Fix issue with clipping methods

This commit is contained in:
Daniel Chappuis 2018-02-11 14:42:11 +01:00
parent 2146dd4427
commit 6dac7e0916

View File

@ -225,30 +225,26 @@ List<Vector3> reactphysics3d::clipSegmentWithPlanes(const Vector3& segA, const V
const List<Vector3>& planesPoints,
const List<Vector3>& planesNormals,
MemoryAllocator& allocator) {
assert(planesPoints.size() == planesNormals.size());
List<Vector3> list1(allocator, 2);
List<Vector3> list2(allocator, 2);
List<Vector3> inputVertices(allocator, 2);
List<Vector3> outputVertices(allocator, 2);
List<Vector3>* inputVertices = &list1;
List<Vector3>* outputVertices = &list2;
inputVertices->add(segA);
inputVertices->add(segB);
inputVertices.add(segA);
inputVertices.add(segB);
// For each clipping plane
for (uint p=0; p<planesPoints.size(); p++) {
// If there is no more vertices, stop
if (inputVertices->size() == 0) return *inputVertices;
if (inputVertices.size() == 0) return inputVertices;
assert(inputVertices->size() == 2);
assert(inputVertices.size() == 2);
outputVertices->clear();
outputVertices.clear();
Vector3& v1 = (*inputVertices)[0];
Vector3& v2 = (*inputVertices)[1];
Vector3& v1 = inputVertices[0];
Vector3& v2 = inputVertices[1];
decimal v1DotN = (v1 - planesPoints[p]).dot(planesNormals[p]);
decimal v2DotN = (v2 - planesPoints[p]).dot(planesNormals[p]);
@ -263,40 +259,39 @@ List<Vector3> reactphysics3d::clipSegmentWithPlanes(const Vector3& segA, const V
decimal t = computePlaneSegmentIntersection(v1, v2, planesNormals[p].dot(planesPoints[p]), planesNormals[p]);
if (t >= decimal(0) && t <= decimal(1.0)) {
outputVertices->add(v1 + t * (v2 - v1));
outputVertices.add(v1 + t * (v2 - v1));
}
else {
outputVertices->add(v2);
outputVertices.add(v2);
}
}
else {
outputVertices->add(v1);
outputVertices.add(v1);
}
// Add the second vertex
outputVertices->add(v2);
outputVertices.add(v2);
}
else { // If the second vertex is behind the clipping plane
// If the first vertex is in front of the clippling plane
if (v1DotN >= decimal(0.0)) {
outputVertices->add(v1);
outputVertices.add(v1);
// The first point we keep is the intersection between the segment v1, v2 and the clipping plane
decimal t = computePlaneSegmentIntersection(v1, v2, -planesNormals[p].dot(planesPoints[p]), -planesNormals[p]);
if (t >= decimal(0.0) && t <= decimal(1.0)) {
outputVertices->add(v1 + t * (v2 - v1));
outputVertices.add(v1 + t * (v2 - v1));
}
}
}
inputVertices = outputVertices;
outputVertices = p % 2 == 0 ? &list1 : &list2;
}
return *outputVertices;
return outputVertices;
}
// Clip a polygon against multiple planes and return the clipped polygon vertices
@ -306,75 +301,73 @@ List<Vector3> reactphysics3d::clipPolygonWithPlanes(const List<Vector3>& polygon
assert(planesPoints.size() == planesNormals.size());
uint nbMaxElements = polygonVertices.size() + planesPoints.size();
List<Vector3> list1(allocator, nbMaxElements);
List<Vector3> list2(allocator, nbMaxElements);
uint nbMaxElements = polygonVertices.size() + planesPoints.size();
List<Vector3> inputVertices(allocator, nbMaxElements);
List<Vector3> outputVertices(allocator, nbMaxElements);
const List<Vector3>* inputVertices = &polygonVertices;
List<Vector3>* outputVertices = &list2;
inputVertices.addRange(polygonVertices);
// For each clipping plane
for (uint p=0; p<planesPoints.size(); p++) {
// For each clipping plane
for (uint p=0; p<planesPoints.size(); p++) {
outputVertices->clear();
outputVertices.clear();
uint nbInputVertices = inputVertices->size();
uint vStart = nbInputVertices - 1;
uint nbInputVertices = inputVertices.size();
uint vStart = nbInputVertices - 1;
// For each edge of the polygon
for (uint vEnd = 0; vEnd<nbInputVertices; vEnd++) {
// For each edge of the polygon
for (uint vEnd = 0; vEnd<nbInputVertices; vEnd++) {
const Vector3& v1 = (*inputVertices)[vStart];
const Vector3& v2 = (*inputVertices)[vEnd];
Vector3& v1 = inputVertices[vStart];
Vector3& v2 = inputVertices[vEnd];
decimal v1DotN = (v1 - planesPoints[p]).dot(planesNormals[p]);
decimal v2DotN = (v2 - planesPoints[p]).dot(planesNormals[p]);
decimal v1DotN = (v1 - planesPoints[p]).dot(planesNormals[p]);
decimal v2DotN = (v2 - planesPoints[p]).dot(planesNormals[p]);
// If the second vertex is in front of the clippling plane
if (v2DotN >= decimal(0.0)) {
// If the second vertex is in front of the clippling plane
if (v2DotN >= decimal(0.0)) {
// If the first vertex is not in front of the clippling plane
if (v1DotN < decimal(0.0)) {
// If the first vertex is not in front of the clippling plane
if (v1DotN < decimal(0.0)) {
// The second point we keep is the intersection between the segment v1, v2 and the clipping plane
decimal t = computePlaneSegmentIntersection(v1, v2, planesNormals[p].dot(planesPoints[p]), planesNormals[p]);
// The second point we keep is the intersection between the segment v1, v2 and the clipping plane
decimal t = computePlaneSegmentIntersection(v1, v2, planesNormals[p].dot(planesPoints[p]), planesNormals[p]);
if (t >= decimal(0) && t <= decimal(1.0)) {
outputVertices->add(v1 + t * (v2 - v1));
if (t >= decimal(0) && t <= decimal(1.0)) {
outputVertices.add(v1 + t * (v2 - v1));
}
else {
outputVertices.add(v2);
}
}
else {
outputVertices->add(v2);
// Add the second vertex
outputVertices.add(v2);
}
else { // If the second vertex is behind the clipping plane
// If the first vertex is in front of the clippling plane
if (v1DotN >= decimal(0.0)) {
// The first point we keep is the intersection between the segment v1, v2 and the clipping plane
decimal t = computePlaneSegmentIntersection(v1, v2, -planesNormals[p].dot(planesPoints[p]), -planesNormals[p]);
if (t >= decimal(0.0) && t <= decimal(1.0)) {
outputVertices.add(v1 + t * (v2 - v1));
}
else {
outputVertices.add(v1);
}
}
}
// Add the second vertex
outputVertices->add(v2);
}
else { // If the second vertex is behind the clipping plane
// If the first vertex is in front of the clippling plane
if (v1DotN >= decimal(0.0)) {
// The first point we keep is the intersection between the segment v1, v2 and the clipping plane
decimal t = computePlaneSegmentIntersection(v1, v2, -planesNormals[p].dot(planesPoints[p]), -planesNormals[p]);
if (t >= decimal(0.0) && t <= decimal(1.0)) {
outputVertices->add(v1 + t * (v2 - v1));
}
else {
outputVertices->add(v1);
}
}
vStart = vEnd;
}
vStart = vEnd;
inputVertices = outputVertices;
}
inputVertices = outputVertices;
outputVertices = p % 2 == 0 ? &list1 : &list2;
}
return *outputVertices;
return outputVertices;
}
// Project a point onto a plane that is given by a point and its unit length normal