Add FixedJointComponents class

This commit is contained in:
Daniel Chappuis 2019-09-04 12:44:42 +02:00
parent 8187c19fa3
commit 67d8411623
8 changed files with 824 additions and 116 deletions

View File

@ -148,6 +148,7 @@ SET (REACTPHYSICS3D_HEADERS
"src/components/ProxyShapeComponents.h"
"src/components/JointComponents.h"
"src/components/BallAndSocketJointComponents.h"
"src/components/FixedJointComponents.h"
"src/collision/CollisionCallback.h"
"src/collision/OverlapCallback.h"
"src/mathematics/mathematics.h"
@ -242,6 +243,7 @@ SET (REACTPHYSICS3D_SOURCES
"src/components/ProxyShapeComponents.cpp"
"src/components/JointComponents.cpp"
"src/components/BallAndSocketJointComponents.cpp"
"src/components/FixedJointComponents.cpp"
"src/collision/CollisionCallback.cpp"
"src/collision/OverlapCallback.cpp"
"src/mathematics/mathematics_functions.cpp"

View File

@ -0,0 +1,259 @@
/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "FixedJointComponents.h"
#include "engine/EntityManager.h"
#include "mathematics/Matrix3x3.h"
#include <cassert>
// We want to use the ReactPhysics3D namespace
using namespace reactphysics3d;
// Constructor
FixedJointComponents::FixedJointComponents(MemoryAllocator& allocator)
:Components(allocator, sizeof(Entity) + sizeof(FixedJoint*) + sizeof(Vector3) +
sizeof(Vector3) + sizeof(Vector3) + sizeof(Vector3) +
sizeof(Matrix3x3) + sizeof(Matrix3x3) + sizeof(Vector3) +
sizeof(Vector3) + sizeof(Matrix3x3) + sizeof(Matrix3x3) +
sizeof(Vector3) + sizeof(Vector3) + sizeof(Quaternion)) {
// Allocate memory for the components data
allocate(INIT_NB_ALLOCATED_COMPONENTS);
}
// Allocate memory for a given number of components
void FixedJointComponents::allocate(uint32 nbComponentsToAllocate) {
assert(nbComponentsToAllocate > mNbAllocatedComponents);
// Size for the data of a single component (in bytes)
const size_t totalSizeBytes = nbComponentsToAllocate * mComponentDataSize;
// Allocate memory
void* newBuffer = mMemoryAllocator.allocate(totalSizeBytes);
assert(newBuffer != nullptr);
// New pointers to components data
Entity* newJointEntities = static_cast<Entity*>(newBuffer);
FixedJoint** newJoints = reinterpret_cast<FixedJoint**>(newJointEntities + nbComponentsToAllocate);
Vector3* newLocalAnchorPointBody1 = reinterpret_cast<Vector3*>(newJoints + nbComponentsToAllocate);
Vector3* newLocalAnchorPointBody2 = reinterpret_cast<Vector3*>(newLocalAnchorPointBody1 + nbComponentsToAllocate);
Vector3* newR1World = reinterpret_cast<Vector3*>(newLocalAnchorPointBody2 + nbComponentsToAllocate);
Vector3* newR2World = reinterpret_cast<Vector3*>(newR1World + nbComponentsToAllocate);
Matrix3x3* newI1 = reinterpret_cast<Matrix3x3*>(newR2World + nbComponentsToAllocate);
Matrix3x3* newI2 = reinterpret_cast<Matrix3x3*>(newI1 + nbComponentsToAllocate);
Vector3* newImpulseTranslation = reinterpret_cast<Vector3*>(newI2 + nbComponentsToAllocate);
Vector3* newImpulseRotation = reinterpret_cast<Vector3*>(newImpulseTranslation + nbComponentsToAllocate);
Matrix3x3* newInverseMassMatrixTranslation = reinterpret_cast<Matrix3x3*>(newImpulseRotation + nbComponentsToAllocate);
Matrix3x3* newInverseMassMatrixRotation = reinterpret_cast<Matrix3x3*>(newInverseMassMatrixTranslation + nbComponentsToAllocate);
Vector3* newBiasTranslation = reinterpret_cast<Vector3*>(newInverseMassMatrixRotation + nbComponentsToAllocate);
Vector3* newBiasRotation = reinterpret_cast<Vector3*>(newBiasTranslation + nbComponentsToAllocate);
Quaternion* newInitOrientationDifferenceInv = reinterpret_cast<Quaternion*>(newBiasRotation + nbComponentsToAllocate);
// If there was already components before
if (mNbComponents > 0) {
// Copy component data from the previous buffer to the new one
memcpy(newJointEntities, mJointEntities, mNbComponents * sizeof(Entity));
memcpy(newJoints, mJoints, mNbComponents * sizeof(FixedJoint*));
memcpy(newLocalAnchorPointBody1, mLocalAnchorPointBody1, mNbComponents * sizeof(Vector3));
memcpy(newLocalAnchorPointBody2, mLocalAnchorPointBody2, mNbComponents * sizeof(Vector3));
memcpy(newR1World, mR1World, mNbComponents * sizeof(Vector3));
memcpy(newR2World, mR2World, mNbComponents * sizeof(Vector3));
memcpy(newI1, mI1, mNbComponents * sizeof(Matrix3x3));
memcpy(newI2, mI2, mNbComponents * sizeof(Matrix3x3));
memcpy(newImpulseTranslation, mImpulseTranslation, mNbComponents * sizeof(Vector3));
memcpy(newImpulseRotation, mImpulseRotation, mNbComponents * sizeof(Vector3));
memcpy(newInverseMassMatrixTranslation, mInverseMassMatrixTranslation, mNbComponents * sizeof(Matrix3x3));
memcpy(newInverseMassMatrixRotation, mInverseMassMatrixRotation, mNbComponents * sizeof(Matrix3x3));
memcpy(newBiasTranslation, mBiasTranslation, mNbComponents * sizeof(Vector3));
memcpy(newBiasRotation, mBiasRotation, mNbComponents * sizeof(Vector3));
memcpy(newInitOrientationDifferenceInv, mInitOrientationDifferenceInv, mNbComponents * sizeof(Quaternion));
// Deallocate previous memory
mMemoryAllocator.release(mBuffer, mNbAllocatedComponents * mComponentDataSize);
}
mBuffer = newBuffer;
mJointEntities = newJointEntities;
mJoints = newJoints;
mNbAllocatedComponents = nbComponentsToAllocate;
mLocalAnchorPointBody1 = newLocalAnchorPointBody1;
mLocalAnchorPointBody2 = newLocalAnchorPointBody2;
mR1World = newR1World;
mR2World = newR2World;
mI1 = newI1;
mI2 = newI2;
mImpulseTranslation = newImpulseTranslation;
mImpulseRotation = newImpulseRotation;
mInverseMassMatrixTranslation = newInverseMassMatrixTranslation;
mInverseMassMatrixRotation = newInverseMassMatrixRotation;
mBiasTranslation = newBiasTranslation;
mBiasRotation = newBiasRotation;
mInitOrientationDifferenceInv = newInitOrientationDifferenceInv;
}
// Add a component
void FixedJointComponents::addComponent(Entity jointEntity, bool isSleeping, const FixedJointComponent& component) {
// Prepare to add new component (allocate memory if necessary and compute insertion index)
uint32 index = prepareAddComponent(isSleeping);
// Insert the new component data
new (mJointEntities + index) Entity(jointEntity);
mJoints[index] = nullptr;
new (mLocalAnchorPointBody1 + index) Vector3(0, 0, 0);
new (mLocalAnchorPointBody2 + index) Vector3(0, 0, 0);
new (mR1World + index) Vector3(0, 0, 0);
new (mR2World + index) Vector3(0, 0, 0);
new (mI1 + index) Matrix3x3();
new (mI2 + index) Matrix3x3();
new (mImpulseTranslation + index) Vector3(0, 0, 0);
new (mImpulseRotation + index) Vector3(0, 0, 0);
new (mInverseMassMatrixTranslation + index) Matrix3x3();
new (mInverseMassMatrixRotation + index) Matrix3x3();
new (mBiasTranslation + index) Vector3(0, 0, 0);
new (mBiasRotation + index) Vector3(0, 0, 0);
new (mInitOrientationDifferenceInv + index) Quaternion(0, 0, 0, 0);
// Map the entity with the new component lookup index
mMapEntityToComponentIndex.add(Pair<Entity, uint32>(jointEntity, index));
mNbComponents++;
assert(mDisabledStartIndex <= mNbComponents);
assert(mNbComponents == static_cast<uint32>(mMapEntityToComponentIndex.size()));
}
// Move a component from a source to a destination index in the components array
// The destination location must contain a constructed object
void FixedJointComponents::moveComponentToIndex(uint32 srcIndex, uint32 destIndex) {
const Entity entity = mJointEntities[srcIndex];
// Copy the data of the source component to the destination location
new (mJointEntities + destIndex) Entity(mJointEntities[srcIndex]);
mJoints[destIndex] = mJoints[srcIndex];
new (mLocalAnchorPointBody1 + destIndex) Vector3(mLocalAnchorPointBody1[srcIndex]);
new (mLocalAnchorPointBody2 + destIndex) Vector3(mLocalAnchorPointBody2[srcIndex]);
new (mR1World + destIndex) Vector3(mR1World[srcIndex]);
new (mR2World + destIndex) Vector3(mR2World[srcIndex]);
new (mI1 + destIndex) Matrix3x3(mI1[srcIndex]);
new (mI2 + destIndex) Matrix3x3(mI2[srcIndex]);
new (mImpulseTranslation + destIndex) Vector3(mImpulseRotation[srcIndex]);
new (mImpulseRotation + destIndex) Vector3(mImpulseRotation[srcIndex]);
new (mInverseMassMatrixTranslation + destIndex) Matrix3x3(mInverseMassMatrixTranslation[srcIndex]);
new (mInverseMassMatrixRotation + destIndex) Matrix3x3(mInverseMassMatrixRotation[srcIndex]);
new (mBiasTranslation + destIndex) Vector3(mBiasTranslation[srcIndex]);
new (mBiasRotation + destIndex) Vector3(mBiasRotation[srcIndex]);
new (mInitOrientationDifferenceInv + destIndex) Quaternion(mInitOrientationDifferenceInv[srcIndex]);
// Destroy the source component
destroyComponent(srcIndex);
assert(!mMapEntityToComponentIndex.containsKey(entity));
// Update the entity to component index mapping
mMapEntityToComponentIndex.add(Pair<Entity, uint32>(entity, destIndex));
assert(mMapEntityToComponentIndex[mJointEntities[destIndex]] == destIndex);
}
// Swap two components in the array
void FixedJointComponents::swapComponents(uint32 index1, uint32 index2) {
// Copy component 1 data
Entity jointEntity1(mJointEntities[index1]);
FixedJoint* joint1 = mJoints[index1];
Vector3 localAnchorPointBody1(mLocalAnchorPointBody1[index1]);
Vector3 localAnchorPointBody2(mLocalAnchorPointBody2[index1]);
Vector3 r1World1(mR1World[index1]);
Vector3 r2World1(mR2World[index1]);
Matrix3x3 i11(mI1[index1]);
Matrix3x3 i21(mI2[index1]);
Vector3 impulseTranslation1(mImpulseTranslation[index1]);
Vector3 impulseRotation1(mImpulseRotation[index1]);
Matrix3x3 inverseMassMatrixTranslation1(mInverseMassMatrixTranslation[index1]);
Matrix3x3 inverseMassMatrixRotation1(mInverseMassMatrixRotation[index1]);
Vector3 biasTranslation1(mBiasTranslation[index1]);
Vector3 biasRotation1(mBiasRotation[index1]);
Quaternion initOrientationDifferenceInv1(mInitOrientationDifferenceInv[index1]);
// Destroy component 1
destroyComponent(index1);
moveComponentToIndex(index2, index1);
// Reconstruct component 1 at component 2 location
new (mJointEntities + index2) Entity(jointEntity1);
mJoints[index2] = joint1;
new (mLocalAnchorPointBody1 + index2) Vector3(localAnchorPointBody1);
new (mLocalAnchorPointBody2 + index2) Vector3(localAnchorPointBody2);
new (mR1World + index2) Vector3(r1World1);
new (mR2World + index2) Vector3(r2World1);
new (mI1 + index2) Matrix3x3(i11);
new (mI2 + index2) Matrix3x3(i21);
new (mImpulseTranslation + index2) Vector3(impulseTranslation1);
new (mImpulseRotation + index2) Vector3(impulseRotation1);
new (mInverseMassMatrixTranslation + index2) Matrix3x3(inverseMassMatrixTranslation1);
new (mInverseMassMatrixRotation + index2) Matrix3x3(inverseMassMatrixRotation1);
new (mBiasTranslation + index2) Vector3(biasTranslation1);
new (mBiasRotation + index2) Vector3(biasRotation1);
new (mInitOrientationDifferenceInv + index2) Quaternion(initOrientationDifferenceInv1);
// Update the entity to component index mapping
mMapEntityToComponentIndex.add(Pair<Entity, uint32>(jointEntity1, index2));
assert(mMapEntityToComponentIndex[mJointEntities[index1]] == index1);
assert(mMapEntityToComponentIndex[mJointEntities[index2]] == index2);
assert(mNbComponents == static_cast<uint32>(mMapEntityToComponentIndex.size()));
}
// Destroy a component at a given index
void FixedJointComponents::destroyComponent(uint32 index) {
Components::destroyComponent(index);
assert(mMapEntityToComponentIndex[mJointEntities[index]] == index);
mMapEntityToComponentIndex.remove(mJointEntities[index]);
mJointEntities[index].~Entity();
mJoints[index] = nullptr;
mLocalAnchorPointBody1[index].~Vector3();
mLocalAnchorPointBody2[index].~Vector3();
mR1World[index].~Vector3();
mR2World[index].~Vector3();
mI1[index].~Matrix3x3();
mI2[index].~Matrix3x3();
mImpulseTranslation[index].~Vector3();
mImpulseRotation[index].~Vector3();
mInverseMassMatrixTranslation[index].~Matrix3x3();
mInverseMassMatrixRotation[index].~Matrix3x3();
mBiasTranslation[index].~Vector3();
mBiasRotation[index].~Vector3();
mInitOrientationDifferenceInv[index].~Quaternion();
}

View File

@ -0,0 +1,424 @@
/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_FIXED_JOINT_COMPONENTS_H
#define REACTPHYSICS3D_FIXED_JOINT_COMPONENTS_H
// Libraries
#include "mathematics/Transform.h"
#include "mathematics/Matrix3x3.h"
#include "engine/Entity.h"
#include "components/Components.h"
#include "containers/Map.h"
// ReactPhysics3D namespace
namespace reactphysics3d {
// Class declarations
class MemoryAllocator;
class EntityManager;
class FixedJoint;
enum class JointType;
// Class FixedJointComponents
/**
* This class represent the component of the ECS with data for the FixedJoint.
*/
class FixedJointComponents : public Components {
private:
// -------------------- Attributes -------------------- //
/// Array of joint entities
Entity* mJointEntities;
/// Array of pointers to the joints
FixedJoint** mJoints;
/// Anchor point of body 1 (in local-space coordinates of body 1)
Vector3* mLocalAnchorPointBody1;
/// Anchor point of body 2 (in local-space coordinates of body 2)
Vector3* mLocalAnchorPointBody2;
/// Vector from center of body 2 to anchor point in world-space
Vector3* mR1World;
/// Vector from center of body 2 to anchor point in world-space
Vector3* mR2World;
/// Inertia tensor of body 1 (in world-space coordinates)
Matrix3x3* mI1;
/// Inertia tensor of body 2 (in world-space coordinates)
Matrix3x3* mI2;
/// Accumulated impulse for the 3 translation constraints
Vector3* mImpulseTranslation;
/// Accumulate impulse for the 3 rotation constraints
Vector3* mImpulseRotation;
/// Inverse mass matrix K=JM^-1J^-t of the 3 translation constraints (3x3 matrix)
Matrix3x3* mInverseMassMatrixTranslation;
/// Inverse mass matrix K=JM^-1J^-t of the 3 rotation constraints (3x3 matrix)
Matrix3x3* mInverseMassMatrixRotation;
/// Bias vector for the 3 translation constraints
Vector3* mBiasTranslation;
/// Bias vector for the 3 rotation constraints
Vector3* mBiasRotation;
/// Inverse of the initial orientation difference between the two bodies
Quaternion* mInitOrientationDifferenceInv;
// -------------------- Methods -------------------- //
/// Allocate memory for a given number of components
virtual void allocate(uint32 nbComponentsToAllocate) override;
/// Destroy a component at a given index
virtual void destroyComponent(uint32 index) override;
/// Move a component from a source to a destination index in the components array
virtual void moveComponentToIndex(uint32 srcIndex, uint32 destIndex) override;
/// Swap two components in the array
virtual void swapComponents(uint32 index1, uint32 index2) override;
public:
/// Structure for the data of a transform component
struct FixedJointComponent {
/// Constructor
FixedJointComponent() {
}
};
// -------------------- Methods -------------------- //
/// Constructor
FixedJointComponents(MemoryAllocator& allocator);
/// Destructor
virtual ~FixedJointComponents() override = default;
/// Add a component
void addComponent(Entity jointEntity, bool isSleeping, const FixedJointComponent& component);
/// Return a pointer to a given joint
FixedJoint* getJoint(Entity jointEntity) const;
/// Set the joint pointer to a given joint
void setJoint(Entity jointEntity, FixedJoint* joint) const;
/// Return the local anchor point of body 1 for a given joint
const Vector3& getLocalAnchoirPointBody1(Entity jointEntity) const;
/// Set the local anchor point of body 1 for a given joint
void setLocalAnchoirPointBody1(Entity jointEntity, const Vector3& localAnchoirPointBody1);
/// Return the local anchor point of body 2 for a given joint
const Vector3& getLocalAnchoirPointBody2(Entity jointEntity) const;
/// Set the local anchor point of body 2 for a given joint
void setLocalAnchoirPointBody2(Entity jointEntity, const Vector3& localAnchoirPointBody2);
/// Return the vector from center of body 1 to anchor point in world-space
const Vector3& getR1World(Entity jointEntity) const;
/// Set the vector from center of body 1 to anchor point in world-space
void setR1World(Entity jointEntity, const Vector3& r1World);
/// Return the vector from center of body 2 to anchor point in world-space
const Vector3& getR2World(Entity jointEntity) const;
/// Set the vector from center of body 2 to anchor point in world-space
void setR2World(Entity jointEntity, const Vector3& r2World);
/// Return the inertia tensor of body 1 (in world-space coordinates)
const Matrix3x3& getI1(Entity jointEntity) const;
/// Set the inertia tensor of body 1 (in world-space coordinates)
void setI1(Entity jointEntity, const Matrix3x3& i1);
/// Return the inertia tensor of body 2 (in world-space coordinates)
const Matrix3x3& getI2(Entity jointEntity) const;
/// Set the inertia tensor of body 2 (in world-space coordinates)
void setI2(Entity jointEntity, const Matrix3x3& i2);
/// Return the translation impulse
Vector3& getImpulseTranslation(Entity jointEntity);
/// Set the translation impulse
void setImpulseTranslation(Entity jointEntity, const Vector3& impulseTranslation);
/// Return the translation impulse
Vector3& getImpulseRotation(Entity jointEntity);
/// Set the translation impulse
void setImpulseRotation(Entity jointEntity, const Vector3& impulseTranslation);
/// Return the translation inverse mass matrix of the constraint
Matrix3x3& getInverseMassMatrixTranslation(Entity jointEntity);
/// Set the translation inverse mass matrix of the constraint
void setInverseMassMatrixTranslation(Entity jointEntity, const Matrix3x3& inverseMassMatrix);
/// Return the rotation inverse mass matrix of the constraint
Matrix3x3& getInverseMassMatrixRotation(Entity jointEntity);
/// Set the rotation inverse mass matrix of the constraint
void setInverseMassMatrixRotation(Entity jointEntity, const Matrix3x3& inverseMassMatrix);
/// Return the translation bias
Vector3& getBiasTranslation(Entity jointEntity);
/// Set the translation impulse
void setBiasTranslation(Entity jointEntity, const Vector3& impulseTranslation);
/// Return the rotation bias
Vector3& getBiasRotation(Entity jointEntity);
/// Set the rotation impulse
void setBiasRotation(Entity jointEntity, const Vector3 &impulseRotation);
/// Return the initial orientation difference
Quaternion& getInitOrientationDifferenceInv(Entity jointEntity);
/// Set the rotation impulse
void setInitOrientationDifferenceInv(Entity jointEntity, const Quaternion& initOrientationDifferenceInv);
// -------------------- Friendship -------------------- //
friend class BroadPhaseSystem;
};
// Return a pointer to a given joint
inline FixedJoint* FixedJointComponents::getJoint(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mJoints[mMapEntityToComponentIndex[jointEntity]];
}
// Set the joint pointer to a given joint
inline void FixedJointComponents::setJoint(Entity jointEntity, FixedJoint* joint) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mJoints[mMapEntityToComponentIndex[jointEntity]] = joint;
}
// Return the local anchor point of body 1 for a given joint
inline const Vector3& FixedJointComponents::getLocalAnchoirPointBody1(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mLocalAnchorPointBody1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the local anchor point of body 1 for a given joint
inline void FixedJointComponents::setLocalAnchoirPointBody1(Entity jointEntity, const Vector3& localAnchoirPointBody1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mLocalAnchorPointBody1[mMapEntityToComponentIndex[jointEntity]] = localAnchoirPointBody1;
}
// Return the local anchor point of body 2 for a given joint
inline const Vector3& FixedJointComponents::getLocalAnchoirPointBody2(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mLocalAnchorPointBody2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the local anchor point of body 2 for a given joint
inline void FixedJointComponents::setLocalAnchoirPointBody2(Entity jointEntity, const Vector3& localAnchoirPointBody2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mLocalAnchorPointBody2[mMapEntityToComponentIndex[jointEntity]] = localAnchoirPointBody2;
}
// Return the vector from center of body 1 to anchor point in world-space
inline const Vector3& FixedJointComponents::getR1World(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR1World[mMapEntityToComponentIndex[jointEntity]];
}
// Set the vector from center of body 1 to anchor point in world-space
inline void FixedJointComponents::setR1World(Entity jointEntity, const Vector3& r1World) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR1World[mMapEntityToComponentIndex[jointEntity]] = r1World;
}
// Return the vector from center of body 2 to anchor point in world-space
inline const Vector3& FixedJointComponents::getR2World(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mR2World[mMapEntityToComponentIndex[jointEntity]];
}
// Set the vector from center of body 2 to anchor point in world-space
inline void FixedJointComponents::setR2World(Entity jointEntity, const Vector3& r2World) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mR2World[mMapEntityToComponentIndex[jointEntity]] = r2World;
}
// Return the inertia tensor of body 1 (in world-space coordinates)
inline const Matrix3x3& FixedJointComponents::getI1(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mI1[mMapEntityToComponentIndex[jointEntity]];
}
// Set the inertia tensor of body 1 (in world-space coordinates)
inline void FixedJointComponents::setI1(Entity jointEntity, const Matrix3x3& i1) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mI1[mMapEntityToComponentIndex[jointEntity]] = i1;
}
// Return the inertia tensor of body 2 (in world-space coordinates)
inline const Matrix3x3& FixedJointComponents::getI2(Entity jointEntity) const {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mI2[mMapEntityToComponentIndex[jointEntity]];
}
// Set the inertia tensor of body 2 (in world-space coordinates)
inline void FixedJointComponents::setI2(Entity jointEntity, const Matrix3x3& i2) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mI2[mMapEntityToComponentIndex[jointEntity]] = i2;
}
// Return the translation impulse
inline Vector3& FixedJointComponents::getImpulseTranslation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mImpulseTranslation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation impulse
inline void FixedJointComponents::setImpulseTranslation(Entity jointEntity, const Vector3& impulseTranslation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mImpulseTranslation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation;
}
// Return the translation impulse
inline Vector3& FixedJointComponents::getImpulseRotation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mImpulseRotation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation impulse
inline void FixedJointComponents::setImpulseRotation(Entity jointEntity, const Vector3& impulseTranslation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mImpulseRotation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation;
}
// Return the translation inverse mass matrix of the constraint
inline Matrix3x3& FixedJointComponents::getInverseMassMatrixTranslation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInverseMassMatrixTranslation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation inverse mass matrix of the constraint
inline void FixedJointComponents::setInverseMassMatrixTranslation(Entity jointEntity, const Matrix3x3& inverseMassMatrix) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInverseMassMatrixTranslation[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrix;
}
// Return the rotation inverse mass matrix of the constraint
inline Matrix3x3& FixedJointComponents::getInverseMassMatrixRotation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInverseMassMatrixRotation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the rotation inverse mass matrix of the constraint
inline void FixedJointComponents::setInverseMassMatrixRotation(Entity jointEntity, const Matrix3x3& inverseMassMatrix) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInverseMassMatrixRotation[mMapEntityToComponentIndex[jointEntity]] = inverseMassMatrix;
}
// Return the translation bias
inline Vector3& FixedJointComponents::getBiasTranslation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mBiasTranslation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the translation impulse
inline void FixedJointComponents::setBiasTranslation(Entity jointEntity, const Vector3 &impulseTranslation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mBiasTranslation[mMapEntityToComponentIndex[jointEntity]] = impulseTranslation;
}
// Return the rotation bias
inline Vector3& FixedJointComponents::getBiasRotation(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mBiasRotation[mMapEntityToComponentIndex[jointEntity]];
}
// Set the rotation impulse
inline void FixedJointComponents::setBiasRotation(Entity jointEntity, const Vector3& impulseRotation) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mBiasRotation[mMapEntityToComponentIndex[jointEntity]] = impulseRotation;
}
// Return the initial orientation difference
inline Quaternion& FixedJointComponents::getInitOrientationDifferenceInv(Entity jointEntity) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
return mInitOrientationDifferenceInv[mMapEntityToComponentIndex[jointEntity]];
}
// Set the rotation impulse
inline void FixedJointComponents::setInitOrientationDifferenceInv(Entity jointEntity, const Quaternion& initOrientationDifferenceInv) {
assert(mMapEntityToComponentIndex.containsKey(jointEntity));
mInitOrientationDifferenceInv[mMapEntityToComponentIndex[jointEntity]] = initOrientationDifferenceInv;
}
}
#endif

View File

@ -36,14 +36,14 @@ const decimal FixedJoint::BETA = decimal(0.2);
// Constructor
FixedJoint::FixedJoint(Entity entity, DynamicsWorld &world, const FixedJointInfo& jointInfo)
: Joint(entity, world, jointInfo), mImpulseTranslation(0, 0, 0), mImpulseRotation(0, 0, 0) {
: Joint(entity, world, jointInfo) {
// Compute the local-space anchor point for each body
const Transform& transform1 = mWorld.mTransformComponents.getTransform(jointInfo.body1->getEntity());
const Transform& transform2 = mWorld.mTransformComponents.getTransform(jointInfo.body2->getEntity());
mLocalAnchorPointBody1 = transform1.getInverse() * jointInfo.anchorPointWorldSpace;
mLocalAnchorPointBody2 = transform2.getInverse() * jointInfo.anchorPointWorldSpace;
mWorld.mFixedJointsComponents.setLocalAnchoirPointBody1(mEntity, transform1.getInverse() * jointInfo.anchorPointWorldSpace);
mWorld.mFixedJointsComponents.setLocalAnchoirPointBody2(mEntity, transform2.getInverse() * jointInfo.anchorPointWorldSpace);
// Store inverse of initial rotation from body 1 to body 2 in body 1 space:
//
@ -56,7 +56,7 @@ FixedJoint::FixedJoint(Entity entity, DynamicsWorld &world, const FixedJointInfo
// q20 = initial orientation of body 2
// q10 = initial orientation of body 1
// r0 = initial rotation rotation from body 1 to body 2
mInitOrientationDifferenceInv = transform2.getOrientation().getInverse() * transform1.getOrientation();
mWorld.mFixedJointsComponents.setInitOrientationDifferenceInv(mEntity, transform2.getOrientation().getInverse() * transform1.getOrientation());
}
// Initialize before solving the constraint
@ -77,16 +77,22 @@ void FixedJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDat
const Quaternion& orientationBody2 = body2->getTransform().getOrientation();
// Get the inertia tensor of bodies
mI1 = body1->getInertiaTensorInverseWorld();
mI2 = body2->getInertiaTensorInverseWorld();
mWorld.mFixedJointsComponents.setI1(mEntity, body1->getInertiaTensorInverseWorld());
mWorld.mFixedJointsComponents.setI1(mEntity, body2->getInertiaTensorInverseWorld());
const Vector3& r1World = mWorld.mFixedJointsComponents.getR1World(mEntity);
const Vector3& r2World = mWorld.mFixedJointsComponents.getR2World(mEntity);
const Matrix3x3& i1 = mWorld.mFixedJointsComponents.getI1(mEntity);
const Matrix3x3& i2 = mWorld.mFixedJointsComponents.getI2(mEntity);
// Compute the vector from body center to the anchor point in world-space
mR1World = orientationBody1 * mLocalAnchorPointBody1;
mR2World = orientationBody2 * mLocalAnchorPointBody2;
mWorld.mFixedJointsComponents.setR1World(mEntity, orientationBody1 * mWorld.mFixedJointsComponents.getLocalAnchoirPointBody1(mEntity));
mWorld.mFixedJointsComponents.setR2World(mEntity, orientationBody2 * mWorld.mFixedJointsComponents.getLocalAnchoirPointBody2(mEntity));
// Compute the corresponding skew-symmetric matrices
Matrix3x3 skewSymmetricMatrixU1= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR1World);
Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR2World);
Matrix3x3 skewSymmetricMatrixU1= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(r1World);
Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(r2World);
// Compute the matrix K=JM^-1J^t (3x3 matrix) for the 3 translation constraints
const decimal body1MassInverse = constraintSolverData.rigidBodyComponents.getMassInverse(body1->getEntity());
@ -95,45 +101,52 @@ void FixedJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDat
Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0,
0, inverseMassBodies, 0,
0, 0, inverseMassBodies) +
skewSymmetricMatrixU1 * mI1 * skewSymmetricMatrixU1.getTranspose() +
skewSymmetricMatrixU2 * mI2 * skewSymmetricMatrixU2.getTranspose();
skewSymmetricMatrixU1 * i1 * skewSymmetricMatrixU1.getTranspose() +
skewSymmetricMatrixU2 * i2 * skewSymmetricMatrixU2.getTranspose();
// Compute the inverse mass matrix K^-1 for the 3 translation constraints
mInverseMassMatrixTranslation.setToZero();
Matrix3x3& inverseMassMatrixTranslation = mWorld.mFixedJointsComponents.getInverseMassMatrixTranslation(mEntity);
inverseMassMatrixTranslation.setToZero();
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
mInverseMassMatrixTranslation = massMatrix.getInverse();
mWorld.mFixedJointsComponents.setInverseMassMatrixTranslation(mEntity, massMatrix.getInverse());
}
// Compute the bias "b" of the constraint for the 3 translation constraints
decimal biasFactor = (BETA / constraintSolverData.timeStep);
mBiasTranslation.setToZero();
const decimal biasFactor = (BETA / constraintSolverData.timeStep);
Vector3& biasTranslation = mWorld.mFixedJointsComponents.getBiasTranslation(mEntity);
biasTranslation.setToZero();
if (mWorld.mJointsComponents.getPositionCorrectionTechnique(mEntity) == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) {
mBiasTranslation = biasFactor * (x2 + mR2World - x1 - mR1World);
mWorld.mFixedJointsComponents.setBiasTranslation(mEntity, biasFactor * (x2 + r2World - x1 - r1World));
}
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
// contraints (3x3 matrix)
mInverseMassMatrixRotation = mI1 + mI2;
Matrix3x3& inverseMassMatrixRotation = mWorld.mFixedJointsComponents.getInverseMassMatrixRotation(mEntity);
inverseMassMatrixRotation = i1 + i2;
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
mInverseMassMatrixRotation = mInverseMassMatrixRotation.getInverse();
mWorld.mFixedJointsComponents.setInverseMassMatrixRotation(mEntity, mWorld.mFixedJointsComponents.getInverseMassMatrixRotation(mEntity).getInverse());
}
// Compute the bias "b" for the 3 rotation constraints
mBiasRotation.setToZero();
Vector3& biasRotation = mWorld.mFixedJointsComponents.getBiasRotation(mEntity);
biasRotation.setToZero();
if (mWorld.mJointsComponents.getPositionCorrectionTechnique(mEntity) == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) {
const Quaternion qError = orientationBody2 * mInitOrientationDifferenceInv * orientationBody1.getInverse();
mBiasRotation = biasFactor * decimal(2.0) * qError.getVectorV();
const Quaternion qError = orientationBody2 * mWorld.mFixedJointsComponents.getInitOrientationDifferenceInv(mEntity) * orientationBody1.getInverse();
mWorld.mFixedJointsComponents.setBiasRotation(mEntity, biasFactor * decimal(2.0) * qError.getVectorV());
}
// If warm-starting is not enabled
if (!constraintSolverData.isWarmStartingActive) {
Vector3& impulseTranslation = mWorld.mFixedJointsComponents.getImpulseTranslation(mEntity);
Vector3& impulseRotation = mWorld.mFixedJointsComponents.getImpulseRotation(mEntity);
// Reset the accumulated impulses
mImpulseTranslation.setToZero();
mImpulseRotation.setToZero();
impulseTranslation.setToZero();
impulseRotation.setToZero();
}
}
@ -157,26 +170,35 @@ void FixedJoint::warmstart(const ConstraintSolverData& constraintSolverData) {
const decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
const decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
const Vector3& impulseTranslation = mWorld.mFixedJointsComponents.getImpulseTranslation(mEntity);
const Vector3& impulseRotation = mWorld.mFixedJointsComponents.getImpulseRotation(mEntity);
const Vector3& r1World = mWorld.mFixedJointsComponents.getR1World(mEntity);
const Vector3& r2World = mWorld.mFixedJointsComponents.getR2World(mEntity);
const Matrix3x3& i1 = mWorld.mFixedJointsComponents.getI1(mEntity);
const Matrix3x3& i2 = mWorld.mFixedJointsComponents.getI2(mEntity);
// Compute the impulse P=J^T * lambda for the 3 translation constraints for body 1
Vector3 linearImpulseBody1 = -mImpulseTranslation;
Vector3 angularImpulseBody1 = mImpulseTranslation.cross(mR1World);
Vector3 linearImpulseBody1 = -impulseTranslation;
Vector3 angularImpulseBody1 = impulseTranslation.cross(r1World);
// Compute the impulse P=J^T * lambda for the 3 rotation constraints for body 1
angularImpulseBody1 += -mImpulseRotation;
angularImpulseBody1 += -impulseRotation;
// Apply the impulse to the body 1
v1 += inverseMassBody1 * linearImpulseBody1;
w1 += mI1 * angularImpulseBody1;
w1 += i1 * angularImpulseBody1;
// Compute the impulse P=J^T * lambda for the 3 translation constraints for body 2
Vector3 angularImpulseBody2 = -mImpulseTranslation.cross(mR2World);
Vector3 angularImpulseBody2 = -impulseTranslation.cross(r2World);
// Compute the impulse P=J^T * lambda for the 3 rotation constraints for body 2
angularImpulseBody2 += mImpulseRotation;
angularImpulseBody2 += impulseRotation;
// Apply the impulse to the body 2
v2 += inverseMassBody2 * mImpulseTranslation;
w2 += mI2 * angularImpulseBody2;
v2 += inverseMassBody2 * impulseTranslation;
w2 += i2 * angularImpulseBody2;
}
// Solve the velocity constraint
@ -199,48 +221,59 @@ void FixedJoint::solveVelocityConstraint(const ConstraintSolverData& constraintS
decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
const Vector3& r1World = mWorld.mFixedJointsComponents.getR1World(mEntity);
const Vector3& r2World = mWorld.mFixedJointsComponents.getR2World(mEntity);
const Matrix3x3& i1 = mWorld.mFixedJointsComponents.getI1(mEntity);
const Matrix3x3& i2 = mWorld.mFixedJointsComponents.getI2(mEntity);
// --------------- Translation Constraints --------------- //
// Compute J*v for the 3 translation constraints
const Vector3 JvTranslation = v2 + w2.cross(mR2World) - v1 - w1.cross(mR1World);
const Vector3 JvTranslation = v2 + w2.cross(r2World) - v1 - w1.cross(r1World);
const Vector3& biasTranslation = mWorld.mFixedJointsComponents.getBiasTranslation(mEntity);
const Matrix3x3& inverseMassMatrixTranslation = mWorld.mFixedJointsComponents.getInverseMassMatrixTranslation(mEntity);
// Compute the Lagrange multiplier lambda
const Vector3 deltaLambda = mInverseMassMatrixTranslation *
(-JvTranslation - mBiasTranslation);
mImpulseTranslation += deltaLambda;
const Vector3 deltaLambda = inverseMassMatrixTranslation * (-JvTranslation - biasTranslation);
mWorld.mFixedJointsComponents.setImpulseTranslation(mEntity, mWorld.mFixedJointsComponents.getImpulseTranslation(mEntity) + deltaLambda);
// Compute the impulse P=J^T * lambda for body 1
const Vector3 linearImpulseBody1 = -deltaLambda;
Vector3 angularImpulseBody1 = deltaLambda.cross(mR1World);
Vector3 angularImpulseBody1 = deltaLambda.cross(r1World);
// Apply the impulse to the body 1
v1 += inverseMassBody1 * linearImpulseBody1;
w1 += mI1 * angularImpulseBody1;
w1 += i1 * angularImpulseBody1;
// Compute the impulse P=J^T * lambda for body 2
const Vector3 angularImpulseBody2 = -deltaLambda.cross(mR2World);
const Vector3 angularImpulseBody2 = -deltaLambda.cross(r2World);
// Apply the impulse to the body 2
v2 += inverseMassBody2 * deltaLambda;
w2 += mI2 * angularImpulseBody2;
w2 += i2 * angularImpulseBody2;
// --------------- Rotation Constraints --------------- //
// Compute J*v for the 3 rotation constraints
const Vector3 JvRotation = w2 - w1;
const Vector3& biasRotation = mWorld.mFixedJointsComponents.getBiasRotation(mEntity);
const Matrix3x3& inverseMassMatrixRotation = mWorld.mFixedJointsComponents.getInverseMassMatrixRotation(mEntity);
// Compute the Lagrange multiplier lambda for the 3 rotation constraints
Vector3 deltaLambda2 = mInverseMassMatrixRotation * (-JvRotation - mBiasRotation);
mImpulseRotation += deltaLambda2;
Vector3 deltaLambda2 = inverseMassMatrixRotation * (-JvRotation - biasRotation);
mWorld.mFixedJointsComponents.setImpulseRotation(mEntity, mWorld.mFixedJointsComponents.getImpulseRotation(mEntity) + deltaLambda2);
// Compute the impulse P=J^T * lambda for the 3 rotation constraints for body 1
angularImpulseBody1 = -deltaLambda2;
// Apply the impulse to the body 1
w1 += mI1 * angularImpulseBody1;
w1 += i1 * angularImpulseBody1;
// Apply the impulse to the body 2
w2 += mI2 * deltaLambda2;
w2 += i2 * deltaLambda2;
}
// Solve the position constraint (for position error correction)
@ -268,17 +301,23 @@ void FixedJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
decimal inverseMassBody1 = constraintSolverData.rigidBodyComponents.getMassInverse(body1Entity);
decimal inverseMassBody2 = constraintSolverData.rigidBodyComponents.getMassInverse(body2Entity);
const Vector3& r1World = mWorld.mFixedJointsComponents.getR1World(mEntity);
const Vector3& r2World = mWorld.mFixedJointsComponents.getR2World(mEntity);
const Matrix3x3& i1 = mWorld.mFixedJointsComponents.getI1(mEntity);
const Matrix3x3& i2 = mWorld.mFixedJointsComponents.getI2(mEntity);
// Recompute the inverse inertia tensors
mI1 = body1->getInertiaTensorInverseWorld();
mI2 = body2->getInertiaTensorInverseWorld();
mWorld.mFixedJointsComponents.setI1(mEntity, body1->getInertiaTensorInverseWorld());
mWorld.mFixedJointsComponents.setI2(mEntity, body2->getInertiaTensorInverseWorld());
// Compute the vector from body center to the anchor point in world-space
mR1World = q1 * mLocalAnchorPointBody1;
mR2World = q2 * mLocalAnchorPointBody2;
mWorld.mFixedJointsComponents.setR1World(mEntity, q1 * mWorld.mFixedJointsComponents.getLocalAnchoirPointBody1(mEntity));
mWorld.mFixedJointsComponents.setR2World(mEntity, q2 * mWorld.mFixedJointsComponents.getLocalAnchoirPointBody2(mEntity));
// Compute the corresponding skew-symmetric matrices
Matrix3x3 skewSymmetricMatrixU1= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR1World);
Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR2World);
Matrix3x3 skewSymmetricMatrixU1= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(r1World);
Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(r2World);
// --------------- Translation Constraints --------------- //
@ -287,27 +326,28 @@ void FixedJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0,
0, inverseMassBodies, 0,
0, 0, inverseMassBodies) +
skewSymmetricMatrixU1 * mI1 * skewSymmetricMatrixU1.getTranspose() +
skewSymmetricMatrixU2 * mI2 * skewSymmetricMatrixU2.getTranspose();
mInverseMassMatrixTranslation.setToZero();
skewSymmetricMatrixU1 * i1 * skewSymmetricMatrixU1.getTranspose() +
skewSymmetricMatrixU2 * i2 * skewSymmetricMatrixU2.getTranspose();
Matrix3x3& inverseMassMatrixTranslation = mWorld.mFixedJointsComponents.getInverseMassMatrixTranslation(mEntity);
inverseMassMatrixTranslation.setToZero();
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
mInverseMassMatrixTranslation = massMatrix.getInverse();
mWorld.mFixedJointsComponents.setInverseMassMatrixTranslation(mEntity, massMatrix.getInverse());
}
// Compute position error for the 3 translation constraints
const Vector3 errorTranslation = x2 + mR2World - x1 - mR1World;
const Vector3 errorTranslation = x2 + r2World - x1 - r1World;
// Compute the Lagrange multiplier lambda
const Vector3 lambdaTranslation = mInverseMassMatrixTranslation * (-errorTranslation);
const Vector3 lambdaTranslation = inverseMassMatrixTranslation * (-errorTranslation);
// Compute the impulse of body 1
Vector3 linearImpulseBody1 = -lambdaTranslation;
Vector3 angularImpulseBody1 = lambdaTranslation.cross(mR1World);
Vector3 angularImpulseBody1 = lambdaTranslation.cross(r1World);
// Compute the pseudo velocity of body 1
const Vector3 v1 = inverseMassBody1 * linearImpulseBody1;
Vector3 w1 = mI1 * angularImpulseBody1;
Vector3 w1 = i1 * angularImpulseBody1;
// Update the body position/orientation of body 1
x1 += v1;
@ -315,11 +355,11 @@ void FixedJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
q1.normalize();
// Compute the impulse of body 2
Vector3 angularImpulseBody2 = -lambdaTranslation.cross(mR2World);
Vector3 angularImpulseBody2 = -lambdaTranslation.cross(r2World);
// Compute the pseudo velocity of body 2
const Vector3 v2 = inverseMassBody2 * lambdaTranslation;
Vector3 w2 = mI2 * angularImpulseBody2;
Vector3 w2 = i2 * angularImpulseBody2;
// Update the body position/orientation of body 2
x2 += v2;
@ -330,10 +370,11 @@ void FixedJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
// contraints (3x3 matrix)
mInverseMassMatrixRotation = mI1 + mI2;
Matrix3x3& inverseMassMatrixRotation = mWorld.mFixedJointsComponents.getInverseMassMatrixRotation(mEntity);
inverseMassMatrixRotation = i1 + i2;
if (mWorld.mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
mWorld.mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
mInverseMassMatrixRotation = mInverseMassMatrixRotation.getInverse();
mWorld.mFixedJointsComponents.setInverseMassMatrixRotation(mEntity, inverseMassMatrixRotation.getInverse());
}
// Calculate difference in rotation
@ -351,7 +392,7 @@ void FixedJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
// q1 = current rotation of body 1
// q2 = current rotation of body 2
// qError = error that needs to be reduced to zero
Quaternion qError = q2 * mInitOrientationDifferenceInv * q1.getInverse();
Quaternion qError = q2 * mWorld.mFixedJointsComponents.getInitOrientationDifferenceInv(mEntity) * q1.getInverse();
// A quaternion can be seen as:
//
@ -365,20 +406,20 @@ void FixedJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
const Vector3 errorRotation = decimal(2.0) * qError.getVectorV();
// Compute the Lagrange multiplier lambda for the 3 rotation constraints
Vector3 lambdaRotation = mInverseMassMatrixRotation * (-errorRotation);
Vector3 lambdaRotation = inverseMassMatrixRotation * (-errorRotation);
// Compute the impulse P=J^T * lambda for the 3 rotation constraints of body 1
angularImpulseBody1 = -lambdaRotation;
// Compute the pseudo velocity of body 1
w1 = mI1 * angularImpulseBody1;
w1 = i1 * angularImpulseBody1;
// Update the body position/orientation of body 1
q1 += Quaternion(0, w1) * q1 * decimal(0.5);
q1.normalize();
// Compute the pseudo velocity of body 2
w2 = mI2 * lambdaRotation;
w2 = i2 * lambdaRotation;
// Update the body position/orientation of body 2
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
@ -390,3 +431,11 @@ void FixedJoint::solvePositionConstraint(const ConstraintSolverData& constraintS
constraintSolverData.rigidBodyComponents.setConstrainedOrientation(body2Entity, q2);
}
// Return a string representation
std::string FixedJoint::to_string() const {
return "FixedJoint{ localAnchorPointBody1=" + mWorld.mFixedJointsComponents.getLocalAnchoirPointBody1(mEntity).to_string() +
", localAnchorPointBody2=" + mWorld.mFixedJointsComponents.getLocalAnchoirPointBody2(mEntity).to_string() +
", initOrientationDifferenceInv=" + mWorld.mFixedJointsComponents.getInitOrientationDifferenceInv(mEntity).to_string() +
"}";
}

View File

@ -73,47 +73,6 @@ class FixedJoint : public Joint {
// Beta value for the bias factor of position correction
static const decimal BETA;
// -------------------- Attributes -------------------- //
/// Anchor point of body 1 (in local-space coordinates of body 1)
Vector3 mLocalAnchorPointBody1;
/// Anchor point of body 2 (in local-space coordinates of body 2)
Vector3 mLocalAnchorPointBody2;
/// Vector from center of body 2 to anchor point in world-space
Vector3 mR1World;
/// Vector from center of body 2 to anchor point in world-space
Vector3 mR2World;
/// Inertia tensor of body 1 (in world-space coordinates)
Matrix3x3 mI1;
/// Inertia tensor of body 2 (in world-space coordinates)
Matrix3x3 mI2;
/// Accumulated impulse for the 3 translation constraints
Vector3 mImpulseTranslation;
/// Accumulate impulse for the 3 rotation constraints
Vector3 mImpulseRotation;
/// Inverse mass matrix K=JM^-1J^-t of the 3 translation constraints (3x3 matrix)
Matrix3x3 mInverseMassMatrixTranslation;
/// Inverse mass matrix K=JM^-1J^-t of the 3 rotation constraints (3x3 matrix)
Matrix3x3 mInverseMassMatrixRotation;
/// Bias vector for the 3 translation constraints
Vector3 mBiasTranslation;
/// Bias vector for the 3 rotation constraints
Vector3 mBiasRotation;
/// Inverse of the initial orientation difference between the two bodies
Quaternion mInitOrientationDifferenceInv;
// -------------------- Methods -------------------- //
/// Return the number of bytes used by the joint
@ -156,14 +115,6 @@ inline size_t FixedJoint::getSizeInBytes() const {
return sizeof(FixedJoint);
}
// Return a string representation
inline std::string FixedJoint::to_string() const {
return "FixedJoint{ localAnchorPointBody1=" + mLocalAnchorPointBody1.to_string() +
", localAnchorPointBody2=" + mLocalAnchorPointBody2.to_string() +
", initOrientationDifferenceInv=" + mInitOrientationDifferenceInv.to_string() +
"}";
}
}
#endif

View File

@ -41,6 +41,7 @@ CollisionWorld::CollisionWorld(const WorldSettings& worldSettings, Logger* logge
mCollisionBodyComponents(mMemoryManager.getBaseAllocator()), mRigidBodyComponents(mMemoryManager.getBaseAllocator()),
mTransformComponents(mMemoryManager.getBaseAllocator()), mProxyShapesComponents(mMemoryManager.getBaseAllocator()),
mJointsComponents(mMemoryManager.getBaseAllocator()), mBallAndSocketJointsComponents(mMemoryManager.getBaseAllocator()),
mFixedJointsComponents(mMemoryManager.getBaseAllocator()),
mCollisionDetection(this, mProxyShapesComponents, mTransformComponents, mRigidBodyComponents, mMemoryManager),
mBodies(mMemoryManager.getPoolAllocator()), mEventListener(nullptr),
mName(worldSettings.worldName), mIsProfilerCreatedByUser(profiler != nullptr),
@ -261,6 +262,12 @@ void CollisionWorld::setJointDisabled(Entity jointEntity, bool isDisabled) {
// TODO : Make sure we notify all the components here ...
mJointsComponents.setIsEntityDisabled(jointEntity, isDisabled);
if (mBallAndSocketJointsComponents.hasComponent(jointEntity)) {
mBallAndSocketJointsComponents.setIsEntityDisabled(jointEntity, isDisabled);
}
if (mFixedJointsComponents.hasComponent(jointEntity)) {
mFixedJointsComponents.setIsEntityDisabled(jointEntity, isDisabled);
}
}
// Return true if two bodies overlap

View File

@ -39,6 +39,7 @@
#include "components/ProxyShapeComponents.h"
#include "components/JointComponents.h"
#include "components/BallAndSocketJointComponents.h"
#include "components/FixedJointComponents.h"
#include "collision/CollisionCallback.h"
#include "collision/OverlapCallback.h"
@ -96,6 +97,9 @@ class CollisionWorld {
/// Ball And Socket joints Components
BallAndSocketJointComponents mBallAndSocketJointsComponents;
/// Fixed joints Components
FixedJointComponents mFixedJointsComponents;
/// Reference to the collision detection
CollisionDetectionSystem mCollisionDetection;

View File

@ -368,10 +368,19 @@ Joint* DynamicsWorld::createJoint(const JointInfo& jointInfo) {
// Fixed joint
case JointType::FIXEDJOINT:
{
// Create a BallAndSocketJoint component
FixedJointComponents::FixedJointComponent fixedJointComponent;
mFixedJointsComponents.addComponent(entity, isJointDisabled, fixedJointComponent);
void* allocatedMemory = mMemoryManager.allocate(MemoryManager::AllocationType::Pool,
sizeof(FixedJoint));
const FixedJointInfo& info = static_cast<const FixedJointInfo&>(jointInfo);
newJoint = new (allocatedMemory) FixedJoint(entity, *this, info);
FixedJoint* joint = new (allocatedMemory) FixedJoint(entity, *this, info);
newJoint = joint;
mFixedJointsComponents.setJoint(entity, joint);
break;
}
@ -467,6 +476,9 @@ void DynamicsWorld::addJointToBody(Joint* joint) {
sizeof(JointListElement));
JointListElement* jointListElement1 = new (allocatedMemory1) JointListElement(joint,
body1->mJointsList);
RigidBody* test1 = joint->getBody1();
RigidBody* test2 = joint->getBody2();
body1->mJointsList = jointListElement1;
RP3D_LOG(mLogger, Logger::Level::Information, Logger::Category::Body,