git-svn-id: https://reactphysics3d.googlecode.com/svn/trunk@250 92aac97c-a6ce-11dd-a772-7fcde58d38e6
This commit is contained in:
parent
4e5d485016
commit
5fe08fef0a
|
@ -77,6 +77,64 @@ inline void closestPointsBetweenTwoLines(const reactphysics3d::Vector3D& point1,
|
|||
*beta = (a*f-b*c)/d;
|
||||
}
|
||||
|
||||
// TODO : Test this method
|
||||
// This method returns true if the point "P" is on the segment between "segPointA" and "segPointB" and return false otherwise
|
||||
inline bool isPointOnSegment(const reactphysics3d::Vector3D& segPointA, const reactphysics3d::Vector3D& segPointB, const reactphysics3d::Vector3D& P) {
|
||||
|
||||
// Check if the point P is on the line between "segPointA" and "segPointB"
|
||||
reactphysics3d::Vector3D d = segPointB - segPointA;
|
||||
reactphysics3d::Vector3D dP = P - segPointA;
|
||||
if (!d.isParallelWith(dP)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Compute the length of the segment
|
||||
double segmentLength = d.length();
|
||||
|
||||
// Compute the distance from point "P" to points "segPointA" and "segPointB"
|
||||
double distA = dP.length();
|
||||
double distB = (P - segPointB).length();
|
||||
|
||||
// If one of the "distA" and "distB" is greather than the length of the segment, then P is not on the segment
|
||||
if (distA > segmentLength || distB > segmentLength) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Otherwise, the point P is on the segment
|
||||
return true;
|
||||
}
|
||||
|
||||
// TODO : Test this method
|
||||
// Given two segments in 3D that are not parallel and that intersect, this method computes the intersection point between the two segments
|
||||
// The result intersection point is the reference "resultPoint".
|
||||
inline void computeNonParallelSegmentsIntersection(const reactphysics3d::Vector3D& seg1PointA, const reactphysics3d::Vector3D& seg1PointB,
|
||||
const reactphysics3d::Vector3D& seg2PointA, const reactphysics3d::Vector3D& seg2PointB,
|
||||
reactphysics3d::Vector3D& resultPoint) {
|
||||
// Determine the lines of both segments
|
||||
reactphysics3d::Vector3D d1 = seg1PointB - seg1PointA;
|
||||
reactphysics3d::Vector3D d2 = seg2PointB - seg2PointA;
|
||||
|
||||
// The segments must not be parallel
|
||||
assert(!d1.isParallelWith(d2));
|
||||
|
||||
// Compute the closet points between the two lines
|
||||
double alpha, beta;
|
||||
closestPointsBetweenTwoLines(seg1PointA, d1, seg2PointA, d2, &alpha, &beta);
|
||||
reactphysics3d::Vector3D point1 = seg1PointA + alpha * d1;
|
||||
reactphysics3d::Vector3D point2 = seg2PointA + beta * d2;
|
||||
|
||||
// The closest points have to be on the segments, otherwise there is no intersection between the segments
|
||||
assert(isPointOnSegment(seg1PointA, seg1PointB, point1));
|
||||
assert(isPointOnSegment(seg2PointA, seg2PointB, point2));
|
||||
|
||||
// If the two closest point aren't very close, there is no intersection between the segments
|
||||
reactphysics3d::Vector3D d = point2 - point1;
|
||||
assert(d.length() <= EPSILON);
|
||||
|
||||
// They are very close so we return the intersection point (halfway between "point1" and "point2"
|
||||
resultPoint = 0.5 * (point1 + point2);
|
||||
}
|
||||
|
||||
/*
|
||||
// TODO : Test this method
|
||||
// Move a set of points by a given vector.
|
||||
|
@ -158,4 +216,60 @@ inline void computeParallelSegmentsIntersection(const reactphysics3d::Vector3D&
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
// TODO : Test this method
|
||||
// This method uses the Sutherland-Hodgman clipping algorithm to clip a subject polygon (given by the ordered 3D vertices in "subjectPolygon") using
|
||||
// a rectangle polygon (given by the ordered 3D vertices in "clipRectangle"). The subject polygon and the clip rectangle are in 3D but we assumed that
|
||||
// they are on a same plane in 3D. The method returns the ordered 3D vertices of the subject polygon clipped using the rectangle polygon.
|
||||
inline std::vector<reactphysics3d::Vector3D> clipPolygonWithRectangleInPlane(const std::vector<reactphysics3d::Vector3D>& subjectPolygon, const std::vector<reactphysics3d::Vector3D>& clipRectangle) {
|
||||
assert(clipRectangle.size() == 4);
|
||||
|
||||
std::vector<reactphysics3d::Vector3D> outputPolygon;
|
||||
std::vector<reactphysics3d::Vector3D> inputPolygon = subjectPolygon;
|
||||
|
||||
// For each edge of the clip rectangle
|
||||
for (unsigned int i=0; i<4; ++i) {
|
||||
// Each edge defines a clip plane. The clip plane is define by a point on this plane (a vertice of the current edge) and
|
||||
// a plane normal (because we are using a clip rectangle, the plane normal is the next edge of the clip rectangle).
|
||||
reactphysics3d::Vector3D planeNormal = clipRectangle[(i+2) % 4] - clipRectangle[(i+1) % 4];
|
||||
reactphysics3d::Vector3D A = clipRectangle[i]; // Segment AB is the current segment of the "clipRectangle"
|
||||
reactphysics3d::Vector3D B = clipRectangle[(i+1) % 4];
|
||||
reactphysics3d::Vector3D S = inputPolygon[i];
|
||||
|
||||
// For each vertex of the subject polygon
|
||||
for (unsigned int j=0; j<subjectPolygon.size(); ++j) {
|
||||
reactphysics3d::Vector3D P = inputPolygon[(i+1) % inputPolygon.size()];
|
||||
|
||||
// If the point P is inside the clip plane
|
||||
if (planeNormal.scalarProduct(P-A) > 0.0) {
|
||||
// If the point S is also inside the clip plane
|
||||
if (planeNormal.scalarProduct(S-A) > 0.0) {
|
||||
outputPolygon.push_back(P);
|
||||
}
|
||||
else { // If the point S is outside the clip plane
|
||||
// Compute the intersection point between the segment SP and the clip plane
|
||||
reactphysics3d::Vector3D intersectPoint;
|
||||
computeNonParallelSegmentsIntersection(S, P, A, B, intersectPoint);
|
||||
|
||||
outputPolygon.push_back(intersectPoint);
|
||||
outputPolygon.push_back(P);
|
||||
}
|
||||
}
|
||||
else if (planeNormal.scalarProduct(S-A) > 0.0) {
|
||||
// Compute the intersection point between the segment SP and the clip plane
|
||||
reactphysics3d::Vector3D intersectPoint;
|
||||
computeNonParallelSegmentsIntersection(S, P, A, B, intersectPoint);
|
||||
|
||||
outputPolygon.push_back(intersectPoint);
|
||||
}
|
||||
S = P;
|
||||
}
|
||||
|
||||
inputPolygon = outputPolygon;
|
||||
}
|
||||
|
||||
// Return the clipped polygon
|
||||
return outputPolygon;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue
Block a user