationDepth <= decimal(0.0)) {
|
||||
|
||||
if (penetrationDepth <= decimal(0.0)) {
|
||||
lastFrameCollisionInfo->satIsAxisFacePolyhedron1 = false;
|
||||
lastFrameCollisionInfo->satIsAxisFacePolyhedron2 = false;
|
||||
lastFrameCollisionInfo->satMinEdge1Index = i;
|
||||
lastFrameCollisionInfo->satMinEdge2Index = j;
|
||||
|
||||
lastFrameCollisionInfo->satIsAxisFacePolyhedron1 = false;
|
||||
lastFrameCollisionInfo->satIsAxisFacePolyhedron2 = false;
|
||||
lastFrameCollisionInfo->satMinEdge1Index = i;
|
||||
lastFrameCollisionInfo->satMinEdge2Index = j;
|
||||
// We have found a separating axis
|
||||
return false;
|
||||
}
|
||||
|
||||
// We have found a separating axis
|
||||
return false;
|
||||
}
|
||||
|
||||
if (penetrationDepth < minPenetrationDepth - SAME_SEPARATING_AXIS_BIAS) {
|
||||
|
||||
minPenetrationDepth = penetrationDepth;
|
||||
isMinPenetrationFaceNormalPolyhedron1 = false;
|
||||
isMinPenetrationFaceNormal = false;
|
||||
minSeparatingEdge1Index = i;
|
||||
minSeparatingEdge2Index = j;
|
||||
separatingEdge1A = edge1A;
|
||||
separatingEdge1B = edge1B;
|
||||
separatingEdge2A = edge2A;
|
||||
separatingEdge2B = edge2B;
|
||||
minEdgeVsEdgeSeparatingAxisPolyhedron2Space = separatingAxisPolyhedron2Space;
|
||||
}
|
||||
if (penetrationDepth < minPenetrationDepth - SAME_SEPARATING_AXIS_BIAS) {
|
||||
|
||||
minPenetrationDepth = penetrationDepth;
|
||||
isMinPenetrationFaceNormalPolyhedron1 = false;
|
||||
isMinPenetrationFaceNormal = false;
|
||||
minSeparatingEdge1Index = i;
|
||||
minSeparatingEdge2Index = j;
|
||||
separatingEdge1A = edge1A;
|
||||
separatingEdge1B = edge1B;
|
||||
separatingEdge2A = edge2A;
|
||||
separatingEdge2B = edge2B;
|
||||
minEdgeVsEdgeSeparatingAxisPolyhedron2Space = separatingAxisPolyhedron2Space;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -776,7 +798,17 @@ bool SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron(NarrowPhaseIn
|
|||
Vector3 closestPointPolyhedron1EdgeLocalSpace = polyhedron2ToPolyhedron1 * closestPointPolyhedron1Edge;
|
||||
|
||||
// Compute the world normal
|
||||
Vector3 normalWorld = narrowPhaseInfo->shape2ToWorldTransform.getOrientation() * minEdgeVsEdgeSeparatingAxisPolyhedron2Space;
|
||||
// We use the direction from the centroid to the edge of the shape that is not a triangle
|
||||
// to avoid possible degeneracies when axis direction is orthogonal to triangle normal
|
||||
Vector3 normal;
|
||||
if (isShape1Triangle) {
|
||||
normal = polyhedron2->getCentroid() - closestPointPolyhedron2Edge;
|
||||
}
|
||||
else {
|
||||
normal = polyhedron1ToPolyhedron2.getOrientation() * ((polyhedron2ToPolyhedron1 * closestPointPolyhedron1Edge) - polyhedron1->getCentroid());
|
||||
}
|
||||
//Vector3 normalWorld = narrowPhaseInfo->shape2ToWorldTransform.getOrientation() * minEdgeVsEdgeSeparatingAxisPolyhedron2Space;
|
||||
Vector3 normalWorld = narrowPhaseInfo->shape2ToWorldTransform.getOrientation() * normal.getUnit();
|
||||
|
||||
// Compute smooth triangle mesh contact if one of the two collision shapes is a triangle
|
||||
TriangleShape::computeSmoothTriangleMeshContact(narrowPhaseInfo->collisionShape1, narrowPhaseInfo->collisionShape2,
|
||||
|
@ -916,9 +948,10 @@ bool SATAlgorithm::computePolyhedronVsPolyhedronFaceContactPoints(bool isMinPene
|
|||
|
||||
|
||||
// Compute and return the distance between the two edges in the direction of the candidate separating axis
|
||||
decimal SATAlgorithm::computeDistanceBetweenEdges(const Vector3& edge1A, const Vector3& edge2A, const Vector3& polyhedron2Centroid,
|
||||
decimal SATAlgorithm::computeDistanceBetweenEdges(const Vector3& edge1A, const Vector3& edge2A,
|
||||
const Vector3& polyhedron1Centroid, const Vector3& polyhedron2Centroid,
|
||||
const Vector3& edge1Direction, const Vector3& edge2Direction,
|
||||
Vector3& outSeparatingAxisPolyhedron2Space) const {
|
||||
bool isShape1Triangle, Vector3& outSeparatingAxisPolyhedron2Space) const {
|
||||
|
||||
RP3D_PROFILE("SATAlgorithm::computeDistanceBetweenEdges", mProfiler);
|
||||
|
||||
|
@ -933,7 +966,24 @@ decimal SATAlgorithm::computeDistanceBetweenEdges(const Vector3& edge1A, const V
|
|||
Vector3 axis = edge1Direction.cross(edge2Direction).getUnit();
|
||||
|
||||
// Make sure the axis direction is going from first to second polyhedron
|
||||
if (axis.dot(edge2A - polyhedron2Centroid) > decimal(0.0)) {
|
||||
decimal dotProd;
|
||||
if (isShape1Triangle) {
|
||||
|
||||
// The shape 1 is a triangle. It is safer to use a vector from
|
||||
// centroid to edge of the shape 2 because for a triangle, we
|
||||
// can have a vector that is orthogonal to the axis
|
||||
|
||||
dotProd = axis.dot(edge2A - polyhedron2Centroid);
|
||||
}
|
||||
else {
|
||||
|
||||
// The shape 2 might be a triangle. It is safer to use a vector from
|
||||
// centroid to edge of the shape 2 because for a triangle, we
|
||||
// can have a vector that is orthogonal to the axis
|
||||
|
||||
dotProd = axis.dot(polyhedron1Centroid - edge1A);
|
||||
}
|
||||
if (dotProd > decimal(0.0)) {
|
||||
axis = -axis;
|
||||
}
|
||||
|
||||
|
@ -943,6 +993,7 @@ decimal SATAlgorithm::computeDistanceBetweenEdges(const Vector3& edge1A, const V
|
|||
return -axis.dot(edge2A - edge1A);
|
||||
}
|
||||
|
||||
|
||||
// Return the penetration depth between two polyhedra along a face normal axis of the first polyhedron
|
||||
decimal SATAlgorithm::testSingleFaceDirectionPolyhedronVsPolyhedron(const ConvexPolyhedronShape* polyhedron1,
|
||||
const ConvexPolyhedronShape* polyhedron2,
|
||||
|
|
|
@ -83,9 +83,10 @@ class SATAlgorithm {
|
|||
const Vector3& bCrossA, const Vector3& dCrossC) const;
|
||||
|
||||
/// Compute and return the distance between the two edges in the direction of the candidate separating axis
|
||||
decimal computeDistanceBetweenEdges(const Vector3& edge1A, const Vector3& edge2A, const Vector3& polyhedron2Centroid,
|
||||
decimal computeDistanceBetweenEdges(const Vector3& edge1A, const Vector3& edge2A,
|
||||
const Vector3& polyhedron1Centroid, const Vector3& polyhedron2Centroid,
|
||||
const Vector3& edge1Direction, const Vector3& edge2Direction,
|
||||
Vector3& outSeparatingAxis) const;
|
||||
bool isShape1Triangle, Vector3& outSeparatingAxis) const;
|
||||
|
||||
/// Return the penetration depth between two polyhedra along a face normal axis of the first polyhedron
|
||||
decimal testSingleFaceDirectionPolyhedronVsPolyhedron(const ConvexPolyhedronShape* polyhedron1,
|
||||
|
|
|
@ -62,13 +62,17 @@ TriangleShape::TriangleShape(const Vector3* vertices, const Vector3* verticesNor
|
|||
mVerticesNormals[2] = verticesNormals[2];
|
||||
|
||||
// Faces
|
||||
for (uint i=0; i<2; i++) {
|
||||
mFaces[i].faceVertices.reserve(3);
|
||||
mFaces[i].faceVertices.add(0);
|
||||
mFaces[i].faceVertices.add(1);
|
||||
mFaces[i].faceVertices.add(2);
|
||||
mFaces[i].edgeIndex = i;
|
||||
}
|
||||
mFaces[0].faceVertices.reserve(3);
|
||||
mFaces[0].faceVertices.add(0);
|
||||
mFaces[0].faceVertices.add(1);
|
||||
mFaces[0].faceVertices.add(2);
|
||||
mFaces[0].edgeIndex = 0;
|
||||
|
||||
mFaces[1].faceVertices.reserve(3);
|
||||
mFaces[1].faceVertices.add(0);
|
||||
mFaces[1].faceVertices.add(2);
|
||||
mFaces[1].faceVertices.add(1);
|
||||
mFaces[1].edgeIndex = 1;
|
||||
|
||||
// Edges
|
||||
for (uint i=0; i<6; i++) {
|
||||
|
|
Loading…
Reference in New Issue
Block a user