Use List in HalfEdgeStructure with some changes in memory allocation
This commit is contained in:
parent
f2ee00ca68
commit
8f126a75d6
|
@ -193,6 +193,8 @@ SET (REACTPHYSICS3D_SOURCES
|
|||
"src/memory/SingleFrameAllocator.h"
|
||||
"src/memory/SingleFrameAllocator.cpp"
|
||||
"src/memory/DefaultAllocator.h"
|
||||
"src/memory/MemoryManager.h"
|
||||
"src/memory/MemoryManager.cpp"
|
||||
"src/containers/Stack.h"
|
||||
"src/containers/LinkedList.h"
|
||||
"src/containers/List.h"
|
||||
|
|
|
@ -72,7 +72,7 @@ ProxyShape* CollisionBody::addCollisionShape(CollisionShape* collisionShape,
|
|||
// Create a new proxy collision shape to attach the collision shape to the body
|
||||
ProxyShape* proxyShape = new (mWorld.mPoolAllocator.allocate(
|
||||
sizeof(ProxyShape))) ProxyShape(this, collisionShape,
|
||||
transform, decimal(1));
|
||||
transform, decimal(1), mWorld.mPoolAllocator);
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
|
||||
|
|
|
@ -226,7 +226,7 @@ ProxyShape* RigidBody::addCollisionShape(CollisionShape* collisionShape,
|
|||
// Create a new proxy collision shape to attach the collision shape to the body
|
||||
ProxyShape* proxyShape = new (mWorld.mPoolAllocator.allocate(
|
||||
sizeof(ProxyShape))) ProxyShape(this, collisionShape,
|
||||
transform, mass);
|
||||
transform, mass, mWorld.mPoolAllocator);
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
|
||||
|
|
|
@ -288,7 +288,14 @@ void CollisionDetection::computeNarrowPhase() {
|
|||
lastCollisionFrameInfo->isValid = true;
|
||||
}
|
||||
|
||||
NarrowPhaseInfo* narrowPhaseInfoToDelete = currentNarrowPhaseInfo;
|
||||
currentNarrowPhaseInfo = currentNarrowPhaseInfo->next;
|
||||
|
||||
// Call the destructor
|
||||
narrowPhaseInfoToDelete->~NarrowPhaseInfo();
|
||||
|
||||
// Release the allocated memory for the narrow phase info
|
||||
mSingleFrameAllocator.release(narrowPhaseInfoToDelete, sizeof(NarrowPhaseInfo));
|
||||
}
|
||||
|
||||
// Convert the potential contact into actual contacts
|
||||
|
|
|
@ -225,7 +225,6 @@ void ContactManifoldSet::removeManifold(ContactManifold* manifold) {
|
|||
// Delete the contact manifold
|
||||
manifold->~ContactManifold();
|
||||
mMemoryAllocator.release(manifold, sizeof(ContactManifold));
|
||||
|
||||
mNbManifolds--;
|
||||
}
|
||||
|
||||
|
|
|
@ -96,8 +96,8 @@ void HalfEdgeStructure::init() {
|
|||
mapEdgeToIndex.insert(std::make_pair(pairV1V2, edgeIndex + 1));
|
||||
mapEdgeToIndex.insert(std::make_pair(pairV2V1, edgeIndex));
|
||||
|
||||
mEdges.push_back(itEdge->second);
|
||||
mEdges.push_back(edge);
|
||||
mEdges.add(itEdge->second);
|
||||
mEdges.add(edge);
|
||||
}
|
||||
|
||||
currentFaceEdges.push_back(pairV1V2);
|
||||
|
|
|
@ -50,14 +50,14 @@ class HalfEdgeStructure {
|
|||
};
|
||||
|
||||
struct Face {
|
||||
uint edgeIndex; // Index of an half-edge of the face
|
||||
std::vector<uint> faceVertices; // Index of the vertices of the face
|
||||
uint edgeIndex; // Index of an half-edge of the face
|
||||
List<uint> faceVertices; // Index of the vertices of the face
|
||||
|
||||
/// Constructor
|
||||
Face() {}
|
||||
Face(Allocator& allocator) : faceVertices(allocator) {}
|
||||
|
||||
/// Constructor
|
||||
Face(std::vector<uint> vertices) : faceVertices(vertices) {}
|
||||
Face(List<uint> vertices) : faceVertices(vertices) {}
|
||||
};
|
||||
|
||||
struct Vertex {
|
||||
|
@ -70,19 +70,24 @@ class HalfEdgeStructure {
|
|||
|
||||
private:
|
||||
|
||||
/// Reference to a memory allocator
|
||||
Allocator& mAllocator;
|
||||
|
||||
/// All the faces
|
||||
std::vector<Face> mFaces;
|
||||
List<Face> mFaces;
|
||||
|
||||
/// All the vertices
|
||||
std::vector<Vertex> mVertices;
|
||||
List<Vertex> mVertices;
|
||||
|
||||
/// All the half-edges
|
||||
std::vector<Edge> mEdges;
|
||||
List<Edge> mEdges;
|
||||
|
||||
public:
|
||||
|
||||
/// Constructor
|
||||
HalfEdgeStructure() = default;
|
||||
HalfEdgeStructure(Allocator& allocator, uint facesCapacity, uint verticesCapacity,
|
||||
uint edgesCapacity) :mAllocator(allocator), mFaces(allocator, facesCapacity),
|
||||
mVertices(allocator, verticesCapacity), mEdges(allocator, edgesCapacity) {}
|
||||
|
||||
/// Destructor
|
||||
~HalfEdgeStructure() = default;
|
||||
|
@ -94,7 +99,7 @@ class HalfEdgeStructure {
|
|||
uint addVertex(uint vertexPointIndex);
|
||||
|
||||
/// Add a face
|
||||
void addFace(std::vector<uint> faceVertices);
|
||||
void addFace(List<uint> faceVertices);
|
||||
|
||||
/// Return the number of faces
|
||||
uint getNbFaces() const;
|
||||
|
@ -119,16 +124,16 @@ class HalfEdgeStructure {
|
|||
// Add a vertex
|
||||
inline uint HalfEdgeStructure::addVertex(uint vertexPointIndex) {
|
||||
Vertex vertex(vertexPointIndex);
|
||||
mVertices.push_back(vertex);
|
||||
mVertices.add(vertex);
|
||||
return mVertices.size() - 1;
|
||||
}
|
||||
|
||||
// Add a face
|
||||
inline void HalfEdgeStructure::addFace(std::vector<uint> faceVertices) {
|
||||
inline void HalfEdgeStructure::addFace(List<uint> faceVertices) {
|
||||
|
||||
// Create a new face
|
||||
Face face(faceVertices);
|
||||
mFaces.push_back(face);
|
||||
mFaces.add(face);
|
||||
}
|
||||
|
||||
// Return the number of faces
|
||||
|
|
|
@ -34,7 +34,7 @@ void MiddlePhaseTriangleCallback::testTriangle(const Vector3* trianglePoints, co
|
|||
// Create a triangle collision shape (the allocated memory for the TriangleShape will be released in the
|
||||
// destructor of the corresponding NarrowPhaseInfo.
|
||||
TriangleShape* triangleShape = new (mAllocator.allocate(sizeof(TriangleShape)))
|
||||
TriangleShape(trianglePoints, verticesNormals, shapeId);
|
||||
TriangleShape(trianglePoints, verticesNormals, shapeId, mAllocator);
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
|
||||
|
|
|
@ -52,11 +52,13 @@ NarrowPhaseInfo::~NarrowPhaseInfo() {
|
|||
// Release the memory of the TriangleShape (this memory was allocated in the
|
||||
// MiddlePhaseTriangleCallback::testTriangle() method)
|
||||
if (collisionShape1->getName() == CollisionShapeName::TRIANGLE) {
|
||||
collisionShape1->~CollisionShape();
|
||||
collisionShapeAllocator.release(collisionShape1, sizeof(TriangleShape));
|
||||
}
|
||||
if (collisionShape2->getName() == CollisionShapeName::TRIANGLE) {
|
||||
collisionShapeAllocator.release(collisionShape2, sizeof(TriangleShape));
|
||||
}
|
||||
collisionShape2->~CollisionShape();
|
||||
collisionShapeAllocator.release(collisionShape2, sizeof(TriangleShape));
|
||||
}
|
||||
}
|
||||
|
||||
// Add a new contact point
|
||||
|
|
|
@ -25,6 +25,7 @@
|
|||
|
||||
// Libraries
|
||||
#include "PolyhedronMesh.h"
|
||||
#include "memory/MemoryManager.h"
|
||||
|
||||
using namespace reactphysics3d;
|
||||
|
||||
|
@ -34,7 +35,11 @@ using namespace reactphysics3d;
|
|||
* Create a polyhedron mesh given an array of polygons.
|
||||
* @param polygonVertexArray Pointer to the array of polygons and their vertices
|
||||
*/
|
||||
PolyhedronMesh::PolyhedronMesh(PolygonVertexArray* polygonVertexArray) {
|
||||
PolyhedronMesh::PolyhedronMesh(PolygonVertexArray* polygonVertexArray)
|
||||
: mHalfEdgeStructure(MemoryManager::getDefaultAllocator(),
|
||||
polygonVertexArray->getNbFaces(),
|
||||
polygonVertexArray->getNbVertices(),
|
||||
(polygonVertexArray->getNbFaces() + polygonVertexArray->getNbVertices() - 2) * 2) {
|
||||
|
||||
mPolygonVertexArray = polygonVertexArray;
|
||||
|
||||
|
@ -70,11 +75,11 @@ void PolyhedronMesh::createHalfEdgeStructure() {
|
|||
// Get the polygon face
|
||||
PolygonVertexArray::PolygonFace* face = mPolygonVertexArray->getPolygonFace(f);
|
||||
|
||||
std::vector<uint> faceVertices;
|
||||
List<uint> faceVertices(MemoryManager::getDefaultAllocator(), face->nbVertices);
|
||||
|
||||
// For each vertex of the face
|
||||
for (uint v=0; v < face->nbVertices; v++) {
|
||||
faceVertices.push_back(mPolygonVertexArray->getVertexIndexInFace(f, v));
|
||||
faceVertices.add(mPolygonVertexArray->getVertexIndexInFace(f, v));
|
||||
}
|
||||
|
||||
assert(faceVertices.size() >= 3);
|
||||
|
|
|
@ -30,6 +30,7 @@
|
|||
#include "mathematics/mathematics.h"
|
||||
#include "HalfEdgeStructure.h"
|
||||
#include "collision/PolygonVertexArray.h"
|
||||
#include "memory/DefaultAllocator.h"
|
||||
#include <vector>
|
||||
|
||||
namespace reactphysics3d {
|
||||
|
|
|
@ -35,9 +35,9 @@ using namespace reactphysics3d;
|
|||
* @param transform Transformation from collision shape local-space to body local-space
|
||||
* @param mass Mass of the collision shape (in kilograms)
|
||||
*/
|
||||
ProxyShape::ProxyShape(CollisionBody* body, CollisionShape* shape, const Transform& transform, decimal mass)
|
||||
ProxyShape::ProxyShape(CollisionBody* body, CollisionShape* shape, const Transform& transform, decimal mass, Allocator& allocator)
|
||||
:mBody(body), mCollisionShape(shape), mLocalToBodyTransform(transform), mMass(mass),
|
||||
mNext(nullptr), mBroadPhaseID(-1), mCollisionCategoryBits(0x0001), mCollideWithMaskBits(0xFFFF) {
|
||||
mNext(nullptr), mBroadPhaseID(-1), mCollisionCategoryBits(0x0001), mCollideWithMaskBits(0xFFFF), mAllocator(allocator) {
|
||||
|
||||
}
|
||||
|
||||
|
@ -76,7 +76,7 @@ bool ProxyShape::raycast(const Ray& ray, RaycastInfo& raycastInfo) {
|
|||
worldToLocalTransform * ray.point2,
|
||||
ray.maxFraction);
|
||||
|
||||
bool isHit = mCollisionShape->raycast(rayLocal, raycastInfo, this);
|
||||
bool isHit = mCollisionShape->raycast(rayLocal, raycastInfo, this, mAllocator);
|
||||
|
||||
// Convert the raycast info into world-space
|
||||
raycastInfo.worldPoint = localToWorldTransform * raycastInfo.worldPoint;
|
||||
|
|
|
@ -82,6 +82,9 @@ class ProxyShape {
|
|||
/// proxy shape will collide with every collision categories by default.
|
||||
unsigned short mCollideWithMaskBits;
|
||||
|
||||
/// Memory allocator
|
||||
Allocator& mAllocator;
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
|
||||
/// Pointer to the profiler
|
||||
|
@ -100,7 +103,7 @@ class ProxyShape {
|
|||
|
||||
/// Constructor
|
||||
ProxyShape(CollisionBody* body, CollisionShape* shape,
|
||||
const Transform& transform, decimal mass);
|
||||
const Transform& transform, decimal mass, Allocator& allocator);
|
||||
|
||||
/// Destructor
|
||||
virtual ~ProxyShape();
|
||||
|
|
|
@ -835,9 +835,8 @@ bool SATAlgorithm::computePolyhedronVsPolyhedronFaceContactPoints(bool isMinPene
|
|||
List<Vector3> planesPoints(mMemoryAllocator, nbIncidentFaceVertices); // Points on the clipping planes
|
||||
|
||||
// Get all the vertices of the incident face (in the reference local-space)
|
||||
std::vector<uint>::const_iterator it;
|
||||
for (it = incidentFace.faceVertices.begin(); it != incidentFace.faceVertices.end(); ++it) {
|
||||
const Vector3 faceVertexIncidentSpace = incidentPolyhedron->getVertexPosition(*it);
|
||||
for (uint i=0; i < incidentFace.faceVertices.size(); i++) {
|
||||
const Vector3 faceVertexIncidentSpace = incidentPolyhedron->getVertexPosition(incidentFace.faceVertices[i]);
|
||||
polygonVertices.add(incidentToReferenceTransform * faceVertexIncidentSpace);
|
||||
}
|
||||
|
||||
|
|
|
@ -27,6 +27,7 @@
|
|||
#include "BoxShape.h"
|
||||
#include "collision/ProxyShape.h"
|
||||
#include "configuration.h"
|
||||
#include "memory/MemoryManager.h"
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
|
||||
|
@ -37,7 +38,9 @@ using namespace reactphysics3d;
|
|||
* @param extent The vector with the three extents of the box (in meters)
|
||||
*/
|
||||
BoxShape::BoxShape(const Vector3& extent)
|
||||
: ConvexPolyhedronShape(CollisionShapeName::BOX), mExtent(extent) {
|
||||
: ConvexPolyhedronShape(CollisionShapeName::BOX), mExtent(extent),
|
||||
mHalfEdgeStructure(MemoryManager::getDefaultAllocator(), 6, 8, 24) {
|
||||
|
||||
assert(extent.x > decimal(0.0));
|
||||
assert(extent.y > decimal(0.0));
|
||||
assert(extent.z > decimal(0.0));
|
||||
|
@ -52,19 +55,21 @@ BoxShape::BoxShape(const Vector3& extent)
|
|||
mHalfEdgeStructure.addVertex(6);
|
||||
mHalfEdgeStructure.addVertex(7);
|
||||
|
||||
DefaultAllocator& allocator = MemoryManager::getDefaultAllocator();
|
||||
|
||||
// Faces
|
||||
std::vector<uint> face0;
|
||||
face0.push_back(0); face0.push_back(1); face0.push_back(2); face0.push_back(3);
|
||||
std::vector<uint> face1;
|
||||
face1.push_back(1); face1.push_back(5); face1.push_back(6); face1.push_back(2);
|
||||
std::vector<uint> face2;
|
||||
face2.push_back(4); face2.push_back(7); face2.push_back(6); face2.push_back(5);
|
||||
std::vector<uint> face3;
|
||||
face3.push_back(4); face3.push_back(0); face3.push_back(3); face3.push_back(7);
|
||||
std::vector<uint> face4;
|
||||
face4.push_back(4); face4.push_back(5); face4.push_back(1); face4.push_back(0);
|
||||
std::vector<uint> face5;
|
||||
face5.push_back(2); face5.push_back(6); face5.push_back(7); face5.push_back(3);
|
||||
List<uint> face0(allocator, 4);
|
||||
face0.add(0); face0.add(1); face0.add(2); face0.add(3);
|
||||
List<uint> face1(allocator, 4);
|
||||
face1.add(1); face1.add(5); face1.add(6); face1.add(2);
|
||||
List<uint> face2(allocator, 4);
|
||||
face2.add(4); face2.add(7); face2.add(6); face2.add(5);
|
||||
List<uint> face3(allocator, 4);
|
||||
face3.add(4); face3.add(0); face3.add(3); face3.add(7);
|
||||
List<uint> face4(allocator, 4);
|
||||
face4.add(4); face4.add(5); face4.add(1); face4.add(0);
|
||||
List<uint> face5(allocator, 4);
|
||||
face5.add(2); face5.add(6); face5.add(7); face5.add(3);
|
||||
|
||||
mHalfEdgeStructure.addFace(face0);
|
||||
mHalfEdgeStructure.addFace(face1);
|
||||
|
@ -93,7 +98,7 @@ void BoxShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const
|
|||
}
|
||||
|
||||
// Raycast method with feedback information
|
||||
bool BoxShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const {
|
||||
bool BoxShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const {
|
||||
|
||||
Vector3 rayDirection = ray.point2 - ray.point1;
|
||||
decimal tMin = DECIMAL_SMALLEST;
|
||||
|
|
|
@ -31,7 +31,7 @@
|
|||
#include "ConvexPolyhedronShape.h"
|
||||
#include "body/CollisionBody.h"
|
||||
#include "mathematics/mathematics.h"
|
||||
|
||||
#include "memory/DefaultAllocator.h"
|
||||
|
||||
/// ReactPhysics3D namespace
|
||||
namespace reactphysics3d {
|
||||
|
@ -64,7 +64,7 @@ class BoxShape : public ConvexPolyhedronShape {
|
|||
virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override;
|
||||
|
||||
/// Raycast method with feedback information
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const override;
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const override;
|
||||
|
||||
/// Return the number of bytes used by the collision shape
|
||||
virtual size_t getSizeInBytes() const override;
|
||||
|
|
|
@ -85,7 +85,7 @@ bool CapsuleShape::testPointInside(const Vector3& localPoint, ProxyShape* proxyS
|
|||
}
|
||||
|
||||
// Raycast method with feedback information
|
||||
bool CapsuleShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const {
|
||||
bool CapsuleShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const {
|
||||
|
||||
const Vector3 n = ray.point2 - ray.point1;
|
||||
|
||||
|
|
|
@ -62,7 +62,7 @@ class CapsuleShape : public ConvexShape {
|
|||
virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override;
|
||||
|
||||
/// Raycast method with feedback information
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const override;
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const override;
|
||||
|
||||
/// Raycasting method between a ray one of the two spheres end cap of the capsule
|
||||
bool raycastWithSphereEndCap(const Vector3& point1, const Vector3& point2,
|
||||
|
|
|
@ -87,7 +87,7 @@ class CollisionShape {
|
|||
virtual bool testPointInside(const Vector3& worldPoint, ProxyShape* proxyShape) const=0;
|
||||
|
||||
/// Raycast method with feedback information
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const=0;
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const=0;
|
||||
|
||||
/// Return the number of bytes used by the collision shape
|
||||
virtual size_t getSizeInBytes() const = 0;
|
||||
|
|
|
@ -111,12 +111,12 @@ void ConcaveMeshShape::testAllTriangles(TriangleCallback& callback, const AABB&
|
|||
// Raycast method with feedback information
|
||||
/// Note that only the first triangle hit by the ray in the mesh will be returned, even if
|
||||
/// the ray hits many triangles.
|
||||
bool ConcaveMeshShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const {
|
||||
bool ConcaveMeshShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const {
|
||||
|
||||
PROFILE("ConcaveMeshShape::raycast()", mProfiler);
|
||||
|
||||
// Create the callback object that will compute ray casting against triangles
|
||||
ConcaveMeshRaycastCallback raycastCallback(mDynamicAABBTree, *this, proxyShape, raycastInfo, ray);
|
||||
ConcaveMeshRaycastCallback raycastCallback(mDynamicAABBTree, *this, proxyShape, raycastInfo, ray, allocator);
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
|
||||
|
@ -180,7 +180,7 @@ void ConcaveMeshRaycastCallback::raycastTriangles() {
|
|||
mConcaveMeshShape.getTriangleVerticesNormals(data[0], data[1], verticesNormals);
|
||||
|
||||
// Create a triangle collision shape
|
||||
TriangleShape triangleShape(trianglePoints, verticesNormals, mConcaveMeshShape.computeTriangleShapeId(data[0], data[1]));
|
||||
TriangleShape triangleShape(trianglePoints, verticesNormals, mConcaveMeshShape.computeTriangleShapeId(data[0], data[1]), mAllocator);
|
||||
triangleShape.setRaycastTestType(mConcaveMeshShape.getRaycastTestType());
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
|
@ -192,7 +192,7 @@ void ConcaveMeshRaycastCallback::raycastTriangles() {
|
|||
|
||||
// Ray casting test against the collision shape
|
||||
RaycastInfo raycastInfo;
|
||||
bool isTriangleHit = triangleShape.raycast(mRay, raycastInfo, mProxyShape);
|
||||
bool isTriangleHit = triangleShape.raycast(mRay, raycastInfo, mProxyShape, mAllocator);
|
||||
|
||||
// If the ray hit the collision shape
|
||||
if (isTriangleHit && raycastInfo.hitFraction <= smallestHitFraction) {
|
||||
|
|
|
@ -77,6 +77,7 @@ class ConcaveMeshRaycastCallback : public DynamicAABBTreeRaycastCallback {
|
|||
RaycastInfo& mRaycastInfo;
|
||||
const Ray& mRay;
|
||||
bool mIsHit;
|
||||
Allocator& mAllocator;
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
|
||||
|
@ -89,9 +90,9 @@ class ConcaveMeshRaycastCallback : public DynamicAABBTreeRaycastCallback {
|
|||
|
||||
// Constructor
|
||||
ConcaveMeshRaycastCallback(const DynamicAABBTree& dynamicAABBTree, const ConcaveMeshShape& concaveMeshShape,
|
||||
ProxyShape* proxyShape, RaycastInfo& raycastInfo, const Ray& ray)
|
||||
ProxyShape* proxyShape, RaycastInfo& raycastInfo, const Ray& ray, Allocator& allocator)
|
||||
: mDynamicAABBTree(dynamicAABBTree), mConcaveMeshShape(concaveMeshShape), mProxyShape(proxyShape),
|
||||
mRaycastInfo(raycastInfo), mRay(ray), mIsHit(false) {
|
||||
mRaycastInfo(raycastInfo), mRay(ray), mIsHit(false), mAllocator(allocator) {
|
||||
|
||||
}
|
||||
|
||||
|
@ -141,7 +142,7 @@ class ConcaveMeshShape : public ConcaveShape {
|
|||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Raycast method with feedback information
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const override;
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const override;
|
||||
|
||||
/// Return the number of bytes used by the collision shape
|
||||
virtual size_t getSizeInBytes() const override;
|
||||
|
|
|
@ -112,7 +112,7 @@ void ConvexMeshShape::recalculateBounds() {
|
|||
}
|
||||
|
||||
// Raycast method with feedback information
|
||||
bool ConvexMeshShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const {
|
||||
bool ConvexMeshShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const {
|
||||
return proxyShape->mBody->mWorld.mCollisionDetection.mNarrowPhaseGJKAlgorithm.raycast(
|
||||
ray, proxyShape, raycastInfo);
|
||||
}
|
||||
|
|
|
@ -77,7 +77,7 @@ class ConvexMeshShape : public ConvexPolyhedronShape {
|
|||
virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override;
|
||||
|
||||
/// Raycast method with feedback information
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const override;
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const override;
|
||||
|
||||
/// Return the number of bytes used by the collision shape
|
||||
virtual size_t getSizeInBytes() const override;
|
||||
|
|
|
@ -212,14 +212,14 @@ void HeightFieldShape::computeMinMaxGridCoordinates(int* minCoords, int* maxCoor
|
|||
// Raycast method with feedback information
|
||||
/// Note that only the first triangle hit by the ray in the mesh will be returned, even if
|
||||
/// the ray hits many triangles.
|
||||
bool HeightFieldShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const {
|
||||
bool HeightFieldShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const {
|
||||
|
||||
// TODO : Implement raycasting without using an AABB for the ray
|
||||
// but using a dynamic AABB tree or octree instead
|
||||
|
||||
PROFILE("HeightFieldShape::raycast()", mProfiler);
|
||||
|
||||
TriangleOverlapCallback triangleCallback(ray, proxyShape, raycastInfo, *this);
|
||||
TriangleOverlapCallback triangleCallback(ray, proxyShape, raycastInfo, *this, allocator);
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
|
||||
|
@ -266,7 +266,7 @@ Vector3 HeightFieldShape::getVertexAt(int x, int y) const {
|
|||
void TriangleOverlapCallback::testTriangle(const Vector3* trianglePoints, const Vector3* verticesNormals, uint shapeId) {
|
||||
|
||||
// Create a triangle collision shape
|
||||
TriangleShape triangleShape(trianglePoints, verticesNormals, shapeId);
|
||||
TriangleShape triangleShape(trianglePoints, verticesNormals, shapeId, mAllocator);
|
||||
triangleShape.setRaycastTestType(mHeightFieldShape.getRaycastTestType());
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
|
@ -278,7 +278,7 @@ void TriangleOverlapCallback::testTriangle(const Vector3* trianglePoints, const
|
|||
|
||||
// Ray casting test against the collision shape
|
||||
RaycastInfo raycastInfo;
|
||||
bool isTriangleHit = triangleShape.raycast(mRay, raycastInfo, mProxyShape);
|
||||
bool isTriangleHit = triangleShape.raycast(mRay, raycastInfo, mProxyShape, mAllocator);
|
||||
|
||||
// If the ray hit the collision shape
|
||||
if (isTriangleHit && raycastInfo.hitFraction <= mSmallestHitFraction) {
|
||||
|
|
|
@ -49,6 +49,7 @@ class TriangleOverlapCallback : public TriangleCallback {
|
|||
bool mIsHit;
|
||||
decimal mSmallestHitFraction;
|
||||
const HeightFieldShape& mHeightFieldShape;
|
||||
Allocator& mAllocator;
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
|
||||
|
@ -61,9 +62,9 @@ class TriangleOverlapCallback : public TriangleCallback {
|
|||
|
||||
// Constructor
|
||||
TriangleOverlapCallback(const Ray& ray, ProxyShape* proxyShape, RaycastInfo& raycastInfo,
|
||||
const HeightFieldShape& heightFieldShape)
|
||||
const HeightFieldShape& heightFieldShape, Allocator& allocator)
|
||||
: mRay(ray), mProxyShape(proxyShape), mRaycastInfo(raycastInfo),
|
||||
mHeightFieldShape (heightFieldShape) {
|
||||
mHeightFieldShape (heightFieldShape), mAllocator(allocator) {
|
||||
mIsHit = false;
|
||||
mSmallestHitFraction = mRay.maxFraction;
|
||||
}
|
||||
|
@ -143,7 +144,7 @@ class HeightFieldShape : public ConcaveShape {
|
|||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Raycast method with feedback information
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const override;
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const override;
|
||||
|
||||
/// Return the number of bytes used by the collision shape
|
||||
virtual size_t getSizeInBytes() const override;
|
||||
|
|
|
@ -41,7 +41,7 @@ SphereShape::SphereShape(decimal radius)
|
|||
}
|
||||
|
||||
// Raycast method with feedback information
|
||||
bool SphereShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const {
|
||||
bool SphereShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const {
|
||||
|
||||
const Vector3 m = ray.point1;
|
||||
decimal c = m.dot(m) - mMargin * mMargin;
|
||||
|
|
|
@ -55,7 +55,7 @@ class SphereShape : public ConvexShape {
|
|||
virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override;
|
||||
|
||||
/// Raycast method with feedback information
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const override;
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const override;
|
||||
|
||||
/// Return the number of bytes used by the collision shape
|
||||
virtual size_t getSizeInBytes() const override;
|
||||
|
|
|
@ -33,6 +33,7 @@
|
|||
|
||||
using namespace reactphysics3d;
|
||||
|
||||
|
||||
// Constructor
|
||||
/**
|
||||
* Do not use this constructor. It is supposed to be used internally only.
|
||||
|
@ -43,8 +44,9 @@ using namespace reactphysics3d;
|
|||
* @param verticesNormals The three vertices normals for smooth mesh collision
|
||||
* @param margin The collision margin (in meters) around the collision shape
|
||||
*/
|
||||
TriangleShape::TriangleShape(const Vector3* vertices, const Vector3* verticesNormals, uint shapeId)
|
||||
: ConvexPolyhedronShape(CollisionShapeName::TRIANGLE) {
|
||||
TriangleShape::TriangleShape(const Vector3* vertices, const Vector3* verticesNormals, uint shapeId,
|
||||
Allocator& allocator)
|
||||
: ConvexPolyhedronShape(CollisionShapeName::TRIANGLE), mFaces{HalfEdgeStructure::Face(allocator), HalfEdgeStructure::Face(allocator)} {
|
||||
|
||||
mPoints[0] = vertices[0];
|
||||
mPoints[1] = vertices[1];
|
||||
|
@ -60,9 +62,10 @@ TriangleShape::TriangleShape(const Vector3* vertices, const Vector3* verticesNor
|
|||
|
||||
// Faces
|
||||
for (uint i=0; i<2; i++) {
|
||||
mFaces[i].faceVertices.push_back(0);
|
||||
mFaces[i].faceVertices.push_back(1);
|
||||
mFaces[i].faceVertices.push_back(2);
|
||||
mFaces[i].faceVertices.reserve(3);
|
||||
mFaces[i].faceVertices.add(0);
|
||||
mFaces[i].faceVertices.add(1);
|
||||
mFaces[i].faceVertices.add(2);
|
||||
mFaces[i].edgeIndex = i;
|
||||
}
|
||||
|
||||
|
@ -208,7 +211,7 @@ Vector3 TriangleShape::computeSmoothLocalContactNormalForTriangle(const Vector3&
|
|||
// Raycast method with feedback information
|
||||
/// This method use the line vs triangle raycasting technique described in
|
||||
/// Real-time Collision Detection by Christer Ericson.
|
||||
bool TriangleShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const {
|
||||
bool TriangleShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const {
|
||||
|
||||
PROFILE("TriangleShape::raycast()", mProfiler);
|
||||
|
||||
|
|
|
@ -60,6 +60,7 @@ class TriangleShape : public ConvexPolyhedronShape {
|
|||
|
||||
// -------------------- Attribute -------------------- //
|
||||
|
||||
|
||||
/// Three points of the triangle
|
||||
Vector3 mPoints[3];
|
||||
|
||||
|
@ -90,7 +91,8 @@ class TriangleShape : public ConvexPolyhedronShape {
|
|||
virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override;
|
||||
|
||||
/// Raycast method with feedback information
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const override;
|
||||
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape,
|
||||
Allocator& allocator) const override;
|
||||
|
||||
/// Return the number of bytes used by the collision shape
|
||||
virtual size_t getSizeInBytes() const override;
|
||||
|
@ -110,7 +112,8 @@ class TriangleShape : public ConvexPolyhedronShape {
|
|||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Constructor
|
||||
TriangleShape(const Vector3* vertices, const Vector3* verticesNormals, uint shapeId);
|
||||
TriangleShape(const Vector3* vertices, const Vector3* verticesNormals,
|
||||
uint shapeId, Allocator& allocator);
|
||||
|
||||
/// Destructor
|
||||
virtual ~TriangleShape() override = default;
|
||||
|
|
|
@ -44,59 +44,38 @@ class List {
|
|||
|
||||
// -------------------- Attributes -------------------- //
|
||||
|
||||
/// Pointer to the first element of the list
|
||||
T* mElements;
|
||||
/// Buffer for the list elements
|
||||
void* mBuffer;
|
||||
|
||||
/// Number of elements in the list
|
||||
uint mSize;
|
||||
size_t mSize;
|
||||
|
||||
/// Number of allocated elements in the list
|
||||
uint mCapacity;
|
||||
size_t mCapacity;
|
||||
|
||||
/// Memory allocator
|
||||
Allocator& mAllocator;
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Allocate more memory for the elements of the list
|
||||
void allocateMemory(uint nbElementsToAllocate) {
|
||||
|
||||
assert(nbElementsToAllocate > mCapacity);
|
||||
|
||||
// Allocate memory for the new array
|
||||
void* newMemory = mAllocator.allocate(nbElementsToAllocate * sizeof(T));
|
||||
|
||||
if (mElements != nullptr) {
|
||||
|
||||
// Copy the elements to the new allocated memory location
|
||||
std::memcpy(newMemory, static_cast<void*>(mElements), mSize * sizeof(T));
|
||||
|
||||
// Release the previously allocated memory
|
||||
mAllocator.release(mElements, mCapacity * sizeof(T));
|
||||
}
|
||||
|
||||
mElements = static_cast<T*>(newMemory);
|
||||
|
||||
mCapacity = nbElementsToAllocate;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Constructor
|
||||
List(Allocator& allocator, uint capacity = 0)
|
||||
: mElements(nullptr), mSize(0), mCapacity(0), mAllocator(allocator) {
|
||||
List(Allocator& allocator, size_t capacity = 0)
|
||||
: mBuffer(nullptr), mSize(0), mCapacity(0), mAllocator(allocator) {
|
||||
|
||||
if (capacity > 0) {
|
||||
|
||||
// Allocate memory
|
||||
allocateMemory(capacity);
|
||||
reserve(capacity);
|
||||
}
|
||||
}
|
||||
|
||||
/// Copy constructor
|
||||
List(const List<T>& list) : mElements(nullptr), mSize(0), mCapacity(0), mAllocator(list.mAllocator) {
|
||||
List(const List<T>& list) : mBuffer(nullptr), mSize(0), mCapacity(0), mAllocator(list.mAllocator) {
|
||||
|
||||
// All all the elements of the list to the current one
|
||||
addRange(list);
|
||||
|
@ -112,22 +91,66 @@ class List {
|
|||
clear();
|
||||
|
||||
// Release the memory allocated on the heap
|
||||
mAllocator.release(static_cast<void*>(mElements), mCapacity * sizeof(T));
|
||||
mAllocator.release(mBuffer, mCapacity * sizeof(T));
|
||||
}
|
||||
}
|
||||
|
||||
/// Allocate memory for a given number of elements
|
||||
void reserve(size_t capacity) {
|
||||
|
||||
if (capacity <= mCapacity) return;
|
||||
|
||||
// Allocate memory for the new array
|
||||
void* newMemory = mAllocator.allocate(capacity * sizeof(T));
|
||||
|
||||
if (mBuffer != nullptr) {
|
||||
|
||||
// Copy the elements to the new allocated memory location
|
||||
std::memcpy(newMemory, mBuffer, mSize * sizeof(T));
|
||||
|
||||
// Release the previously allocated memory
|
||||
mAllocator.release(mBuffer, mCapacity * sizeof(T));
|
||||
}
|
||||
|
||||
mBuffer = newMemory;
|
||||
assert(mBuffer != nullptr);
|
||||
|
||||
mCapacity = capacity;
|
||||
}
|
||||
|
||||
/// Add an element into the list
|
||||
void add(const T& element) {
|
||||
|
||||
// If we need to allocate more memory
|
||||
if (mSize == mCapacity) {
|
||||
allocateMemory(mCapacity == 0 ? 1 : mCapacity * 2);
|
||||
reserve(mCapacity == 0 ? 1 : mCapacity * 2);
|
||||
}
|
||||
|
||||
mElements[mSize] = element;
|
||||
// Use the copy-constructor to construct the element
|
||||
new (static_cast<char*>(mBuffer) + mSize * sizeof(T)) T(element);
|
||||
|
||||
mSize++;
|
||||
}
|
||||
|
||||
/// Remove an element from the list at a given index
|
||||
void remove(uint index) {
|
||||
|
||||
assert(index >= 0 && index < mSize);
|
||||
|
||||
// Call the destructor
|
||||
(static_cast<T*>(mBuffer)[index]).~T();
|
||||
|
||||
mSize--;
|
||||
|
||||
if (index != mSize) {
|
||||
|
||||
// Move the elements to fill in the empty slot
|
||||
char* dest = static_cast<char*>(mBuffer) + index * sizeof(T);
|
||||
char* src = dest + sizeof(T);
|
||||
std::memcpy(static_cast<void*>(dest), static_cast<void*>(src), (mSize - index) * sizeof(T));
|
||||
}
|
||||
}
|
||||
|
||||
/// Append another list to the current one
|
||||
void addRange(const List<T>& list) {
|
||||
|
||||
|
@ -135,12 +158,13 @@ class List {
|
|||
if (mSize + list.size() > mCapacity) {
|
||||
|
||||
// Allocate memory
|
||||
allocateMemory(mSize + list.size());
|
||||
reserve(mSize + list.size());
|
||||
}
|
||||
|
||||
// Add the elements of the list to the current one
|
||||
for(uint i=0; i<list.size(); i++) {
|
||||
mElements[mSize] = list[i];
|
||||
|
||||
new (static_cast<char*>(mBuffer) + mSize * sizeof(T)) T(list[i]);
|
||||
mSize++;
|
||||
}
|
||||
}
|
||||
|
@ -150,27 +174,32 @@ class List {
|
|||
|
||||
// Call the destructor of each element
|
||||
for (uint i=0; i < mSize; i++) {
|
||||
mElements[i].~T();
|
||||
(static_cast<T*>(mBuffer)[i]).~T();
|
||||
}
|
||||
|
||||
mSize = 0;
|
||||
}
|
||||
|
||||
/// Return the number of elments in the list
|
||||
uint size() const {
|
||||
size_t size() const {
|
||||
return mSize;
|
||||
}
|
||||
|
||||
/// Return the capacity of the list
|
||||
size_t capacity() const {
|
||||
return mCapacity;
|
||||
}
|
||||
|
||||
/// Overloaded index operator
|
||||
T& operator[](const uint index) {
|
||||
assert(index >= 0 && index < mSize);
|
||||
return mElements[index];
|
||||
return (static_cast<T*>(mBuffer)[index]);
|
||||
}
|
||||
|
||||
/// Overloaded const index operator
|
||||
const T& operator[](const uint index) const {
|
||||
assert(index >= 0 && index < mSize);
|
||||
return mElements[index];
|
||||
return (static_cast<T*>(mBuffer)[index]);
|
||||
}
|
||||
|
||||
/// Overloaded assignment operator
|
||||
|
|
|
@ -187,4 +187,3 @@ AABB CollisionWorld::getWorldAABB(const ProxyShape* proxyShape) const {
|
|||
|
||||
return mCollisionDetection.getWorldAABB(proxyShape);
|
||||
}
|
||||
|
||||
|
|
|
@ -39,6 +39,7 @@
|
|||
#include "collision/CollisionDetection.h"
|
||||
#include "constraint/Joint.h"
|
||||
#include "constraint/ContactPoint.h"
|
||||
#include "memory/DefaultAllocator.h"
|
||||
#include "memory/PoolAllocator.h"
|
||||
#include "EventListener.h"
|
||||
|
||||
|
|
|
@ -116,20 +116,16 @@ void OverlappingPair::addPotentialContactPoints(NarrowPhaseInfo* narrowPhaseInfo
|
|||
// Clear all the potential contact manifolds
|
||||
void OverlappingPair::clearPotentialContactManifolds() {
|
||||
|
||||
// Do we need to release memory
|
||||
if (mTempMemoryAllocator.isReleaseNeeded()) {
|
||||
ContactManifoldInfo* element = mPotentialContactManifolds;
|
||||
while(element != nullptr) {
|
||||
|
||||
ContactManifoldInfo* element = mPotentialContactManifolds;
|
||||
while(element != nullptr) {
|
||||
// Remove the proxy collision shape
|
||||
ContactManifoldInfo* elementToRemove = element;
|
||||
element = element->getNext();
|
||||
|
||||
// Remove the proxy collision shape
|
||||
ContactManifoldInfo* elementToRemove = element;
|
||||
element = element->getNext();
|
||||
|
||||
// Delete the element
|
||||
elementToRemove->~ContactManifoldInfo();
|
||||
mTempMemoryAllocator.release(elementToRemove, sizeof(ContactManifoldInfo));
|
||||
}
|
||||
// Delete the element
|
||||
elementToRemove->~ContactManifoldInfo();
|
||||
mTempMemoryAllocator.release(elementToRemove, sizeof(ContactManifoldInfo));
|
||||
}
|
||||
|
||||
mPotentialContactManifolds = nullptr;
|
||||
|
|
32
src/memory/MemoryManager.cpp
Normal file
32
src/memory/MemoryManager.cpp
Normal file
|
@ -0,0 +1,32 @@
|
|||
/********************************************************************************
|
||||
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
|
||||
* Copyright (c) 2010-2015 Daniel Chappuis *
|
||||
*********************************************************************************
|
||||
* *
|
||||
* This software is provided 'as-is', without any express or implied warranty. *
|
||||
* In no event will the authors be held liable for any damages arising from the *
|
||||
* use of this software. *
|
||||
* *
|
||||
* Permission is granted to anyone to use this software for any purpose, *
|
||||
* including commercial applications, and to alter it and redistribute it *
|
||||
* freely, subject to the following restrictions: *
|
||||
* *
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||||
* that you wrote the original software. If you use this software in a *
|
||||
* product, an acknowledgment in the product documentation would be *
|
||||
* appreciated but is not required. *
|
||||
* *
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||||
* misrepresented as being the original software. *
|
||||
* *
|
||||
* 3. This notice may not be removed or altered from any source distribution. *
|
||||
* *
|
||||
********************************************************************************/
|
||||
|
||||
// Libraries
|
||||
#include "MemoryManager.h"
|
||||
|
||||
using namespace reactphysics3d;
|
||||
|
||||
// Static variables
|
||||
DefaultAllocator MemoryManager::mDefaultAllocator;
|
74
src/memory/MemoryManager.h
Normal file
74
src/memory/MemoryManager.h
Normal file
|
@ -0,0 +1,74 @@
|
|||
/********************************************************************************
|
||||
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
|
||||
* Copyright (c) 2010-2016 Daniel Chappuis *
|
||||
*********************************************************************************
|
||||
* *
|
||||
* This software is provided 'as-is', without any express or implied warranty. *
|
||||
* In no event will the authors be held liable for any damages arising from the *
|
||||
* use of this software. *
|
||||
* *
|
||||
* Permission is granted to anyone to use this software for any purpose, *
|
||||
* including commercial applications, and to alter it and redistribute it *
|
||||
* freely, subject to the following restrictions: *
|
||||
* *
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||||
* that you wrote the original software. If you use this software in a *
|
||||
* product, an acknowledgment in the product documentation would be *
|
||||
* appreciated but is not required. *
|
||||
* *
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||||
* misrepresented as being the original software. *
|
||||
* *
|
||||
* 3. This notice may not be removed or altered from any source distribution. *
|
||||
* *
|
||||
********************************************************************************/
|
||||
|
||||
#ifndef REACTPHYSICS3D_MEMORY_MANAGER_H
|
||||
#define REACTPHYSICS3D_MEMORY_MANAGER_H
|
||||
|
||||
// Libraries
|
||||
#include "memory/DefaultAllocator.h"
|
||||
|
||||
/// Namespace ReactPhysics3D
|
||||
namespace reactphysics3d {
|
||||
|
||||
// Class MemoryManager
|
||||
/**
|
||||
* The memory manager is used to store the different memory allocators that are used
|
||||
* by the library.
|
||||
*/
|
||||
class MemoryManager {
|
||||
|
||||
private:
|
||||
|
||||
/// Default memory allocator
|
||||
static DefaultAllocator mDefaultAllocator;
|
||||
|
||||
public:
|
||||
|
||||
/// Memory allocation types
|
||||
enum class AllocationType {
|
||||
Default, // Default memory allocator
|
||||
Pool, // Memory pool allocator
|
||||
Frame, // Single frame memory allocator
|
||||
};
|
||||
|
||||
/// Constructor
|
||||
MemoryManager();
|
||||
|
||||
/// Destructor
|
||||
~MemoryManager();
|
||||
|
||||
/// Return the default memory allocator
|
||||
static DefaultAllocator& getDefaultAllocator();
|
||||
};
|
||||
|
||||
// Return the default memory allocator
|
||||
inline DefaultAllocator& MemoryManager::getDefaultAllocator() {
|
||||
return mDefaultAllocator;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
@ -126,7 +126,7 @@ void* PoolAllocator::allocate(size_t size) {
|
|||
}
|
||||
else { // If there is no more free memory units in the corresponding heap
|
||||
|
||||
// If we need to allocate more memory to containsthe blocks
|
||||
// If we need to allocate more memory to contains the blocks
|
||||
if (mNbCurrentMemoryBlocks == mNbAllocatedMemoryBlocks) {
|
||||
|
||||
// Allocate more memory to contain the blocks
|
||||
|
|
|
@ -94,7 +94,7 @@ class PoolAllocator : public Allocator {
|
|||
/// Size of the memory units that each heap is responsible to allocate
|
||||
static size_t mUnitSizes[NB_HEAPS];
|
||||
|
||||
/// Lookup table that mape size to allocate to the index of the
|
||||
/// Lookup table that map the size to allocate to the index of the
|
||||
/// corresponding heap we will use for the allocation.
|
||||
static int mMapSizeToHeapIndex[MAX_UNIT_SIZE + 1];
|
||||
|
||||
|
|
499
test/tests/collision/TestCollisionWorld.h
Normal file → Executable file
499
test/tests/collision/TestCollisionWorld.h
Normal file → Executable file
|
@ -40,21 +40,108 @@ enum CollisionCategory {
|
|||
CATEGORY_3 = 0x0004
|
||||
};
|
||||
|
||||
// TODO : Add test for concave shape collision here
|
||||
// Contact point collision data
|
||||
struct CollisionPointData {
|
||||
|
||||
Vector3 localPointBody1;
|
||||
Vector3 localPointBody2;
|
||||
decimal penetrationDepth;
|
||||
|
||||
CollisionPointData(const Vector3& point1, const Vector3& point2, decimal penDepth) {
|
||||
localPointBody1 = point1;
|
||||
localPointBody2 = point2;
|
||||
penetrationDepth = penDepth;
|
||||
}
|
||||
|
||||
bool isContactPointSimilarTo(const Vector3& pointBody1, const Vector3& pointBody2, decimal penDepth, decimal epsilon = 0.001) {
|
||||
|
||||
return approxEqual(pointBody1, localPointBody1, epsilon) &&
|
||||
approxEqual(pointBody2, localPointBody2, epsilon) &&
|
||||
approxEqual(penetrationDepth, penDepth, epsilon);
|
||||
}
|
||||
};
|
||||
|
||||
// Contact manifold collision data
|
||||
struct CollisionManifoldData {
|
||||
|
||||
std::vector<CollisionPointData> contactPoints;
|
||||
|
||||
int getNbContactPoints() const {
|
||||
return contactPoints.size();
|
||||
}
|
||||
|
||||
bool hasContactPointSimilarTo(const Vector3& localPointBody1, const Vector3& localPointBody2, decimal penetrationDepth, decimal epsilon = 0.001) {
|
||||
|
||||
std::vector<CollisionPointData>::iterator it;
|
||||
for (it = contactPoints.begin(); it != contactPoints.end(); ++it) {
|
||||
|
||||
if (it->isContactPointSimilarTo(localPointBody1, localPointBody2, penetrationDepth)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// Collision data between two proxy shapes
|
||||
struct CollisionData {
|
||||
|
||||
std::pair<const ProxyShape*, const ProxyShape*> proxyShapes;
|
||||
std::pair<CollisionBody*, CollisionBody*> bodies;
|
||||
std::vector<CollisionManifoldData> contactManifolds;
|
||||
|
||||
int getNbContactManifolds() const {
|
||||
return contactManifolds.size();
|
||||
}
|
||||
|
||||
int getTotalNbContactPoints() const {
|
||||
|
||||
int nbPoints = 0;
|
||||
|
||||
std::vector<CollisionManifoldData>::const_iterator it;
|
||||
for (it = contactManifolds.begin(); it != contactManifolds.end(); ++it) {
|
||||
|
||||
nbPoints += it->getNbContactPoints();
|
||||
}
|
||||
|
||||
return nbPoints;
|
||||
}
|
||||
|
||||
bool hasContactPointSimilarTo(const Vector3& localPointBody1, const Vector3& localPointBody2, decimal penetrationDepth, decimal epsilon = 0.001) {
|
||||
|
||||
std::vector<CollisionManifoldData>::iterator it;
|
||||
for (it = contactManifolds.begin(); it != contactManifolds.end(); ++it) {
|
||||
|
||||
if (it->hasContactPointSimilarTo(localPointBody1, localPointBody2, penetrationDepth)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// Class
|
||||
class WorldCollisionCallback : public CollisionCallback
|
||||
{
|
||||
private:
|
||||
|
||||
std::vector<std::pair<const ProxyShape*, const ProxyShape*>> mCollisionData;
|
||||
|
||||
std::pair<const ProxyShape*, const ProxyShape*> getCollisionKeyPair(std::pair<const ProxyShape*, const ProxyShape*> pair) const {
|
||||
|
||||
if (pair.first > pair.second) {
|
||||
return std::make_pair(pair.second, pair.first);
|
||||
}
|
||||
|
||||
return pair;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
bool boxCollideWithSphere1;
|
||||
bool sphere1CollideWithSphere2;
|
||||
|
||||
CollisionBody* boxBody;
|
||||
CollisionBody* sphere1Body;
|
||||
CollisionBody* sphere2Body;
|
||||
CollisionBody* cylinderBody;
|
||||
|
||||
WorldCollisionCallback()
|
||||
{
|
||||
reset();
|
||||
|
@ -62,30 +149,79 @@ class WorldCollisionCallback : public CollisionCallback
|
|||
|
||||
void reset()
|
||||
{
|
||||
boxCollideWithSphere1 = false;
|
||||
sphere1CollideWithSphere2 = false;
|
||||
mCollisionData.clear();
|
||||
}
|
||||
|
||||
// This method will be called for contact
|
||||
bool hasContacts() const {
|
||||
return mCollisionData.size() > 0;
|
||||
}
|
||||
|
||||
bool areProxyShapesColliding(const ProxyShape* proxyShape1, const ProxyShape* proxyShape2) {
|
||||
return std::find(mCollisionData.begin(), mCollisionData.end(), getCollisionKeyPair(std::make_pair(proxyShape1, proxyShape2))) != mCollisionData.end();
|
||||
}
|
||||
|
||||
// This method will be called for each contact
|
||||
virtual void notifyContact(const CollisionCallbackInfo& collisionCallbackInfo) override {
|
||||
|
||||
if (isContactBetweenBodies(boxBody, sphere1Body, collisionCallbackInfo)) {
|
||||
boxCollideWithSphere1 = true;
|
||||
}
|
||||
else if (isContactBetweenBodies(sphere1Body, sphere2Body, collisionCallbackInfo)) {
|
||||
sphere1CollideWithSphere2 = true;
|
||||
}
|
||||
}
|
||||
CollisionData collisionData;
|
||||
collisionData.bodies = std::make_pair(collisionCallbackInfo.body1, collisionCallbackInfo.body2);
|
||||
collisionData.proxyShapes = std::make_pair(collisionCallbackInfo.proxyShape1, collisionCallbackInfo.proxyShape2);
|
||||
|
||||
bool isContactBetweenBodies(const CollisionBody* body1, const CollisionBody* body2,
|
||||
const CollisionCallbackInfo& collisionCallbackInfo) {
|
||||
return (collisionCallbackInfo.body1->getID() == body1->getID() &&
|
||||
collisionCallbackInfo.body2->getID() == body2->getID()) ||
|
||||
(collisionCallbackInfo.body2->getID() == body1->getID() &&
|
||||
collisionCallbackInfo.body1->getID() == body2->getID());
|
||||
ContactManifoldListElement* element = collisionCallbackInfo.contactManifoldElements;
|
||||
while (element != nullptr) {
|
||||
|
||||
ContactManifold* contactManifold = element->getContactManifold();
|
||||
|
||||
CollisionManifoldData collisionManifold;
|
||||
|
||||
ContactPoint* contactPoint = contactManifold->getContactPoints();
|
||||
while (contactPoint != nullptr) {
|
||||
|
||||
CollisionPointData collisionPoint(contactPoint->getLocalPointOnShape1(), contactPoint->getLocalPointOnShape2(), contactPoint->getPenetrationDepth());
|
||||
collisionManifold.contactPoints.push_back(collisionPoint);
|
||||
|
||||
contactPoint = contactPoint->getNext();
|
||||
}
|
||||
|
||||
collisionData.contactManifolds.push_back(collisionManifold);
|
||||
|
||||
element = element->getNext();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/// Overlap callback
|
||||
class WorldOverlapCallback : public OverlapCallback {
|
||||
|
||||
private:
|
||||
|
||||
CollisionBody* mOverlapBody;
|
||||
|
||||
public:
|
||||
|
||||
/// Destructor
|
||||
virtual ~WorldOverlapCallback() {
|
||||
reset();
|
||||
}
|
||||
|
||||
/// This method will be called for each reported overlapping bodies
|
||||
virtual void notifyOverlap(CollisionBody* collisionBody) override {
|
||||
|
||||
}
|
||||
|
||||
void reset() {
|
||||
mOverlapBody = nullptr;
|
||||
}
|
||||
|
||||
bool hasOverlap() const {
|
||||
return mOverlapBody != nullptr;
|
||||
}
|
||||
|
||||
CollisionBody* getOverlapBody() {
|
||||
return mOverlapBody;
|
||||
}
|
||||
};
|
||||
|
||||
// Class TestCollisionWorld
|
||||
/**
|
||||
* Unit test for the CollisionWorld class.
|
||||
|
@ -100,22 +236,29 @@ class TestCollisionWorld : public Test {
|
|||
CollisionWorld* mWorld;
|
||||
|
||||
// Bodies
|
||||
CollisionBody* mBoxBody;
|
||||
CollisionBody* mSphere1Body;
|
||||
CollisionBody* mSphere2Body;
|
||||
CollisionBody* mBoxBody1;
|
||||
CollisionBody* mBoxBody2;
|
||||
CollisionBody* mSphereBody1;
|
||||
CollisionBody* mSphereBody2;
|
||||
|
||||
// Collision shapes
|
||||
BoxShape* mBoxShape;
|
||||
SphereShape* mSphereShape;
|
||||
BoxShape* mBoxShape1;
|
||||
BoxShape* mBoxShape2;
|
||||
SphereShape* mSphereShape1;
|
||||
SphereShape* mSphereShape2;
|
||||
|
||||
// Proxy shapes
|
||||
ProxyShape* mBoxProxyShape;
|
||||
ProxyShape* mSphere1ProxyShape;
|
||||
ProxyShape* mSphere2ProxyShape;
|
||||
ProxyShape* mBoxProxyShape1;
|
||||
ProxyShape* mBoxProxyShape2;
|
||||
ProxyShape* mSphereProxyShape1;
|
||||
ProxyShape* mSphereProxyShape2;
|
||||
|
||||
// Collision callback class
|
||||
// Collision callback
|
||||
WorldCollisionCallback mCollisionCallback;
|
||||
|
||||
// Overlap callback
|
||||
WorldOverlapCallback mOverlapCallback;
|
||||
|
||||
public :
|
||||
|
||||
// ---------- Methods ---------- //
|
||||
|
@ -123,147 +266,243 @@ class TestCollisionWorld : public Test {
|
|||
/// Constructor
|
||||
TestCollisionWorld(const std::string& name) : Test(name) {
|
||||
|
||||
// Create the world
|
||||
// Create the collision world
|
||||
mWorld = new CollisionWorld();
|
||||
|
||||
// Create the bodies
|
||||
Transform boxTransform(Vector3(10, 0, 0), Quaternion::identity());
|
||||
mBoxBody = mWorld->createCollisionBody(boxTransform);
|
||||
mBoxShape = new BoxShape(Vector3(3, 3, 3));
|
||||
mBoxProxyShape = mBoxBody->addCollisionShape(mBoxShape, Transform::identity());
|
||||
// ---------- Boxes ---------- //
|
||||
Transform boxTransform1(Vector3(-20, 20, 0), Quaternion::identity());
|
||||
mBoxBody1 = mWorld->createCollisionBody(boxTransform1);
|
||||
mBoxShape1 = new BoxShape(Vector3(3, 3, 3));
|
||||
mBoxProxyShape1 = mBoxBody1->addCollisionShape(mBoxShape1, Transform::identity());
|
||||
|
||||
mSphereShape = new SphereShape(3.0);
|
||||
Transform sphere1Transform(Vector3(10,5, 0), Quaternion::identity());
|
||||
mSphere1Body = mWorld->createCollisionBody(sphere1Transform);
|
||||
mSphere1ProxyShape = mSphere1Body->addCollisionShape(mSphereShape, Transform::identity());
|
||||
Transform boxTransform2(Vector3(-10, 20, 0), Quaternion::identity());
|
||||
mBoxBody2 = mWorld->createCollisionBody(boxTransform2);
|
||||
mBoxShape2 = new BoxShape(Vector3(2, 2, 2));
|
||||
mBoxProxyShape2 = mBoxBody2->addCollisionShape(mBoxShape1, Transform::identity());
|
||||
|
||||
Transform sphere2Transform(Vector3(30, 10, 10), Quaternion::identity());
|
||||
mSphere2Body = mWorld->createCollisionBody(sphere2Transform);
|
||||
mSphere2ProxyShape = mSphere2Body->addCollisionShape(mSphereShape, Transform::identity());
|
||||
// ---------- Spheres ---------- //
|
||||
mSphereShape1 = new SphereShape(3.0);
|
||||
Transform sphereTransform1(Vector3(10, 20, 0), Quaternion::identity());
|
||||
mSphereBody1 = mWorld->createCollisionBody(sphereTransform1);
|
||||
mSphereProxyShape1 = mSphereBody1->addCollisionShape(mSphereShape1, Transform::identity());
|
||||
|
||||
// Assign collision categories to proxy shapes
|
||||
mBoxProxyShape->setCollisionCategoryBits(CATEGORY_1);
|
||||
mSphere1ProxyShape->setCollisionCategoryBits(CATEGORY_1);
|
||||
mSphere2ProxyShape->setCollisionCategoryBits(CATEGORY_2);
|
||||
|
||||
mCollisionCallback.boxBody = mBoxBody;
|
||||
mCollisionCallback.sphere1Body = mSphere1Body;
|
||||
mCollisionCallback.sphere2Body = mSphere2Body;
|
||||
mSphereShape2 = new SphereShape(5.0);
|
||||
Transform sphereTransform2(Vector3(20, 20, 0), Quaternion::identity());
|
||||
mSphereBody2 = mWorld->createCollisionBody(sphereTransform2);
|
||||
mSphereProxyShape2 = mSphereBody2->addCollisionShape(mSphereShape2, Transform::identity());
|
||||
}
|
||||
|
||||
/// Destructor
|
||||
virtual ~TestCollisionWorld() {
|
||||
delete mBoxShape;
|
||||
delete mSphereShape;
|
||||
|
||||
delete mBoxShape1;
|
||||
delete mBoxShape2;
|
||||
|
||||
delete mSphereShape1;
|
||||
delete mSphereShape2;
|
||||
|
||||
delete mWorld;
|
||||
}
|
||||
|
||||
/// Run the tests
|
||||
void run() {
|
||||
|
||||
testCollisions();
|
||||
testNoCollisions();
|
||||
testNoOverlap();
|
||||
testNoAABBOverlap();
|
||||
|
||||
testAABBOverlap();
|
||||
|
||||
testSphereVsSphereCollision();
|
||||
testSphereVsBoxCollision();
|
||||
|
||||
testMultipleCollisions();
|
||||
}
|
||||
|
||||
void testCollisions() {
|
||||
void testNoCollisions() {
|
||||
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(&mCollisionCallback);
|
||||
test(mCollisionCallback.boxCollideWithSphere1);
|
||||
test(!mCollisionCallback.sphere1CollideWithSphere2);
|
||||
// All the shapes of the world are not touching when they are created.
|
||||
// Here we test that at the beginning, there is no collision at all.
|
||||
|
||||
test(mWorld->testAABBOverlap(mBoxBody, mSphere1Body));
|
||||
test(!mWorld->testAABBOverlap(mSphere1Body, mSphere2Body));
|
||||
// ---------- Global test ---------- //
|
||||
|
||||
test(mBoxProxyShape->testAABBOverlap(mSphere1ProxyShape->getWorldAABB()));
|
||||
test(!mSphere1ProxyShape->testAABBOverlap(mSphere2ProxyShape->getWorldAABB()));
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(&mCollisionCallback);
|
||||
test(!mCollisionCallback.hasContacts());
|
||||
|
||||
mCollisionCallback.reset();
|
||||
test(!mCollisionCallback.boxCollideWithSphere1);
|
||||
test(!mCollisionCallback.sphere1CollideWithSphere2);
|
||||
// ---------- Single body test ---------- //
|
||||
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(mBoxBody, mSphere1Body, &mCollisionCallback);
|
||||
test(mCollisionCallback.boxCollideWithSphere1);
|
||||
test(!mCollisionCallback.sphere1CollideWithSphere2);
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(mBoxBody1, &mCollisionCallback);
|
||||
test(!mCollisionCallback.hasContacts());
|
||||
|
||||
mCollisionCallback.reset();
|
||||
test(!mCollisionCallback.boxCollideWithSphere1);
|
||||
test(!mCollisionCallback.sphere1CollideWithSphere2);
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(mBoxBody2, &mCollisionCallback);
|
||||
test(!mCollisionCallback.hasContacts());
|
||||
|
||||
// Move sphere 1 to collide with sphere 2
|
||||
mSphere1Body->setTransform(Transform(Vector3(30, 15, 10), Quaternion::identity()));
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(mSphereBody1, &mCollisionCallback);
|
||||
test(!mCollisionCallback.hasContacts());
|
||||
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(&mCollisionCallback);
|
||||
test(!mCollisionCallback.boxCollideWithSphere1);
|
||||
test(mCollisionCallback.sphere1CollideWithSphere2);
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(mSphereBody2, &mCollisionCallback);
|
||||
test(!mCollisionCallback.hasContacts());
|
||||
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(mBoxBody, mSphere1Body, &mCollisionCallback);
|
||||
test(!mCollisionCallback.boxCollideWithSphere1);
|
||||
test(!mCollisionCallback.sphere1CollideWithSphere2);
|
||||
// Two bodies test
|
||||
|
||||
mCollisionCallback.reset();
|
||||
test(!mCollisionCallback.boxCollideWithSphere1);
|
||||
test(!mCollisionCallback.sphere1CollideWithSphere2);
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(mBoxBody1, mBoxBody2, &mCollisionCallback);
|
||||
test(!mCollisionCallback.hasContacts());
|
||||
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(mSphereBody1, mSphereBody2, &mCollisionCallback);
|
||||
test(!mCollisionCallback.hasContacts());
|
||||
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(mBoxBody1, mSphereBody1, &mCollisionCallback);
|
||||
test(!mCollisionCallback.hasContacts());
|
||||
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(mBoxBody1, mSphereBody2, &mCollisionCallback);
|
||||
test(!mCollisionCallback.hasContacts());
|
||||
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(mBoxBody2, mSphereBody1, &mCollisionCallback);
|
||||
test(!mCollisionCallback.hasContacts());
|
||||
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(mBoxBody2, mSphereBody2, &mCollisionCallback);
|
||||
test(!mCollisionCallback.hasContacts());
|
||||
|
||||
}
|
||||
|
||||
void testNoOverlap() {
|
||||
|
||||
// All the shapes of the world are not touching when they are created.
|
||||
// Here we test that at the beginning, there is no overlap at all.
|
||||
|
||||
// ---------- Single body test ---------- //
|
||||
|
||||
mOverlapCallback.reset();
|
||||
mWorld->testOverlap(mBoxBody1, &mOverlapCallback);
|
||||
test(!mOverlapCallback.hasOverlap());
|
||||
|
||||
mOverlapCallback.reset();
|
||||
mWorld->testOverlap(mBoxBody2, &mOverlapCallback);
|
||||
test(!mOverlapCallback.hasOverlap());
|
||||
|
||||
mOverlapCallback.reset();
|
||||
mWorld->testOverlap(mSphereBody1, &mOverlapCallback);
|
||||
test(!mOverlapCallback.hasOverlap());
|
||||
|
||||
mOverlapCallback.reset();
|
||||
mWorld->testOverlap(mSphereBody2, &mOverlapCallback);
|
||||
test(!mOverlapCallback.hasOverlap());
|
||||
|
||||
// Two bodies test
|
||||
|
||||
test(!mWorld->testOverlap(mBoxBody1, mBoxBody2));
|
||||
test(!mWorld->testOverlap(mSphereBody1, mSphereBody2));
|
||||
test(!mWorld->testOverlap(mBoxBody1, mSphereBody1));
|
||||
test(!mWorld->testOverlap(mBoxBody1, mSphereBody2));
|
||||
test(!mWorld->testOverlap(mBoxBody2, mSphereBody1));
|
||||
test(!mWorld->testOverlap(mBoxBody2, mSphereBody2));
|
||||
}
|
||||
|
||||
void testNoAABBOverlap() {
|
||||
|
||||
// All the shapes of the world are not touching when they are created.
|
||||
// Here we test that at the beginning, there is no AABB overlap at all.
|
||||
|
||||
// Two bodies test
|
||||
|
||||
test(!mWorld->testAABBOverlap(mBoxBody1, mBoxBody2));
|
||||
test(!mWorld->testAABBOverlap(mSphereBody1, mSphereBody2));
|
||||
test(!mWorld->testAABBOverlap(mBoxBody1, mSphereBody1));
|
||||
test(!mWorld->testAABBOverlap(mBoxBody1, mSphereBody2));
|
||||
test(!mWorld->testAABBOverlap(mBoxBody2, mSphereBody1));
|
||||
test(!mWorld->testAABBOverlap(mBoxBody2, mSphereBody2));
|
||||
}
|
||||
|
||||
void testAABBOverlap() {
|
||||
|
||||
// TODO : Test the CollisionWorld::testAABBOverlap() method here
|
||||
}
|
||||
|
||||
void testSphereVsSphereCollision() {
|
||||
|
||||
|
||||
|
||||
// Move sphere 1 to collide with sphere 2
|
||||
mSphereBody1->setTransform(Transform(Vector3(30, 15, 10), Quaternion::identity()));
|
||||
|
||||
}
|
||||
|
||||
void testSphereVsBoxCollision() {
|
||||
|
||||
// Move sphere 1 to collide with box
|
||||
mSphere1Body->setTransform(Transform(Vector3(10, 5, 0), Quaternion::identity()));
|
||||
mSphereBody1->setTransform(Transform(Vector3(10, 5, 0), Quaternion::identity()));
|
||||
|
||||
// --------- Test collision with inactive bodies --------- //
|
||||
|
||||
mCollisionCallback.reset();
|
||||
mBoxBody->setIsActive(false);
|
||||
mSphere1Body->setIsActive(false);
|
||||
mSphere2Body->setIsActive(false);
|
||||
mBoxBody1->setIsActive(false);
|
||||
mSphereBody1->setIsActive(false);
|
||||
mSphereBody2->setIsActive(false);
|
||||
mWorld->testCollision(&mCollisionCallback);
|
||||
test(!mCollisionCallback.boxCollideWithSphere1);
|
||||
test(!mCollisionCallback.sphere1CollideWithSphere2);
|
||||
|
||||
|
||||
test(!mWorld->testAABBOverlap(mBoxBody, mSphere1Body));
|
||||
test(!mWorld->testAABBOverlap(mSphere1Body, mSphere2Body));
|
||||
|
||||
test(!mBoxProxyShape->testAABBOverlap(mSphere1ProxyShape->getWorldAABB()));
|
||||
test(!mSphere1ProxyShape->testAABBOverlap(mSphere2ProxyShape->getWorldAABB()));
|
||||
|
||||
mBoxBody->setIsActive(true);
|
||||
mSphere1Body->setIsActive(true);
|
||||
mSphere2Body->setIsActive(true);
|
||||
mBoxBody1->setIsActive(true);
|
||||
mSphereBody1->setIsActive(true);
|
||||
mSphereBody2->setIsActive(true);
|
||||
|
||||
// --------- Test collision with collision filtering -------- //
|
||||
|
||||
mBoxProxyShape->setCollideWithMaskBits(CATEGORY_1 | CATEGORY_3);
|
||||
mSphere1ProxyShape->setCollideWithMaskBits(CATEGORY_1 | CATEGORY_2);
|
||||
mSphere2ProxyShape->setCollideWithMaskBits(CATEGORY_1);
|
||||
//mBoxProxyShape->setCollideWithMaskBits(CATEGORY_1 | CATEGORY_3);
|
||||
//mSphere1ProxyShape->setCollideWithMaskBits(CATEGORY_1 | CATEGORY_2);
|
||||
//mSphere2ProxyShape->setCollideWithMaskBits(CATEGORY_1);
|
||||
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(&mCollisionCallback);
|
||||
test(mCollisionCallback.boxCollideWithSphere1);
|
||||
test(!mCollisionCallback.sphere1CollideWithSphere2);
|
||||
//mCollisionCallback.reset();
|
||||
//mWorld->testCollision(&mCollisionCallback);
|
||||
//test(mCollisionCallback.boxCollideWithSphere1);
|
||||
//test(!mCollisionCallback.sphere1CollideWithSphere2);
|
||||
|
||||
// Move sphere 1 to collide with sphere 2
|
||||
mSphere1Body->setTransform(Transform(Vector3(30, 15, 10), Quaternion::identity()));
|
||||
//// Move sphere 1 to collide with sphere 2
|
||||
//mSphere1Body->setTransform(Transform(Vector3(30, 15, 10), Quaternion::identity()));
|
||||
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(&mCollisionCallback);
|
||||
test(!mCollisionCallback.boxCollideWithSphere1);
|
||||
test(mCollisionCallback.sphere1CollideWithSphere2);
|
||||
//mCollisionCallback.reset();
|
||||
//mWorld->testCollision(&mCollisionCallback);
|
||||
//test(!mCollisionCallback.boxCollideWithSphere1);
|
||||
//test(mCollisionCallback.sphere1CollideWithSphere2);
|
||||
|
||||
mBoxProxyShape->setCollideWithMaskBits(CATEGORY_2);
|
||||
mSphere1ProxyShape->setCollideWithMaskBits(CATEGORY_2);
|
||||
mSphere2ProxyShape->setCollideWithMaskBits(CATEGORY_3);
|
||||
//mBoxProxyShape->setCollideWithMaskBits(CATEGORY_2);
|
||||
//mSphere1ProxyShape->setCollideWithMaskBits(CATEGORY_2);
|
||||
//mSphere2ProxyShape->setCollideWithMaskBits(CATEGORY_3);
|
||||
|
||||
mCollisionCallback.reset();
|
||||
mWorld->testCollision(&mCollisionCallback);
|
||||
test(!mCollisionCallback.boxCollideWithSphere1);
|
||||
test(!mCollisionCallback.sphere1CollideWithSphere2);
|
||||
//mCollisionCallback.reset();
|
||||
//mWorld->testCollision(&mCollisionCallback);
|
||||
//test(!mCollisionCallback.boxCollideWithSphere1);
|
||||
//test(!mCollisionCallback.sphere1CollideWithSphere2);
|
||||
|
||||
// Move sphere 1 to collide with box
|
||||
mSphere1Body->setTransform(Transform(Vector3(10, 5, 0), Quaternion::identity()));
|
||||
//// Move sphere 1 to collide with box
|
||||
//mSphere1Body->setTransform(Transform(Vector3(10, 5, 0), Quaternion::identity()));
|
||||
|
||||
mBoxProxyShape->setCollideWithMaskBits(0xFFFF);
|
||||
mSphere1ProxyShape->setCollideWithMaskBits(0xFFFF);
|
||||
mSphere2ProxyShape->setCollideWithMaskBits(0xFFFF);
|
||||
//mBoxProxyShape->setCollideWithMaskBits(0xFFFF);
|
||||
//mSphere1ProxyShape->setCollideWithMaskBits(0xFFFF);
|
||||
//mSphere2ProxyShape->setCollideWithMaskBits(0xFFFF);
|
||||
}
|
||||
|
||||
void testMultipleCollisions() {
|
||||
|
||||
// TODO : Test collisions without categories set
|
||||
|
||||
// TODO : Test colliisons with categories set
|
||||
|
||||
// Assign collision categories to proxy shapes
|
||||
//mBoxProxyShape->setCollisionCategoryBits(CATEGORY_1);
|
||||
//mSphere1ProxyShape->setCollisionCategoryBits(CATEGORY_1);
|
||||
//mSphere2ProxyShape->setCollisionCategoryBits(CATEGORY_2);
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
|
29
test/tests/collision/TestDynamicAABBTree.h
Normal file → Executable file
29
test/tests/collision/TestDynamicAABBTree.h
Normal file → Executable file
|
@ -114,6 +114,12 @@ class TestDynamicAABBTree : public Test {
|
|||
|
||||
// Dynamic AABB Tree
|
||||
DynamicAABBTree tree;
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
/// Pointer to the profiler
|
||||
Profiler* profiler = new Profiler();
|
||||
tree.setProfiler(profiler);
|
||||
#endif
|
||||
|
||||
int object1Data = 56;
|
||||
int object2Data = 23;
|
||||
|
@ -152,6 +158,10 @@ class TestDynamicAABBTree : public Test {
|
|||
test(*(int*)(tree.getNodeDataPointer(object2Id)) == object2Data);
|
||||
test(*(int*)(tree.getNodeDataPointer(object3Id)) == object3Data);
|
||||
test(*(int*)(tree.getNodeDataPointer(object4Id)) == object4Data);
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
delete profiler;
|
||||
#endif
|
||||
}
|
||||
|
||||
void testOverlapping() {
|
||||
|
@ -161,6 +171,12 @@ class TestDynamicAABBTree : public Test {
|
|||
// Dynamic AABB Tree
|
||||
DynamicAABBTree tree;
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
/// Pointer to the profiler
|
||||
Profiler* profiler = new Profiler();
|
||||
tree.setProfiler(profiler);
|
||||
#endif
|
||||
|
||||
int object1Data = 56;
|
||||
int object2Data = 23;
|
||||
int object3Data = 13;
|
||||
|
@ -342,6 +358,9 @@ class TestDynamicAABBTree : public Test {
|
|||
test(!mOverlapCallback.isOverlapping(object3Id));
|
||||
test(!mOverlapCallback.isOverlapping(object4Id));
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
delete profiler;
|
||||
#endif
|
||||
}
|
||||
|
||||
void testRaycast() {
|
||||
|
@ -351,6 +370,12 @@ class TestDynamicAABBTree : public Test {
|
|||
// Dynamic AABB Tree
|
||||
DynamicAABBTree tree;
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
/// Pointer to the profiler
|
||||
Profiler* profiler = new Profiler();
|
||||
tree.setProfiler(profiler);
|
||||
#endif
|
||||
|
||||
int object1Data = 56;
|
||||
int object2Data = 23;
|
||||
int object3Data = 13;
|
||||
|
@ -513,6 +538,10 @@ class TestDynamicAABBTree : public Test {
|
|||
test(!mRaycastCallback.isHit(object2Id));
|
||||
test(mRaycastCallback.isHit(object3Id));
|
||||
test(mRaycastCallback.isHit(object4Id));
|
||||
|
||||
#ifdef IS_PROFILING_ACTIVE
|
||||
delete profiler;
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -19,6 +19,9 @@ class TestHalfEdgeStructure : public Test {
|
|||
|
||||
// ---------- Atributes ---------- //
|
||||
|
||||
/// Memory allocator
|
||||
DefaultAllocator mAllocator;
|
||||
|
||||
|
||||
public :
|
||||
|
||||
|
@ -43,7 +46,7 @@ class TestHalfEdgeStructure : public Test {
|
|||
void testCube() {
|
||||
|
||||
// Create the half-edge structure for a cube
|
||||
rp3d::HalfEdgeStructure cubeStructure;
|
||||
rp3d::HalfEdgeStructure cubeStructure(mAllocator, 6, 8, 24);
|
||||
|
||||
rp3d::Vector3 vertices[8] = {
|
||||
rp3d::Vector3(-0.5, -0.5, 0.5),
|
||||
|
@ -67,18 +70,18 @@ class TestHalfEdgeStructure : public Test {
|
|||
cubeStructure.addVertex(7);
|
||||
|
||||
// Faces
|
||||
std::vector<uint> face0;
|
||||
face0.push_back(0); face0.push_back(1); face0.push_back(2); face0.push_back(3);
|
||||
std::vector<uint> face1;
|
||||
face1.push_back(1); face1.push_back(5); face1.push_back(6); face1.push_back(2);
|
||||
std::vector<uint> face2;
|
||||
face2.push_back(5); face2.push_back(4); face2.push_back(7); face2.push_back(6);
|
||||
std::vector<uint> face3;
|
||||
face3.push_back(4); face3.push_back(0); face3.push_back(3); face3.push_back(7);
|
||||
std::vector<uint> face4;
|
||||
face4.push_back(0); face4.push_back(4); face4.push_back(5); face4.push_back(1);
|
||||
std::vector<uint> face5;
|
||||
face5.push_back(2); face5.push_back(6); face5.push_back(7); face5.push_back(3);
|
||||
List<uint> face0(mAllocator, 4);
|
||||
face0.add(0); face0.add(1); face0.add(2); face0.add(3);
|
||||
List<uint> face1(mAllocator, 4);
|
||||
face1.add(1); face1.add(5); face1.add(6); face1.add(2);
|
||||
List<uint> face2(mAllocator, 4);
|
||||
face2.add(5); face2.add(4); face2.add(7); face2.add(6);
|
||||
List<uint> face3(mAllocator, 4);
|
||||
face3.add(4); face3.add(0); face3.add(3); face3.add(7);
|
||||
List<uint> face4(mAllocator, 4);
|
||||
face4.add(0); face4.add(4); face4.add(5); face4.add(1);
|
||||
List<uint> face5(mAllocator, 4);
|
||||
face5.add(2); face5.add(6); face5.add(7); face5.add(3);
|
||||
|
||||
cubeStructure.addFace(face0);
|
||||
cubeStructure.addFace(face1);
|
||||
|
@ -168,7 +171,7 @@ class TestHalfEdgeStructure : public Test {
|
|||
|
||||
// Create the half-edge structure for a tetrahedron
|
||||
std::vector<std::vector<uint>> faces;
|
||||
rp3d::HalfEdgeStructure tetrahedron;
|
||||
rp3d::HalfEdgeStructure tetrahedron(mAllocator, 4, 4, 12);
|
||||
|
||||
// Vertices
|
||||
rp3d::Vector3 vertices[4] = {
|
||||
|
@ -184,14 +187,14 @@ class TestHalfEdgeStructure : public Test {
|
|||
tetrahedron.addVertex(3);
|
||||
|
||||
// Faces
|
||||
std::vector<uint> face0;
|
||||
face0.push_back(0); face0.push_back(1); face0.push_back(2);
|
||||
std::vector<uint> face1;
|
||||
face1.push_back(0); face1.push_back(3); face1.push_back(1);
|
||||
std::vector<uint> face2;
|
||||
face2.push_back(1); face2.push_back(3); face2.push_back(2);
|
||||
std::vector<uint> face3;
|
||||
face3.push_back(0); face3.push_back(2); face3.push_back(3);
|
||||
List<uint> face0(mAllocator, 3);
|
||||
face0.add(0); face0.add(1); face0.add(2);
|
||||
List<uint> face1(mAllocator, 3);
|
||||
face1.add(0); face1.add(3); face1.add(1);
|
||||
List<uint> face2(mAllocator, 3);
|
||||
face2.add(1); face2.add(3); face2.add(2);
|
||||
List<uint> face3(mAllocator, 3);
|
||||
face3.add(0); face3.add(2); face3.add(3);
|
||||
|
||||
tetrahedron.addFace(face0);
|
||||
tetrahedron.addFace(face1);
|
||||
|
|
|
@ -99,6 +99,8 @@ class TestRaycast : public Test {
|
|||
// Raycast callback class
|
||||
WorldRaycastCallback mCallback;
|
||||
|
||||
DefaultAllocator mAllocator;
|
||||
|
||||
// Epsilon
|
||||
decimal epsilon;
|
||||
|
||||
|
@ -203,7 +205,7 @@ class TestRaycast : public Test {
|
|||
triangleVertices[1] = Vector3(105, 100, 0);
|
||||
triangleVertices[2] = Vector3(100, 103, 0);
|
||||
Vector3 triangleVerticesNormals[3] = {Vector3(0, 0, 1), Vector3(0, 0, 1), Vector3(0, 0, 1)};
|
||||
mTriangleShape = new TriangleShape(triangleVertices, triangleVerticesNormals, 0);
|
||||
mTriangleShape = new TriangleShape(triangleVertices, triangleVerticesNormals, 0, mAllocator);
|
||||
mTriangleProxyShape = mTriangleBody->addCollisionShape(mTriangleShape, mShapeTransform);
|
||||
|
||||
mCapsuleShape = new CapsuleShape(2, 5);
|
||||
|
|
|
@ -176,13 +176,13 @@ class TestMathematicsFunctions : public Test {
|
|||
segmentVertices.push_back(Vector3(-6, 3, 0));
|
||||
segmentVertices.push_back(Vector3(8, 3, 0));
|
||||
|
||||
std::vector<Vector3> planesNormals;
|
||||
std::vector<Vector3> planesPoints;
|
||||
planesNormals.push_back(Vector3(-1, 0, 0));
|
||||
planesPoints.push_back(Vector3(4, 0, 0));
|
||||
List<Vector3> planesNormals(mAllocator, 2);
|
||||
List<Vector3> planesPoints(mAllocator, 2);
|
||||
planesNormals.add(Vector3(-1, 0, 0));
|
||||
planesPoints.add(Vector3(4, 0, 0));
|
||||
|
||||
std::vector<Vector3> clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1],
|
||||
planesPoints, planesNormals);
|
||||
List<Vector3> clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1],
|
||||
planesPoints, planesNormals, mAllocator);
|
||||
test(clipSegmentVertices.size() == 2);
|
||||
test(approxEqual(clipSegmentVertices[0].x, -6, 0.000001));
|
||||
test(approxEqual(clipSegmentVertices[0].y, 3, 0.000001));
|
||||
|
@ -195,7 +195,7 @@ class TestMathematicsFunctions : public Test {
|
|||
segmentVertices.push_back(Vector3(8, 3, 0));
|
||||
segmentVertices.push_back(Vector3(-6, 3, 0));
|
||||
|
||||
clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1], planesPoints, planesNormals);
|
||||
clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1], planesPoints, planesNormals, mAllocator);
|
||||
test(clipSegmentVertices.size() == 2);
|
||||
test(approxEqual(clipSegmentVertices[0].x, 4, 0.000001));
|
||||
test(approxEqual(clipSegmentVertices[0].y, 3, 0.000001));
|
||||
|
@ -208,7 +208,7 @@ class TestMathematicsFunctions : public Test {
|
|||
segmentVertices.push_back(Vector3(-6, 3, 0));
|
||||
segmentVertices.push_back(Vector3(3, 3, 0));
|
||||
|
||||
clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1], planesPoints, planesNormals);
|
||||
clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1], planesPoints, planesNormals, mAllocator);
|
||||
test(clipSegmentVertices.size() == 2);
|
||||
test(approxEqual(clipSegmentVertices[0].x, -6, 0.000001));
|
||||
test(approxEqual(clipSegmentVertices[0].y, 3, 0.000001));
|
||||
|
@ -221,7 +221,7 @@ class TestMathematicsFunctions : public Test {
|
|||
segmentVertices.push_back(Vector3(5, 3, 0));
|
||||
segmentVertices.push_back(Vector3(8, 3, 0));
|
||||
|
||||
clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1], planesPoints, planesNormals);
|
||||
clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1], planesPoints, planesNormals, mAllocator);
|
||||
test(clipSegmentVertices.size() == 0);
|
||||
|
||||
// Test clipPolygonWithPlanes()
|
||||
|
|
Loading…
Reference in New Issue
Block a user