diff --git a/src/collision/narrowphase/SAT/SATAlgorithm.cpp b/src/collision/narrowphase/SAT/SATAlgorithm.cpp index 4e15eb15..c838d8ab 100644 --- a/src/collision/narrowphase/SAT/SATAlgorithm.cpp +++ b/src/collision/narrowphase/SAT/SATAlgorithm.cpp @@ -854,18 +854,19 @@ bool SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron(const NarrowP assert(clipPolygonVertices.size() > 0); // We only keep the clipped points that are below the reference face - const Vector3 referenceFaceVertex = referencePolyhedron->getVertexPosition(firstEdgeIndex); + const Vector3 referenceFaceVertex = referencePolyhedron->getVertexPosition(referencePolyhedron->getHalfEdge(firstEdgeIndex).vertexIndex); std::vector::const_iterator itPoints; for (itPoints = clipPolygonVertices.begin(); itPoints != clipPolygonVertices.end(); ++itPoints) { // If the clip point is bellow the reference face - if (((*itPoints) - referenceFaceVertex).dot(axisReferenceSpace) < decimal(0.0)) { + if (((*itPoints) - referenceFaceVertex).dot(axisReferenceSpace) < decimal(0.0)) + { // Convert the clip incident polyhedron vertex into the incident polyhedron local-space const Vector3 contactPointIncidentPolyhedron = referenceToIncidentTransform * (*itPoints); // Project the contact point onto the reference face - Vector3 contactPointReferencePolyhedron = (*itPoints) + axisReferenceSpace * minPenetrationDepth; + Vector3 contactPointReferencePolyhedron = projectPointOntoPlane(*itPoints, axisReferenceSpace, referenceFaceVertex); // Create a new contact point contactManifoldInfo.addContactPoint(normalWorld, minPenetrationDepth, @@ -1011,8 +1012,8 @@ bool SATAlgorithm::testEdgesBuildMinkowskiFace(const ConvexPolyhedronShape* poly const ConvexPolyhedronShape* polyhedron2, const HalfEdgeStructure::Edge& edge2, const Transform& polyhedron1ToPolyhedron2) const { - const Vector3 a = polyhedron1ToPolyhedron2 * polyhedron1->getFaceNormal(edge1.faceIndex); - const Vector3 b = polyhedron1ToPolyhedron2 * polyhedron1->getFaceNormal(polyhedron1->getHalfEdge(edge1.twinEdgeIndex).faceIndex); + const Vector3 a = polyhedron1ToPolyhedron2.getOrientation() * polyhedron1->getFaceNormal(edge1.faceIndex); + const Vector3 b = polyhedron1ToPolyhedron2.getOrientation() * polyhedron1->getFaceNormal(polyhedron1->getHalfEdge(edge1.twinEdgeIndex).faceIndex); const Vector3 c = polyhedron2->getFaceNormal(edge2.faceIndex); const Vector3 d = polyhedron2->getFaceNormal(polyhedron2->getHalfEdge(edge2.twinEdgeIndex).faceIndex); @@ -1020,12 +1021,12 @@ bool SATAlgorithm::testEdgesBuildMinkowskiFace(const ConvexPolyhedronShape* poly // Compute b.cross(a) using the edge direction const Vector3 edge1Vertex1 = polyhedron1->getVertexPosition(edge1.vertexIndex); const Vector3 edge1Vertex2 = polyhedron1->getVertexPosition(polyhedron1->getHalfEdge(edge1.twinEdgeIndex).vertexIndex); - const Vector3 bCrossA = polyhedron1ToPolyhedron2.getOrientation() * (edge1Vertex2 - edge1Vertex1); + const Vector3 bCrossA = polyhedron1ToPolyhedron2.getOrientation() * (edge1Vertex1 - edge1Vertex2); // Compute d.cross(c) using the edge direction const Vector3 edge2Vertex1 = polyhedron2->getVertexPosition(edge2.vertexIndex); const Vector3 edge2Vertex2 = polyhedron2->getVertexPosition(polyhedron2->getHalfEdge(edge2.twinEdgeIndex).vertexIndex); - const Vector3 dCrossC = edge2Vertex2 - edge2Vertex1; + const Vector3 dCrossC = edge2Vertex1 - edge2Vertex2; // Test if the two arcs of the Gauss Map intersect (therefore forming a minkowski face) // Note that we negate the normals of the second polyhedron because we are looking at the diff --git a/src/mathematics/mathematics_functions.cpp b/src/mathematics/mathematics_functions.cpp index 24329732..d627ed7b 100755 --- a/src/mathematics/mathematics_functions.cpp +++ b/src/mathematics/mathematics_functions.cpp @@ -354,4 +354,9 @@ std::vector reactphysics3d::clipPolygonWithPlanes(const std::vector clipSegmentWithPlanes(const Vector3& segA, const Vector3& s std::vector clipPolygonWithPlanes(const std::vector& polygonVertices, const std::vector& planesPoints, const std::vector& planesNormals); +/// Project a point onto a plane that is given by a point and its unit length normal +Vector3 projectPointOntoPlane(const Vector3& point, const Vector3& planeNormal, const Vector3& planePoint); + }