Clean the code of the sequential impulse contact solver
This commit is contained in:
parent
b36f2c93b1
commit
a362171532
|
@ -26,7 +26,7 @@
|
|||
// Libraries
|
||||
#include "GJKAlgorithm.h"
|
||||
#include "Simplex.h"
|
||||
#include "../../../constraint/Contact.h"
|
||||
#include "../../../constraint/ContactPoint.h"
|
||||
#include "../../../configuration.h"
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
|
|
|
@ -79,15 +79,11 @@ const decimal OBJECT_MARGIN = decimal(0.04);
|
|||
// Distance threshold for two contact points for a valid persistent contact (in meters)
|
||||
const decimal PERSISTENT_CONTACT_DIST_THRESHOLD = decimal(0.03);
|
||||
|
||||
const decimal RESTITUTION_VELOCITY_THRESHOLD = decimal(1.0);
|
||||
|
||||
// Number of iterations when solving a LCP problem
|
||||
const uint DEFAULT_CONSTRAINTS_SOLVER_NB_ITERATIONS = 15;
|
||||
|
||||
// Number of iterations when solving a LCP problem for error correction
|
||||
const uint DEFAULT_LCP_ITERATIONS_ERROR_CORRECTION = 5;
|
||||
|
||||
// True if the error correction projection (first order world) is active in the constraint solver
|
||||
const bool ERROR_CORRECTION_PROJECTION_ENABLED = true;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -24,25 +24,27 @@
|
|||
********************************************************************************/
|
||||
|
||||
// Libraries
|
||||
#include "Contact.h"
|
||||
#include "ContactPoint.h"
|
||||
|
||||
using namespace reactphysics3d;
|
||||
using namespace std;
|
||||
|
||||
// Constructor
|
||||
Contact::Contact(RigidBody* const body1, RigidBody* const body2, const ContactInfo* contactInfo)
|
||||
: Constraint(body1, body2, 3, true, CONTACT), mNormal(contactInfo->normal),
|
||||
mPenetrationDepth(contactInfo->penetrationDepth),
|
||||
mLocalPointOnBody1(contactInfo->localPoint1),
|
||||
mLocalPointOnBody2(contactInfo->localPoint2),
|
||||
mWorldPointOnBody1(body1->getTransform() * contactInfo->localPoint1),
|
||||
mWorldPointOnBody2(body2->getTransform() * contactInfo->localPoint2),
|
||||
mIsRestingContact(false), mFrictionVectors(2, Vector3(0, 0, 0)) {
|
||||
ContactPoint::ContactPoint(RigidBody* const body1, RigidBody* const body2,
|
||||
const ContactInfo* contactInfo)
|
||||
: Constraint(body1, body2, 3, true, CONTACT), mNormal(contactInfo->normal),
|
||||
mPenetrationDepth(contactInfo->penetrationDepth),
|
||||
mLocalPointOnBody1(contactInfo->localPoint1),
|
||||
mLocalPointOnBody2(contactInfo->localPoint2),
|
||||
mWorldPointOnBody1(body1->getTransform() * contactInfo->localPoint1),
|
||||
mWorldPointOnBody2(body2->getTransform() * contactInfo->localPoint2),
|
||||
mIsRestingContact(false), mFrictionVectors(2, Vector3(0, 0, 0)) {
|
||||
|
||||
assert(mPenetrationDepth > 0.0);
|
||||
|
||||
}
|
||||
|
||||
// Destructor
|
||||
Contact::~Contact() {
|
||||
ContactPoint::~ContactPoint() {
|
||||
|
||||
}
|
|
@ -23,8 +23,8 @@
|
|||
* *
|
||||
********************************************************************************/
|
||||
|
||||
#ifndef CONTACT_H
|
||||
#define CONTACT_H
|
||||
#ifndef CONTACT_POINT_H
|
||||
#define CONTACT_POINT_H
|
||||
|
||||
// Libraries
|
||||
#include "Constraint.h"
|
||||
|
@ -52,13 +52,13 @@
|
|||
namespace reactphysics3d {
|
||||
|
||||
/* -------------------------------------------------------------------
|
||||
Class Contact :
|
||||
Class ContactPoint :
|
||||
This class represents a collision contact point between two
|
||||
bodies in the physics engine. The contact class inherits from
|
||||
bodies in the physics engine. The ContactPoint class inherits from
|
||||
the Constraint class.
|
||||
-------------------------------------------------------------------
|
||||
*/
|
||||
class Contact : public Constraint {
|
||||
class ContactPoint : public Constraint {
|
||||
|
||||
protected :
|
||||
|
||||
|
@ -91,20 +91,20 @@ class Contact : public Constraint {
|
|||
// -------------------- Methods -------------------- //
|
||||
|
||||
// Private copy-constructor
|
||||
Contact(const Contact& contact);
|
||||
ContactPoint(const ContactPoint& contact);
|
||||
|
||||
// Private assignment operator
|
||||
Contact& operator=(const Contact& contact);
|
||||
ContactPoint& operator=(const ContactPoint& contact);
|
||||
|
||||
public :
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
// Constructor
|
||||
Contact(RigidBody* const body1, RigidBody* const body2, const ContactInfo* contactInfo);
|
||||
ContactPoint(RigidBody* const body1, RigidBody* const body2, const ContactInfo* contactInfo);
|
||||
|
||||
// Destructor
|
||||
virtual ~Contact();
|
||||
virtual ~ContactPoint();
|
||||
|
||||
// Return the normal vector of the contact
|
||||
Vector3 getNormal() const;
|
||||
|
@ -158,83 +158,83 @@ class Contact : public Constraint {
|
|||
};
|
||||
|
||||
// Return the normal vector of the contact
|
||||
inline Vector3 Contact::getNormal() const {
|
||||
inline Vector3 ContactPoint::getNormal() const {
|
||||
return mNormal;
|
||||
}
|
||||
|
||||
// Set the penetration depth of the contact
|
||||
inline void Contact::setPenetrationDepth(decimal penetrationDepth) {
|
||||
inline void ContactPoint::setPenetrationDepth(decimal penetrationDepth) {
|
||||
this->mPenetrationDepth = penetrationDepth;
|
||||
}
|
||||
|
||||
// Return the contact point on body 1
|
||||
inline Vector3 Contact::getLocalPointOnBody1() const {
|
||||
inline Vector3 ContactPoint::getLocalPointOnBody1() const {
|
||||
return mLocalPointOnBody1;
|
||||
}
|
||||
|
||||
// Return the contact point on body 2
|
||||
inline Vector3 Contact::getLocalPointOnBody2() const {
|
||||
inline Vector3 ContactPoint::getLocalPointOnBody2() const {
|
||||
return mLocalPointOnBody2;
|
||||
}
|
||||
|
||||
// Return the contact world point on body 1
|
||||
inline Vector3 Contact::getWorldPointOnBody1() const {
|
||||
inline Vector3 ContactPoint::getWorldPointOnBody1() const {
|
||||
return mWorldPointOnBody1;
|
||||
}
|
||||
|
||||
// Return the contact world point on body 2
|
||||
inline Vector3 Contact::getWorldPointOnBody2() const {
|
||||
inline Vector3 ContactPoint::getWorldPointOnBody2() const {
|
||||
return mWorldPointOnBody2;
|
||||
}
|
||||
|
||||
// Set the contact world point on body 1
|
||||
inline void Contact::setWorldPointOnBody1(const Vector3& worldPoint) {
|
||||
inline void ContactPoint::setWorldPointOnBody1(const Vector3& worldPoint) {
|
||||
mWorldPointOnBody1 = worldPoint;
|
||||
}
|
||||
|
||||
// Set the contact world point on body 2
|
||||
inline void Contact::setWorldPointOnBody2(const Vector3& worldPoint) {
|
||||
inline void ContactPoint::setWorldPointOnBody2(const Vector3& worldPoint) {
|
||||
mWorldPointOnBody2 = worldPoint;
|
||||
}
|
||||
|
||||
// Return true if the contact is a resting contact
|
||||
inline bool Contact::getIsRestingContact() const {
|
||||
inline bool ContactPoint::getIsRestingContact() const {
|
||||
return mIsRestingContact;
|
||||
}
|
||||
|
||||
// Set the mIsRestingContact variable
|
||||
inline void Contact::setIsRestingContact(bool isRestingContact) {
|
||||
inline void ContactPoint::setIsRestingContact(bool isRestingContact) {
|
||||
mIsRestingContact = isRestingContact;
|
||||
}
|
||||
|
||||
// Get the first friction vector
|
||||
inline Vector3 Contact::getFrictionVector1() const {
|
||||
inline Vector3 ContactPoint::getFrictionVector1() const {
|
||||
return mFrictionVectors[0];
|
||||
}
|
||||
|
||||
// Set the first friction vector
|
||||
inline void Contact::setFrictionVector1(const Vector3& frictionVector1) {
|
||||
inline void ContactPoint::setFrictionVector1(const Vector3& frictionVector1) {
|
||||
mFrictionVectors[0] = frictionVector1;
|
||||
}
|
||||
|
||||
// Get the second friction vector
|
||||
inline Vector3 Contact::getFrictionVector2() const {
|
||||
inline Vector3 ContactPoint::getFrictionVector2() const {
|
||||
return mFrictionVectors[1];
|
||||
}
|
||||
|
||||
// Set the second friction vector
|
||||
inline void Contact::setFrictionVector2(const Vector3& frictionVector2) {
|
||||
inline void ContactPoint::setFrictionVector2(const Vector3& frictionVector2) {
|
||||
mFrictionVectors[1] = frictionVector2;
|
||||
}
|
||||
|
||||
// Return the penetration depth of the contact
|
||||
inline decimal Contact::getPenetrationDepth() const {
|
||||
inline decimal ContactPoint::getPenetrationDepth() const {
|
||||
return mPenetrationDepth;
|
||||
}
|
||||
|
||||
|
||||
#ifdef VISUAL_DEBUG
|
||||
inline void Contact::draw() const {
|
||||
inline void ContactPoint::draw() const {
|
||||
glColor3f(1.0, 0.0, 0.0);
|
||||
glutSolidSphere(0.3, 20, 20);
|
||||
}
|
|
@ -101,7 +101,7 @@ void CollisionWorld::destroyCollisionBody(CollisionBody* collisionBody) {
|
|||
collisionBody->CollisionBody::~CollisionBody();
|
||||
|
||||
// Remove the collision body from the list of bodies
|
||||
mBodies.erase(collisionBody); // TOOD : Maybe use a set to make this faster
|
||||
mBodies.erase(collisionBody); // TODO : Maybe use a set to make this faster
|
||||
|
||||
// Free the object from the memory pool
|
||||
mMemoryPoolCollisionBodies.freeObject(collisionBody);
|
||||
|
|
|
@ -35,7 +35,7 @@
|
|||
#include "OverlappingPair.h"
|
||||
#include "../collision/CollisionDetection.h"
|
||||
#include "../constraint/Constraint.h"
|
||||
#include "../constraint/Contact.h"
|
||||
#include "../constraint/ContactPoint.h"
|
||||
#include "../memory/MemoryPool.h"
|
||||
|
||||
// Namespace reactphysics3d
|
||||
|
|
|
@ -24,34 +24,37 @@
|
|||
********************************************************************************/
|
||||
|
||||
// Libraries
|
||||
#include "PersistentContactCache.h"
|
||||
#include "ContactManifold.h"
|
||||
|
||||
using namespace reactphysics3d;
|
||||
|
||||
// Constructor
|
||||
PersistentContactCache::PersistentContactCache(Body* const body1, Body* const body2, MemoryPool<Contact>& memoryPoolContacts)
|
||||
: mBody1(body1), mBody2(body2), mNbContacts(0), mMemoryPoolContacts(memoryPoolContacts) {
|
||||
ContactManifold::ContactManifold(Body* const body1, Body* const body2,
|
||||
MemoryPool<ContactPoint>& memoryPoolContacts)
|
||||
: mBody1(body1), mBody2(body2), mNbContactPoints(0), mFrictionImpulse1(0.0),
|
||||
mFrictionImpulse2(0.0), mFrictionTwistImpulse(0.0),
|
||||
mMemoryPoolContacts(memoryPoolContacts) {
|
||||
|
||||
}
|
||||
|
||||
// Destructor
|
||||
PersistentContactCache::~PersistentContactCache() {
|
||||
ContactManifold::~ContactManifold() {
|
||||
clear();
|
||||
}
|
||||
|
||||
// Add a contact in the cache
|
||||
void PersistentContactCache::addContact(Contact* contact) {
|
||||
// Add a contact point in the manifold
|
||||
void ContactManifold::addContactPoint(ContactPoint* contact) {
|
||||
|
||||
// For contact already in the cache
|
||||
for (uint i=0; i<mNbContacts; i++) {
|
||||
// For contact already in the manifold
|
||||
for (uint i=0; i<mNbContactPoints; i++) {
|
||||
|
||||
// Check if the new point point does not correspond to a same contact point
|
||||
// already in the cache.
|
||||
decimal distance = (mContacts[i]->getWorldPointOnBody1() - contact->getWorldPointOnBody1()).lengthSquare();
|
||||
// already in the manifold.
|
||||
decimal distance = (mContactPoints[i]->getWorldPointOnBody1() - contact->getWorldPointOnBody1()).lengthSquare();
|
||||
if (distance <= PERSISTENT_CONTACT_DIST_THRESHOLD*PERSISTENT_CONTACT_DIST_THRESHOLD) {
|
||||
|
||||
// Delete the new contact
|
||||
contact->Contact::~Contact();
|
||||
contact->ContactPoint::~ContactPoint();
|
||||
mMemoryPoolContacts.freeObject(contact);
|
||||
//removeContact(i);
|
||||
|
||||
|
@ -60,93 +63,95 @@ void PersistentContactCache::addContact(Contact* contact) {
|
|||
}
|
||||
}
|
||||
|
||||
// If the contact cache is full
|
||||
if (mNbContacts == MAX_CONTACTS_IN_CACHE) {
|
||||
// If the contact manifold is full
|
||||
if (mNbContactPoints == MAX_CONTACT_POINTS_IN_MANIFOLD) {
|
||||
int indexMaxPenetration = getIndexOfDeepestPenetration(contact);
|
||||
int indexToRemove = getIndexToRemove(indexMaxPenetration, contact->getLocalPointOnBody1());
|
||||
removeContact(indexToRemove);
|
||||
removeContactPoint(indexToRemove);
|
||||
}
|
||||
|
||||
// Add the new contact in the cache
|
||||
mContacts[mNbContacts] = contact;
|
||||
mNbContacts++;
|
||||
// Add the new contact point in the manifold
|
||||
mContactPoints[mNbContactPoints] = contact;
|
||||
mNbContactPoints++;
|
||||
}
|
||||
|
||||
// Remove a contact from the cache
|
||||
void PersistentContactCache::removeContact(int index) {
|
||||
assert(index >= 0 && index < mNbContacts);
|
||||
assert(mNbContacts > 0);
|
||||
// Remove a contact point from the manifold
|
||||
void ContactManifold::removeContactPoint(int index) {
|
||||
assert(index >= 0 && index < mNbContactPoints);
|
||||
assert(mNbContactPoints > 0);
|
||||
|
||||
// Call the destructor explicitly and tell the memory pool that
|
||||
// the corresponding memory block is now free
|
||||
mContacts[index]->Contact::~Contact();
|
||||
mMemoryPoolContacts.freeObject(mContacts[index]);
|
||||
mContactPoints[index]->ContactPoint::~ContactPoint();
|
||||
mMemoryPoolContacts.freeObject(mContactPoints[index]);
|
||||
|
||||
// If we don't remove the last index
|
||||
if (index < mNbContacts - 1) {
|
||||
mContacts[index] = mContacts[mNbContacts - 1];
|
||||
if (index < mNbContactPoints - 1) {
|
||||
mContactPoints[index] = mContactPoints[mNbContactPoints - 1];
|
||||
}
|
||||
|
||||
mNbContacts--;
|
||||
mNbContactPoints--;
|
||||
}
|
||||
|
||||
// Update the contact cache
|
||||
// First the world space coordinates of the current contacts in the cache are recomputed from
|
||||
// Update the contact manifold
|
||||
// First the world space coordinates of the current contacts in the manifold are recomputed from
|
||||
// the corresponding transforms of the bodies because they have moved. Then we remove the contacts
|
||||
// with a negative penetration depth (meaning that the bodies are not penetrating anymore) and also
|
||||
// the contacts with a too large distance between the contact points in the plane orthogonal to the
|
||||
// contact normal
|
||||
void PersistentContactCache::update(const Transform& transform1, const Transform& transform2) {
|
||||
if (mNbContacts == 0) return;
|
||||
void ContactManifold::update(const Transform& transform1, const Transform& transform2) {
|
||||
if (mNbContactPoints == 0) return;
|
||||
|
||||
// Update the world coordinates and penetration depth of the contacts in the cache
|
||||
for (int i=0; i<mNbContacts; i++) {
|
||||
mContacts[i]->setWorldPointOnBody1(transform1 * mContacts[i]->getLocalPointOnBody1());
|
||||
mContacts[i]->setWorldPointOnBody2(transform2 * mContacts[i]->getLocalPointOnBody2());
|
||||
mContacts[i]->setPenetrationDepth((mContacts[i]->getWorldPointOnBody1() - mContacts[i]->getWorldPointOnBody2()).dot(mContacts[i]->getNormal()));
|
||||
// Update the world coordinates and penetration depth of the contact points in the manifold
|
||||
for (int i=0; i<mNbContactPoints; i++) {
|
||||
mContactPoints[i]->setWorldPointOnBody1(transform1 * mContactPoints[i]->getLocalPointOnBody1());
|
||||
mContactPoints[i]->setWorldPointOnBody2(transform2 * mContactPoints[i]->getLocalPointOnBody2());
|
||||
mContactPoints[i]->setPenetrationDepth((mContactPoints[i]->getWorldPointOnBody1() - mContactPoints[i]->getWorldPointOnBody2()).dot(mContactPoints[i]->getNormal()));
|
||||
}
|
||||
|
||||
const decimal squarePersistentContactThreshold = PERSISTENT_CONTACT_DIST_THRESHOLD *
|
||||
PERSISTENT_CONTACT_DIST_THRESHOLD;
|
||||
|
||||
// Remove the contacts that don't represent very well the persistent contact
|
||||
for (int i=mNbContacts-1; i>=0; i--) {
|
||||
assert(i>= 0 && i < mNbContacts);
|
||||
// Remove the contact points that don't represent very well the contact manifold
|
||||
for (int i=mNbContactPoints-1; i>=0; i--) {
|
||||
assert(i>= 0 && i < mNbContactPoints);
|
||||
|
||||
// Compute the distance between contact points in the normal direction
|
||||
decimal distanceNormal = -mContacts[i]->getPenetrationDepth();
|
||||
decimal distanceNormal = -mContactPoints[i]->getPenetrationDepth();
|
||||
|
||||
// If the contacts points are too far from each other in the normal direction
|
||||
if (distanceNormal > squarePersistentContactThreshold) {
|
||||
removeContact(i);
|
||||
removeContactPoint(i);
|
||||
}
|
||||
else {
|
||||
// Compute the distance of the two contact points in the plane orthogonal to the contact normal
|
||||
Vector3 projOfPoint1 = mContacts[i]->getWorldPointOnBody1() +
|
||||
mContacts[i]->getNormal() * distanceNormal;
|
||||
Vector3 projDifference = mContacts[i]->getWorldPointOnBody2() - projOfPoint1;
|
||||
// Compute the distance of the two contact points in the plane
|
||||
// orthogonal to the contact normal
|
||||
Vector3 projOfPoint1 = mContactPoints[i]->getWorldPointOnBody1() +
|
||||
mContactPoints[i]->getNormal() * distanceNormal;
|
||||
Vector3 projDifference = mContactPoints[i]->getWorldPointOnBody2() - projOfPoint1;
|
||||
|
||||
// If the orthogonal distance is larger than the valid distance threshold, we remove the contact
|
||||
// If the orthogonal distance is larger than the valid distance
|
||||
// threshold, we remove the contact
|
||||
if (projDifference.lengthSquare() > squarePersistentContactThreshold) {
|
||||
removeContact(i);
|
||||
removeContactPoint(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Return the index of the contact with the larger penetration depth. This
|
||||
// Return the index of the contact point with the larger penetration depth. This
|
||||
// corresponding contact will be kept in the cache. The method returns -1 is
|
||||
// the new contact is the deepest.
|
||||
int PersistentContactCache::getIndexOfDeepestPenetration(Contact* newContact) const {
|
||||
assert(mNbContacts == MAX_CONTACTS_IN_CACHE);
|
||||
int ContactManifold::getIndexOfDeepestPenetration(ContactPoint* newContact) const {
|
||||
assert(mNbContactPoints == MAX_CONTACT_POINTS_IN_MANIFOLD);
|
||||
int indexMaxPenetrationDepth = -1;
|
||||
decimal maxPenetrationDepth = newContact->getPenetrationDepth();
|
||||
|
||||
// For each contact in the cache
|
||||
for (uint i=0; i<mNbContacts; i++) {
|
||||
for (uint i=0; i<mNbContactPoints; i++) {
|
||||
// If the current contact has a larger penetration depth
|
||||
if (mContacts[i]->getPenetrationDepth() > maxPenetrationDepth) {
|
||||
maxPenetrationDepth = mContacts[i]->getPenetrationDepth();
|
||||
if (mContactPoints[i]->getPenetrationDepth() > maxPenetrationDepth) {
|
||||
maxPenetrationDepth = mContactPoints[i]->getPenetrationDepth();
|
||||
indexMaxPenetrationDepth = i;
|
||||
}
|
||||
}
|
||||
|
@ -155,12 +160,18 @@ int PersistentContactCache::getIndexOfDeepestPenetration(Contact* newContact) co
|
|||
return indexMaxPenetrationDepth;
|
||||
}
|
||||
|
||||
// Return the index that will be removed. The index of the contact with the larger penetration
|
||||
// Return the index that will be removed. The index of the contact point with the larger penetration
|
||||
// depth is given as a parameter. This contact won't be removed. Given this contact, we compute
|
||||
// the different area and we want to keep the contacts with the largest area. The new point is also
|
||||
// kept.
|
||||
int PersistentContactCache::getIndexToRemove(int indexMaxPenetration, const Vector3& newPoint) const {
|
||||
assert(mNbContacts == MAX_CONTACTS_IN_CACHE);
|
||||
// kept. In order to compute the area of a quadrilateral, we use the formula :
|
||||
// Area = 0.5 * | AC x BD | where AC and BD form the diagonals of the quadrilateral. Note that
|
||||
// when we compute this area, we do not calculate it exactly but we
|
||||
// only estimate it because we do not compute the actual diagonals of the quadrialteral. Therefore,
|
||||
// this is only a guess that is faster to compute.
|
||||
int ContactManifold::getIndexToRemove(int indexMaxPenetration, const Vector3& newPoint) const {
|
||||
|
||||
assert(mNbContactPoints == MAX_CONTACT_POINTS_IN_MANIFOLD);
|
||||
|
||||
decimal area0 = 0.0; // Area with contact 1,2,3 and newPoint
|
||||
decimal area1 = 0.0; // Area with contact 0,2,3 and newPoint
|
||||
decimal area2 = 0.0; // Area with contact 0,1,3 and newPoint
|
||||
|
@ -168,29 +179,29 @@ int PersistentContactCache::getIndexToRemove(int indexMaxPenetration, const Vect
|
|||
|
||||
if (indexMaxPenetration != 0) {
|
||||
// Compute the area
|
||||
Vector3 vector1 = newPoint - mContacts[1]->getLocalPointOnBody1();
|
||||
Vector3 vector2 = mContacts[3]->getLocalPointOnBody1() - mContacts[2]->getLocalPointOnBody1();
|
||||
Vector3 vector1 = newPoint - mContactPoints[1]->getLocalPointOnBody1();
|
||||
Vector3 vector2 = mContactPoints[3]->getLocalPointOnBody1() - mContactPoints[2]->getLocalPointOnBody1();
|
||||
Vector3 crossProduct = vector1.cross(vector2);
|
||||
area0 = crossProduct.lengthSquare();
|
||||
}
|
||||
if (indexMaxPenetration != 1) {
|
||||
// Compute the area
|
||||
Vector3 vector1 = newPoint - mContacts[0]->getLocalPointOnBody1();
|
||||
Vector3 vector2 = mContacts[3]->getLocalPointOnBody1() - mContacts[2]->getLocalPointOnBody1();
|
||||
Vector3 vector1 = newPoint - mContactPoints[0]->getLocalPointOnBody1();
|
||||
Vector3 vector2 = mContactPoints[3]->getLocalPointOnBody1() - mContactPoints[2]->getLocalPointOnBody1();
|
||||
Vector3 crossProduct = vector1.cross(vector2);
|
||||
area1 = crossProduct.lengthSquare();
|
||||
}
|
||||
if (indexMaxPenetration != 2) {
|
||||
// Compute the area
|
||||
Vector3 vector1 = newPoint - mContacts[0]->getLocalPointOnBody1();
|
||||
Vector3 vector2 = mContacts[3]->getLocalPointOnBody1() - mContacts[1]->getLocalPointOnBody1();
|
||||
Vector3 vector1 = newPoint - mContactPoints[0]->getLocalPointOnBody1();
|
||||
Vector3 vector2 = mContactPoints[3]->getLocalPointOnBody1() - mContactPoints[1]->getLocalPointOnBody1();
|
||||
Vector3 crossProduct = vector1.cross(vector2);
|
||||
area2 = crossProduct.lengthSquare();
|
||||
}
|
||||
if (indexMaxPenetration != 3) {
|
||||
// Compute the area
|
||||
Vector3 vector1 = newPoint - mContacts[0]->getLocalPointOnBody1();
|
||||
Vector3 vector2 = mContacts[2]->getLocalPointOnBody1() - mContacts[1]->getLocalPointOnBody1();
|
||||
Vector3 vector1 = newPoint - mContactPoints[0]->getLocalPointOnBody1();
|
||||
Vector3 vector2 = mContactPoints[2]->getLocalPointOnBody1() - mContactPoints[1]->getLocalPointOnBody1();
|
||||
Vector3 crossProduct = vector1.cross(vector2);
|
||||
area3 = crossProduct.lengthSquare();
|
||||
}
|
||||
|
@ -200,7 +211,7 @@ int PersistentContactCache::getIndexToRemove(int indexMaxPenetration, const Vect
|
|||
}
|
||||
|
||||
// Return the index of maximum area
|
||||
int PersistentContactCache::getMaxArea(decimal area0, decimal area1, decimal area2, decimal area3) const {
|
||||
int ContactManifold::getMaxArea(decimal area0, decimal area1, decimal area2, decimal area3) const {
|
||||
if (area0 < area1) {
|
||||
if (area1 < area2) {
|
||||
if (area2 < area3) return 3;
|
||||
|
@ -223,14 +234,14 @@ int PersistentContactCache::getMaxArea(decimal area0, decimal area1, decimal are
|
|||
}
|
||||
}
|
||||
|
||||
// Clear the cache
|
||||
void PersistentContactCache::clear() {
|
||||
for (uint i=0; i<mNbContacts; i++) {
|
||||
// Clear the contact manifold
|
||||
void ContactManifold::clear() {
|
||||
for (uint i=0; i<mNbContactPoints; i++) {
|
||||
|
||||
// Call the destructor explicitly and tell the memory pool that
|
||||
// the corresponding memory block is now free
|
||||
mContacts[i]->Contact::~Contact();
|
||||
mMemoryPoolContacts.freeObject(mContacts[i]);
|
||||
mContactPoints[i]->ContactPoint::~ContactPoint();
|
||||
mMemoryPoolContacts.freeObject(mContactPoints[i]);
|
||||
}
|
||||
mNbContacts = 0;
|
||||
mNbContactPoints = 0;
|
||||
}
|
|
@ -24,48 +24,221 @@
|
|||
********************************************************************************/
|
||||
|
||||
#ifndef CONTACT_MANIFOLD_H
|
||||
#define CONTACT_MANIFOLD_H
|
||||
#define CONTACT_MANIFOLD_H
|
||||
|
||||
// Libraries
|
||||
#include "../constraint/Contact.h"
|
||||
#include "../configuration.h"
|
||||
#include <vector>
|
||||
#include "../body/Body.h"
|
||||
#include "../constraint/ContactPoint.h"
|
||||
|
||||
// ReactPhysics3D namespace
|
||||
namespace reactphysics3d {
|
||||
|
||||
// Class ContactManifold
|
||||
// This class contains several contact points between two bodies
|
||||
struct ContactManifold {
|
||||
// Constants
|
||||
const uint MAX_CONTACT_POINTS_IN_MANIFOLD = 4; // Maximum number of contacts in the manifold
|
||||
|
||||
/* -------------------------------------------------------------------
|
||||
Class ContactManifold :
|
||||
This class represents the set of contact points between two bodies.
|
||||
The contact manifold is implemented in a way to cache the contact
|
||||
points among the frames for better stability following the
|
||||
"Contact Generation" presentation of Erwin Coumans at GDC 2010
|
||||
conference (bullet.googlecode.com/files/GDC10_Coumans_Erwin_Contact.pdf).
|
||||
Some code of this class is based on the implementation of the
|
||||
btPersistentManifold class from Bullet physics engine (www.http://bulletphysics.org).
|
||||
The contacts between two bodies are added one after the other in the cache.
|
||||
When the cache is full, we have to remove one point. The idea is to keep
|
||||
the point with the deepest penetration depth and also to keep the
|
||||
points producing the larger area (for a more stable contact manifold).
|
||||
The new added point is always kept.
|
||||
-------------------------------------------------------------------
|
||||
*/
|
||||
class ContactManifold {
|
||||
|
||||
private:
|
||||
|
||||
// -------------------- Attributes -------------------- //
|
||||
|
||||
// Contact for each contact point
|
||||
Contact* contacts[4]; // TODO : Use a constant here for the nb of contacts
|
||||
// Pointer to the first body
|
||||
Body* const mBody1;
|
||||
|
||||
// Number of contacts in the manifold
|
||||
uint nbContacts;
|
||||
// Pointer to the second body
|
||||
Body* const mBody2;
|
||||
|
||||
// Contact points in the manifold
|
||||
ContactPoint* mContactPoints[MAX_CONTACT_POINTS_IN_MANIFOLD];
|
||||
|
||||
// Number of contacts in the cache
|
||||
uint mNbContactPoints;
|
||||
|
||||
// First friction vector of the contact manifold
|
||||
Vector3 frictionVector1;
|
||||
Vector3 mFrictionVector1;
|
||||
|
||||
// Second friction vector of the contact manifold
|
||||
Vector3 frictionVector2;
|
||||
Vector3 mFrictionVector2;
|
||||
|
||||
// First friction constraint accumulated impulse
|
||||
decimal friction1Impulse;
|
||||
decimal mFrictionImpulse1;
|
||||
|
||||
// Second friction constraint accumulated impulse
|
||||
decimal friction2Impulse;
|
||||
decimal mFrictionImpulse2;
|
||||
|
||||
// Twist friction constraint accumulated impulse
|
||||
decimal frictionTwistImpulse;
|
||||
decimal mFrictionTwistImpulse;
|
||||
|
||||
// Reference to the memory pool with the contacts
|
||||
MemoryPool<ContactPoint>& mMemoryPoolContacts;
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
// Private copy-constructor
|
||||
ContactManifold(const ContactManifold& contactManifold);
|
||||
|
||||
// Private assignment operator
|
||||
ContactManifold& operator=(const ContactManifold& contactManifold);
|
||||
|
||||
// Return the index of maximum area
|
||||
int getMaxArea(decimal area0, decimal area1, decimal area2, decimal area3) const;
|
||||
|
||||
// Return the index of the contact with the larger penetration depth
|
||||
int getIndexOfDeepestPenetration(ContactPoint* newContact) const;
|
||||
|
||||
// Return the index that will be removed
|
||||
int getIndexToRemove(int indexMaxPenetration, const Vector3& newPoint) const;
|
||||
|
||||
// Remove a contact point from the manifold
|
||||
void removeContactPoint(int index);
|
||||
|
||||
// Return true if two vectors are approximatively equal
|
||||
bool isApproxEqual(const Vector3& vector1, const Vector3& vector2) const;
|
||||
|
||||
public:
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
// Constructor
|
||||
ContactManifold() : nbContacts(0), friction1Impulse(0.0), friction2Impulse(0.0),
|
||||
frictionTwistImpulse(0.0) {}
|
||||
ContactManifold(Body* const mBody1, Body* const mBody2,
|
||||
MemoryPool<ContactPoint>& mMemoryPoolContacts);
|
||||
|
||||
// Destructor
|
||||
~ContactManifold();
|
||||
|
||||
// Add a contact point to the manifold
|
||||
void addContactPoint(ContactPoint* contact);
|
||||
|
||||
// Update the contact manifold
|
||||
void update(const Transform& transform1, const Transform& transform2);
|
||||
|
||||
// Clear the contact manifold
|
||||
void clear();
|
||||
|
||||
// Return the number of contact points in the manifold
|
||||
uint getNbContactPoints() const;
|
||||
|
||||
// Return the first friction vector at the center of the contact manifold
|
||||
const Vector3& getFrictionVector1() const;
|
||||
|
||||
// set the first friction vector at the center of the contact manifold
|
||||
void setFrictionVector1(const Vector3& mFrictionVector1);
|
||||
|
||||
// Return the second friction vector at the center of the contact manifold
|
||||
const Vector3& getFrictionVector2() const;
|
||||
|
||||
// set the second friction vector at the center of the contact manifold
|
||||
void setFrictionVector2(const Vector3& mFrictionVector2);
|
||||
|
||||
// Return the first friction accumulated impulse
|
||||
decimal getFrictionImpulse1() const;
|
||||
|
||||
// Set the first friction accumulated impulse
|
||||
void setFrictionImpulse1(decimal frictionImpulse1);
|
||||
|
||||
// Return the second friction accumulated impulse
|
||||
decimal getFrictionImpulse2() const;
|
||||
|
||||
// Set the second friction accumulated impulse
|
||||
void setFrictionImpulse2(decimal frictionImpulse2);
|
||||
|
||||
// Return the friction twist accumulated impulse
|
||||
decimal getFrictionTwistImpulse() const;
|
||||
|
||||
// Set the friction twist accumulated impulse
|
||||
void setFrictionTwistImpulse(decimal frictionTwistImpulse);
|
||||
|
||||
// Return a contact point of the manifold
|
||||
ContactPoint* getContactPoint(uint index) const;
|
||||
};
|
||||
|
||||
// Return the number of contact points in the manifold
|
||||
inline uint ContactManifold::getNbContactPoints() const {
|
||||
return mNbContactPoints;
|
||||
}
|
||||
|
||||
// Return the first friction vector at the center of the contact manifold
|
||||
inline const Vector3& ContactManifold::getFrictionVector1() const {
|
||||
return mFrictionVector1;
|
||||
}
|
||||
|
||||
// set the first friction vector at the center of the contact manifold
|
||||
inline void ContactManifold::setFrictionVector1(const Vector3& frictionVector1) {
|
||||
mFrictionVector1 = frictionVector1;
|
||||
}
|
||||
|
||||
// Return the second friction vector at the center of the contact manifold
|
||||
inline const Vector3& ContactManifold::getFrictionVector2() const {
|
||||
return mFrictionVector2;
|
||||
}
|
||||
|
||||
// set the second friction vector at the center of the contact manifold
|
||||
inline void ContactManifold::setFrictionVector2(const Vector3& frictionVector2) {
|
||||
mFrictionVector2 = frictionVector2;
|
||||
}
|
||||
|
||||
// Return the first friction accumulated impulse
|
||||
inline decimal ContactManifold::getFrictionImpulse1() const {
|
||||
return mFrictionImpulse1;
|
||||
}
|
||||
|
||||
// Set the first friction accumulated impulse
|
||||
inline void ContactManifold::setFrictionImpulse1(decimal frictionImpulse1) {
|
||||
mFrictionImpulse1 = frictionImpulse1;
|
||||
}
|
||||
|
||||
// Return the second friction accumulated impulse
|
||||
inline decimal ContactManifold::getFrictionImpulse2() const {
|
||||
return mFrictionImpulse2;
|
||||
}
|
||||
|
||||
// Set the second friction accumulated impulse
|
||||
inline void ContactManifold::setFrictionImpulse2(decimal frictionImpulse2) {
|
||||
mFrictionImpulse2 = frictionImpulse2;
|
||||
}
|
||||
|
||||
// Return the friction twist accumulated impulse
|
||||
inline decimal ContactManifold::getFrictionTwistImpulse() const {
|
||||
return mFrictionTwistImpulse;
|
||||
}
|
||||
|
||||
// Set the friction twist accumulated impulse
|
||||
inline void ContactManifold::setFrictionTwistImpulse(decimal frictionTwistImpulse) {
|
||||
mFrictionTwistImpulse = frictionTwistImpulse;
|
||||
}
|
||||
|
||||
// Return a contact point of the manifold
|
||||
inline ContactPoint* ContactManifold::getContactPoint(uint index) const {
|
||||
assert(index >= 0 && index < mNbContactPoints);
|
||||
return mContactPoints[index];
|
||||
}
|
||||
|
||||
// Return true if two vectors are approximatively equal
|
||||
inline bool ContactManifold::isApproxEqual(const Vector3& vector1,
|
||||
const Vector3& vector2) const {
|
||||
const decimal epsilon = decimal(0.1);
|
||||
return (approxEqual(vector1.getX(), vector2.getX(), epsilon) &&
|
||||
approxEqual(vector1.getY(), vector2.getY(), epsilon) &&
|
||||
approxEqual(vector1.getZ(), vector2.getZ(), epsilon));
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
|
@ -37,16 +37,16 @@ const decimal ContactSolver::BETA_SPLIT_IMPULSE = decimal(0.2);
|
|||
const decimal ContactSolver::SLOP = decimal(0.01);
|
||||
|
||||
// Constructor
|
||||
ContactSolver::ContactSolver(DynamicsWorld& world, std::vector<Vector3>& constrainedLinearVelocities,
|
||||
ContactSolver::ContactSolver(DynamicsWorld& world,std::vector<Vector3>& constrainedLinearVelocities,
|
||||
std::vector<Vector3>& constrainedAngularVelocities,
|
||||
const std::map<RigidBody*, uint>& mapBodyToVelocityIndex)
|
||||
:mWorld(world), mNbIterations(DEFAULT_CONSTRAINTS_SOLVER_NB_ITERATIONS),
|
||||
mSplitLinearVelocities(NULL), mSplitAngularVelocities(NULL), mContactConstraints(NULL),
|
||||
mSplitLinearVelocities(NULL), mSplitAngularVelocities(NULL),
|
||||
mContactConstraints(NULL),
|
||||
mConstrainedLinearVelocities(constrainedLinearVelocities),
|
||||
mConstrainedAngularVelocities(constrainedAngularVelocities),
|
||||
mMapBodyToConstrainedVelocityIndex(mapBodyToVelocityIndex),
|
||||
mIsWarmStartingActive(true),
|
||||
mIsSplitImpulseActive(true),
|
||||
mIsWarmStartingActive(true), mIsSplitImpulseActive(true),
|
||||
mIsSolveFrictionAtContactManifoldCenterActive(true) {
|
||||
|
||||
}
|
||||
|
@ -62,22 +62,22 @@ void ContactSolver::initialize() {
|
|||
// TODO : Use better memory allocation here
|
||||
mContactConstraints = new ContactManifoldSolver[mWorld.getNbContactManifolds()];
|
||||
|
||||
mNbContactConstraints = 0;
|
||||
mNbContactManifolds = 0;
|
||||
|
||||
// For each contact manifold of the world
|
||||
vector<ContactManifold>::iterator it;
|
||||
vector<ContactManifold*>::iterator it;
|
||||
for (it = mWorld.getContactManifoldsBeginIterator();
|
||||
it != mWorld.getContactManifoldsEndIterator(); ++it) {
|
||||
|
||||
ContactManifold& externalContactManifold = *it;
|
||||
ContactManifold* externalManifold = *it;
|
||||
|
||||
ContactManifoldSolver& internalContactManifold = mContactConstraints[mNbContactConstraints];
|
||||
ContactManifoldSolver& internalManifold = mContactConstraints[mNbContactManifolds];
|
||||
|
||||
assert(externalContactManifold.nbContacts > 0);
|
||||
assert(externalManifold->getNbContactPoints() > 0);
|
||||
|
||||
// Get the two bodies of the contact
|
||||
RigidBody* body1 = externalContactManifold.contacts[0]->getBody1();
|
||||
RigidBody* body2 = externalContactManifold.contacts[0]->getBody2();
|
||||
RigidBody* body1 = externalManifold->getContactPoint(0)->getBody1();
|
||||
RigidBody* body2 = externalManifold->getContactPoint(0)->getBody2();
|
||||
|
||||
// Add the two bodies of the constraint in the constraintBodies list
|
||||
mConstraintBodies.insert(body1);
|
||||
|
@ -87,38 +87,40 @@ void ContactSolver::initialize() {
|
|||
Vector3 x1 = body1->getTransform().getPosition();
|
||||
Vector3 x2 = body2->getTransform().getPosition();
|
||||
|
||||
internalContactManifold.indexBody1 = mMapBodyToConstrainedVelocityIndex.find(body1)->second;
|
||||
internalContactManifold.indexBody2 = mMapBodyToConstrainedVelocityIndex.find(body2)->second;
|
||||
internalContactManifold.inverseInertiaTensorBody1 = body1->getInertiaTensorInverseWorld();
|
||||
internalContactManifold.inverseInertiaTensorBody2 = body2->getInertiaTensorInverseWorld();
|
||||
internalContactManifold.isBody1Moving = body1->getIsMotionEnabled();
|
||||
internalContactManifold.isBody2Moving = body2->getIsMotionEnabled();
|
||||
internalContactManifold.massInverseBody1 = body1->getMassInverse();
|
||||
internalContactManifold.massInverseBody2 = body2->getMassInverse();
|
||||
internalContactManifold.nbContacts = externalContactManifold.nbContacts;
|
||||
internalContactManifold.restitutionFactor = computeMixedRestitutionFactor(body1, body2);
|
||||
internalContactManifold.frictionCoefficient = computeMixedFrictionCoefficient(body1, body2);
|
||||
internalContactManifold.contactManifold = &(*it);
|
||||
// Initialize the internal contact manifold structure using the external
|
||||
// contact manifold
|
||||
internalManifold.indexBody1 = mMapBodyToConstrainedVelocityIndex.find(body1)->second;
|
||||
internalManifold.indexBody2 = mMapBodyToConstrainedVelocityIndex.find(body2)->second;
|
||||
internalManifold.inverseInertiaTensorBody1 = body1->getInertiaTensorInverseWorld();
|
||||
internalManifold.inverseInertiaTensorBody2 = body2->getInertiaTensorInverseWorld();
|
||||
internalManifold.isBody1Moving = body1->getIsMotionEnabled();
|
||||
internalManifold.isBody2Moving = body2->getIsMotionEnabled();
|
||||
internalManifold.massInverseBody1 = body1->getMassInverse();
|
||||
internalManifold.massInverseBody2 = body2->getMassInverse();
|
||||
internalManifold.nbContacts = externalManifold->getNbContactPoints();
|
||||
internalManifold.restitutionFactor = computeMixedRestitutionFactor(body1, body2);
|
||||
internalManifold.frictionCoefficient = computeMixedFrictionCoefficient(body1, body2);
|
||||
internalManifold.externalContactManifold = externalManifold;
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
internalContactManifold.frictionPointBody1 = Vector3(0.0, 0.0, 0.0);
|
||||
internalContactManifold.frictionPointBody2 = Vector3(0.0, 0.0, 0.0);
|
||||
internalManifold.frictionPointBody1 = Vector3(0.0, 0.0, 0.0);
|
||||
internalManifold.frictionPointBody2 = Vector3(0.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
// For each contact point of the contact manifold
|
||||
for (uint c=0; c<externalContactManifold.nbContacts; c++) {
|
||||
// For each contact point of the contact manifold
|
||||
for (uint c=0; c<externalManifold->getNbContactPoints(); c++) {
|
||||
|
||||
ContactPointSolver& contactPoint = internalContactManifold.contacts[c];
|
||||
ContactPointSolver& contactPoint = internalManifold.contacts[c];
|
||||
|
||||
// Get a contact point
|
||||
Contact* externalContact = externalContactManifold.contacts[c];
|
||||
ContactPoint* externalContact = externalManifold->getContactPoint(c);
|
||||
|
||||
// Get the contact point on the two bodies
|
||||
Vector3 p1 = externalContact->getWorldPointOnBody1();
|
||||
Vector3 p2 = externalContact->getWorldPointOnBody2();
|
||||
|
||||
contactPoint.contact = externalContact;
|
||||
contactPoint.externalContact = externalContact;
|
||||
contactPoint.normal = externalContact->getNormal();
|
||||
contactPoint.r1 = p1 - x1;
|
||||
contactPoint.r2 = p2 - x2;
|
||||
|
@ -133,39 +135,39 @@ void ContactSolver::initialize() {
|
|||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
internalContactManifold.frictionPointBody1 += p1;
|
||||
internalContactManifold.frictionPointBody2 += p2;
|
||||
internalManifold.frictionPointBody1 += p1;
|
||||
internalManifold.frictionPointBody2 += p2;
|
||||
}
|
||||
}
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
|
||||
internalContactManifold.frictionPointBody1 /= static_cast<decimal>(internalContactManifold.nbContacts);
|
||||
internalContactManifold.frictionPointBody2 /= static_cast<decimal>(internalContactManifold.nbContacts);
|
||||
internalContactManifold.r1Friction = internalContactManifold.frictionPointBody1 - x1;
|
||||
internalContactManifold.r2Friction = internalContactManifold.frictionPointBody2 - x2;
|
||||
internalContactManifold.oldFrictionVector1 = externalContactManifold.frictionVector1;
|
||||
internalContactManifold.oldFrictionVector2 = externalContactManifold.frictionVector2;
|
||||
internalManifold.frictionPointBody1 /=static_cast<decimal>(internalManifold.nbContacts);
|
||||
internalManifold.frictionPointBody2 /=static_cast<decimal>(internalManifold.nbContacts);
|
||||
internalManifold.r1Friction = internalManifold.frictionPointBody1 - x1;
|
||||
internalManifold.r2Friction = internalManifold.frictionPointBody2 - x2;
|
||||
internalManifold.oldFrictionVector1 = externalManifold->getFrictionVector1();
|
||||
internalManifold.oldFrictionVector2 = externalManifold->getFrictionVector2();
|
||||
|
||||
// If warm starting is active
|
||||
if (mIsWarmStartingActive) {
|
||||
|
||||
// Initialize the accumulated impulses with the previous step accumulated impulses
|
||||
internalContactManifold.friction1Impulse = externalContactManifold.friction1Impulse;
|
||||
internalContactManifold.friction2Impulse = externalContactManifold.friction2Impulse;
|
||||
internalContactManifold.frictionTwistImpulse = externalContactManifold.frictionTwistImpulse;
|
||||
internalManifold.friction1Impulse = externalManifold->getFrictionImpulse1();
|
||||
internalManifold.friction2Impulse = externalManifold->getFrictionImpulse2();
|
||||
internalManifold.frictionTwistImpulse = externalManifold->getFrictionTwistImpulse();
|
||||
}
|
||||
else {
|
||||
|
||||
// Initialize the accumulated impulses to zero
|
||||
internalContactManifold.friction1Impulse = 0.0;
|
||||
internalContactManifold.friction2Impulse = 0.0;
|
||||
internalContactManifold.frictionTwistImpulse = 0.0;
|
||||
internalManifold.friction1Impulse = 0.0;
|
||||
internalManifold.friction2Impulse = 0.0;
|
||||
internalManifold.frictionTwistImpulse = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
mNbContactConstraints++;
|
||||
mNbContactManifolds++;
|
||||
}
|
||||
|
||||
// Allocated memory for split impulse velocities
|
||||
|
@ -179,10 +181,13 @@ void ContactSolver::initialize() {
|
|||
assert(mMapBodyToConstrainedVelocityIndex.size() >= mConstraintBodies.size());
|
||||
assert(mConstrainedLinearVelocities.size() >= mConstraintBodies.size());
|
||||
assert(mConstrainedAngularVelocities.size() >= mConstraintBodies.size());
|
||||
|
||||
// Initialize the split impulse velocities
|
||||
initializeSplitImpulseVelocities();
|
||||
}
|
||||
|
||||
// Initialize the constrained bodies
|
||||
void ContactSolver::initializeBodies() {
|
||||
// Initialize the split impulse velocities
|
||||
void ContactSolver::initializeSplitImpulseVelocities() {
|
||||
|
||||
// For each current body that is implied in some constraint
|
||||
set<RigidBody*>::iterator it;
|
||||
|
@ -192,6 +197,7 @@ void ContactSolver::initializeBodies() {
|
|||
|
||||
uint bodyNumber = mMapBodyToConstrainedVelocityIndex.find(rigidBody)->second;
|
||||
|
||||
// Initialize the split impulse velocities to zero
|
||||
mSplitLinearVelocities[bodyNumber] = Vector3(0, 0, 0);
|
||||
mSplitAngularVelocities[bodyNumber] = Vector3(0, 0, 0);
|
||||
}
|
||||
|
@ -201,30 +207,30 @@ void ContactSolver::initializeBodies() {
|
|||
void ContactSolver::initializeContactConstraints() {
|
||||
|
||||
// For each contact constraint
|
||||
for (uint c=0; c<mNbContactConstraints; c++) {
|
||||
for (uint c=0; c<mNbContactManifolds; c++) {
|
||||
|
||||
ContactManifoldSolver& contactManifold = mContactConstraints[c];
|
||||
ContactManifoldSolver& manifold = mContactConstraints[c];
|
||||
|
||||
// Get the inertia tensors of both bodies
|
||||
Matrix3x3& I1 = contactManifold.inverseInertiaTensorBody1;
|
||||
Matrix3x3& I2 = contactManifold.inverseInertiaTensorBody2;
|
||||
Matrix3x3& I1 = manifold.inverseInertiaTensorBody1;
|
||||
Matrix3x3& I2 = manifold.inverseInertiaTensorBody2;
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
contactManifold.normal = Vector3(0.0, 0.0, 0.0);
|
||||
manifold.normal = Vector3(0.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
// Get the velocities of the bodies
|
||||
const Vector3& v1 = mConstrainedLinearVelocities[contactManifold.indexBody1];
|
||||
const Vector3& w1 = mConstrainedAngularVelocities[contactManifold.indexBody1];
|
||||
const Vector3& v2 = mConstrainedLinearVelocities[contactManifold.indexBody2];
|
||||
const Vector3& w2 = mConstrainedAngularVelocities[contactManifold.indexBody2];
|
||||
const Vector3& v1 = mConstrainedLinearVelocities[manifold.indexBody1];
|
||||
const Vector3& w1 = mConstrainedAngularVelocities[manifold.indexBody1];
|
||||
const Vector3& v2 = mConstrainedLinearVelocities[manifold.indexBody2];
|
||||
const Vector3& w2 = mConstrainedAngularVelocities[manifold.indexBody2];
|
||||
|
||||
// For each contact point constraint
|
||||
for (uint i=0; i<contactManifold.nbContacts; i++) {
|
||||
for (uint i=0; i<manifold.nbContacts; i++) {
|
||||
|
||||
ContactPointSolver& contactPoint = contactManifold.contacts[i];
|
||||
Contact* externalContact = contactPoint.contact;
|
||||
ContactPointSolver& contactPoint = manifold.contacts[i];
|
||||
ContactPoint* externalContact = contactPoint.externalContact;
|
||||
|
||||
// Compute the velocity difference
|
||||
Vector3 deltaV = v2 + w2.cross(contactPoint.r2) - v1 - w1.cross(contactPoint.r1);
|
||||
|
@ -232,17 +238,21 @@ void ContactSolver::initializeContactConstraints() {
|
|||
contactPoint.r1CrossN = contactPoint.r1.cross(contactPoint.normal);
|
||||
contactPoint.r2CrossN = contactPoint.r2.cross(contactPoint.normal);
|
||||
|
||||
// Compute the inverse mass matrix K for the penetration constraint
|
||||
decimal massPenetration = 0.0;
|
||||
if (contactManifold.isBody1Moving) {
|
||||
massPenetration += contactManifold.massInverseBody1 +
|
||||
((I1 * contactPoint.r1CrossN).cross(contactPoint.r1)).dot(contactPoint.normal);
|
||||
if (manifold.isBody1Moving) {
|
||||
massPenetration += manifold.massInverseBody1 +
|
||||
((I1 * contactPoint.r1CrossN).cross(contactPoint.r1)).dot(contactPoint.normal);
|
||||
}
|
||||
if (contactManifold.isBody2Moving) {
|
||||
massPenetration += contactManifold.massInverseBody2 +
|
||||
((I2 * contactPoint.r2CrossN).cross(contactPoint.r2)).dot(contactPoint.normal);
|
||||
if (manifold.isBody2Moving) {
|
||||
massPenetration += manifold.massInverseBody2 +
|
||||
((I2 * contactPoint.r2CrossN).cross(contactPoint.r2)).dot(contactPoint.normal);
|
||||
}
|
||||
massPenetration > 0.0 ? contactPoint.inversePenetrationMass = decimal(1.0) / massPenetration : decimal(0.0);
|
||||
massPenetration > 0.0 ? contactPoint.inversePenetrationMass = decimal(1.0) /
|
||||
massPenetration :
|
||||
decimal(0.0);
|
||||
|
||||
// If we do not solve the friction constraints at the center of the contact manifold
|
||||
if (!mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
|
||||
// Compute the friction vectors
|
||||
|
@ -253,34 +263,48 @@ void ContactSolver::initializeContactConstraints() {
|
|||
contactPoint.r2CrossT1 = contactPoint.r2.cross(contactPoint.frictionVector1);
|
||||
contactPoint.r2CrossT2 = contactPoint.r2.cross(contactPoint.frictionVector2);
|
||||
|
||||
// Compute the inverse mass matrix K for the friction constraints at each contact point
|
||||
// Compute the inverse mass matrix K for the friction
|
||||
// constraints at each contact point
|
||||
decimal friction1Mass = 0.0;
|
||||
decimal friction2Mass = 0.0;
|
||||
if (contactManifold.isBody1Moving) {
|
||||
friction1Mass += contactManifold.massInverseBody1 + ((I1 * contactPoint.r1CrossT1).cross(contactPoint.r1)).dot(contactPoint.frictionVector1);
|
||||
friction2Mass += contactManifold.massInverseBody1 + ((I1 * contactPoint.r1CrossT2).cross(contactPoint.r1)).dot(contactPoint.frictionVector2);
|
||||
if (manifold.isBody1Moving) {
|
||||
friction1Mass += manifold.massInverseBody1 +
|
||||
((I1 * contactPoint.r1CrossT1).cross(contactPoint.r1)).dot(
|
||||
contactPoint.frictionVector1);
|
||||
friction2Mass += manifold.massInverseBody1 +
|
||||
((I1 * contactPoint.r1CrossT2).cross(contactPoint.r1)).dot(
|
||||
contactPoint.frictionVector2);
|
||||
}
|
||||
if (contactManifold.isBody2Moving) {
|
||||
friction1Mass += contactManifold.massInverseBody2 + ((I2 * contactPoint.r2CrossT1).cross(contactPoint.r2)).dot(contactPoint.frictionVector1);
|
||||
friction2Mass += contactManifold.massInverseBody2 + ((I2 * contactPoint.r2CrossT2).cross(contactPoint.r2)).dot(contactPoint.frictionVector2);
|
||||
if (manifold.isBody2Moving) {
|
||||
friction1Mass += manifold.massInverseBody2 +
|
||||
((I2 * contactPoint.r2CrossT1).cross(contactPoint.r2)).dot(
|
||||
contactPoint.frictionVector1);
|
||||
friction2Mass += manifold.massInverseBody2 +
|
||||
((I2 * contactPoint.r2CrossT2).cross(contactPoint.r2)).dot(
|
||||
contactPoint.frictionVector2);
|
||||
}
|
||||
friction1Mass > 0.0 ? contactPoint.inverseFriction1Mass = decimal(1.0) / friction1Mass : decimal(0.0);
|
||||
friction2Mass > 0.0 ? contactPoint.inverseFriction2Mass = decimal(1.0) / friction2Mass : decimal(0.0);
|
||||
friction1Mass > 0.0 ? contactPoint.inverseFriction1Mass = decimal(1.0) /
|
||||
friction1Mass :
|
||||
decimal(0.0);
|
||||
friction2Mass > 0.0 ? contactPoint.inverseFriction2Mass = decimal(1.0) /
|
||||
friction2Mass :
|
||||
decimal(0.0);
|
||||
}
|
||||
|
||||
// Compute the restitution velocity bias "b". We compute this here instead
|
||||
// of inside the solve() method because we need to use the velocity difference
|
||||
// at the beginning of the contact. Note that if it is a resting contact (normal velocity
|
||||
// under a given threshold), we don't add a restitution velocity bias
|
||||
// at the beginning of the contact. Note that if it is a resting contact (normal
|
||||
// velocity under a given threshold), we don't add a restitution velocity bias
|
||||
contactPoint.restitutionBias = 0.0;
|
||||
decimal deltaVDotN = deltaV.dot(contactPoint.normal);
|
||||
// TODO : Use a constant here
|
||||
if (deltaVDotN < 1.0f) {
|
||||
contactPoint.restitutionBias = contactManifold.restitutionFactor * deltaVDotN;
|
||||
if (deltaVDotN < RESTITUTION_VELOCITY_THRESHOLD) {
|
||||
contactPoint.restitutionBias = manifold.restitutionFactor * deltaVDotN;
|
||||
}
|
||||
|
||||
// Get the cached lambda values of the constraint
|
||||
// If the warm starting of the contact solver is active
|
||||
if (mIsWarmStartingActive) {
|
||||
|
||||
// Get the cached accumulated impulses from the previous step
|
||||
contactPoint.penetrationImpulse = externalContact->getCachedLambda(0);
|
||||
contactPoint.friction1Impulse = externalContact->getCachedLambda(1);
|
||||
contactPoint.friction2Impulse = externalContact->getCachedLambda(2);
|
||||
|
@ -291,39 +315,58 @@ void ContactSolver::initializeContactConstraints() {
|
|||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
contactManifold.normal += contactPoint.normal;
|
||||
manifold.normal += contactPoint.normal;
|
||||
}
|
||||
}
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
|
||||
contactManifold.normal.normalize();
|
||||
manifold.normal.normalize();
|
||||
|
||||
Vector3 deltaVFrictionPoint = v2 + w2.cross(contactManifold.r2Friction) -
|
||||
v1 - w1.cross(contactManifold.r1Friction);
|
||||
Vector3 deltaVFrictionPoint = v2 + w2.cross(manifold.r2Friction) -
|
||||
v1 - w1.cross(manifold.r1Friction);
|
||||
|
||||
// Compute the friction vectors
|
||||
computeFrictionVectors(deltaVFrictionPoint, contactManifold);
|
||||
computeFrictionVectors(deltaVFrictionPoint, manifold);
|
||||
|
||||
// Compute the inverse mass matrix K for the friction constraints at the center of
|
||||
// the contact manifold
|
||||
contactManifold.r1CrossT1 = contactManifold.r1Friction.cross(contactManifold.frictionVector1);
|
||||
contactManifold.r1CrossT2 = contactManifold.r1Friction.cross(contactManifold.frictionVector2);
|
||||
contactManifold.r2CrossT1 = contactManifold.r2Friction.cross(contactManifold.frictionVector1);
|
||||
contactManifold.r2CrossT2 = contactManifold.r2Friction.cross(contactManifold.frictionVector2);
|
||||
manifold.r1CrossT1 = manifold.r1Friction.cross(manifold.frictionVector1);
|
||||
manifold.r1CrossT2 = manifold.r1Friction.cross(manifold.frictionVector2);
|
||||
manifold.r2CrossT1 = manifold.r2Friction.cross(manifold.frictionVector1);
|
||||
manifold.r2CrossT2 = manifold.r2Friction.cross(manifold.frictionVector2);
|
||||
decimal friction1Mass = 0.0;
|
||||
decimal friction2Mass = 0.0;
|
||||
if (contactManifold.isBody1Moving) {
|
||||
friction1Mass += contactManifold.massInverseBody1 + ((I1 * contactManifold.r1CrossT1).cross(contactManifold.r1Friction)).dot(contactManifold.frictionVector1);
|
||||
friction2Mass += contactManifold.massInverseBody1 + ((I1 * contactManifold.r1CrossT2).cross(contactManifold.r1Friction)).dot(contactManifold.frictionVector2);
|
||||
if (manifold.isBody1Moving) {
|
||||
friction1Mass += manifold.massInverseBody1 +
|
||||
((I1 * manifold.r1CrossT1).cross(manifold.r1Friction)).dot(
|
||||
manifold.frictionVector1);
|
||||
friction2Mass += manifold.massInverseBody1 +
|
||||
((I1 * manifold.r1CrossT2).cross(manifold.r1Friction)).dot(
|
||||
manifold.frictionVector2);
|
||||
}
|
||||
if (contactManifold.isBody2Moving) {
|
||||
friction1Mass += contactManifold.massInverseBody2 + ((I2 * contactManifold.r2CrossT1).cross(contactManifold.r2Friction)).dot(contactManifold.frictionVector1);
|
||||
friction2Mass += contactManifold.massInverseBody2 + ((I2 * contactManifold.r2CrossT2).cross(contactManifold.r2Friction)).dot(contactManifold.frictionVector2);
|
||||
if (manifold.isBody2Moving) {
|
||||
friction1Mass += manifold.massInverseBody2 +
|
||||
((I2 * manifold.r2CrossT1).cross(manifold.r2Friction)).dot(
|
||||
manifold.frictionVector1);
|
||||
friction2Mass += manifold.massInverseBody2 +
|
||||
((I2 * manifold.r2CrossT2).cross(manifold.r2Friction)).dot(
|
||||
manifold.frictionVector2);
|
||||
}
|
||||
friction1Mass > 0.0 ? contactManifold.inverseFriction1Mass = decimal(1.0) / friction1Mass : decimal(0.0);
|
||||
friction2Mass > 0.0 ? contactManifold.inverseFriction2Mass = decimal(1.0) / friction2Mass : decimal(0.0);
|
||||
decimal frictionTwistMass = manifold.normal.dot(
|
||||
manifold.inverseInertiaTensorBody1 *
|
||||
manifold.normal) +
|
||||
manifold.normal.dot(
|
||||
manifold.inverseInertiaTensorBody2 *
|
||||
manifold.normal);
|
||||
friction1Mass > 0.0 ? manifold.inverseFriction1Mass = decimal(1.0)/friction1Mass
|
||||
: decimal(0.0);
|
||||
friction2Mass > 0.0 ? manifold.inverseFriction2Mass = decimal(1.0)/friction2Mass
|
||||
: decimal(0.0);
|
||||
frictionTwistMass > 0.0 ? manifold.inverseTwistFrictionMass = decimal(1.0) /
|
||||
frictionTwistMass :
|
||||
decimal(0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -335,7 +378,7 @@ void ContactSolver::initializeContactConstraints() {
|
|||
void ContactSolver::warmStart() {
|
||||
|
||||
// For each constraint
|
||||
for (uint c=0; c<mNbContactConstraints; c++) {
|
||||
for (uint c=0; c<mNbContactManifolds; c++) {
|
||||
|
||||
ContactManifoldSolver& contactManifold = mContactConstraints[c];
|
||||
|
||||
|
@ -352,9 +395,9 @@ void ContactSolver::warmStart() {
|
|||
|
||||
// --------- Penetration --------- //
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
const Impulse impulsePenetration = computePenetrationImpulse(contactPoint.penetrationImpulse,
|
||||
contactPoint);
|
||||
// Compute the impulse P = J^T * lambda
|
||||
const Impulse impulsePenetration = computePenetrationImpulse(
|
||||
contactPoint.penetrationImpulse, contactPoint);
|
||||
|
||||
// Apply the impulse to the bodies of the constraint
|
||||
applyImpulse(impulsePenetration, contactManifold);
|
||||
|
@ -362,18 +405,22 @@ void ContactSolver::warmStart() {
|
|||
// If we do not solve the friction constraints at the center of the contact manifold
|
||||
if (!mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
|
||||
// Project the old friction impulses (with old friction vectors) into the new friction
|
||||
// vectors to get the new friction impulses
|
||||
Vector3 oldFrictionImpulse = contactPoint.friction1Impulse * contactPoint.oldFrictionVector1 +
|
||||
contactPoint.friction2Impulse * contactPoint.oldFrictionVector2;
|
||||
contactPoint.friction1Impulse = oldFrictionImpulse.dot(contactPoint.frictionVector1);
|
||||
contactPoint.friction2Impulse = oldFrictionImpulse.dot(contactPoint.frictionVector2);
|
||||
// Project the old friction impulses (with old friction vectors) into
|
||||
// the new friction vectors to get the new friction impulses
|
||||
Vector3 oldFrictionImpulse = contactPoint.friction1Impulse *
|
||||
contactPoint.oldFrictionVector1 +
|
||||
contactPoint.friction2Impulse *
|
||||
contactPoint.oldFrictionVector2;
|
||||
contactPoint.friction1Impulse = oldFrictionImpulse.dot(
|
||||
contactPoint.frictionVector1);
|
||||
contactPoint.friction2Impulse = oldFrictionImpulse.dot(
|
||||
contactPoint.frictionVector2);
|
||||
|
||||
// --------- Friction 1 --------- //
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
const Impulse impulseFriction1 = computeFriction1Impulse(contactPoint.friction1Impulse,
|
||||
contactPoint);
|
||||
// Compute the impulse P = J^T * lambda
|
||||
const Impulse impulseFriction1 = computeFriction1Impulse(
|
||||
contactPoint.friction1Impulse, contactPoint);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction1, contactManifold);
|
||||
|
@ -381,8 +428,8 @@ void ContactSolver::warmStart() {
|
|||
// --------- Friction 2 --------- //
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
const Impulse impulseFriction2 = computeFriction2Impulse(contactPoint.friction2Impulse,
|
||||
contactPoint);
|
||||
const Impulse impulseFriction2 = computeFriction2Impulse(
|
||||
contactPoint.friction2Impulse, contactPoint);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction2, contactManifold);
|
||||
|
@ -403,41 +450,52 @@ void ContactSolver::warmStart() {
|
|||
|
||||
// Project the old friction impulses (with old friction vectors) into the new friction
|
||||
// vectors to get the new friction impulses
|
||||
Vector3 oldFrictionImpulse = contactManifold.friction1Impulse * contactManifold.oldFrictionVector1 +
|
||||
contactManifold.friction2Impulse * contactManifold.oldFrictionVector2;
|
||||
contactManifold.friction1Impulse = oldFrictionImpulse.dot(contactManifold.frictionVector1);
|
||||
contactManifold.friction2Impulse = oldFrictionImpulse.dot(contactManifold.frictionVector2);
|
||||
Vector3 oldFrictionImpulse = contactManifold.friction1Impulse *
|
||||
contactManifold.oldFrictionVector1 +
|
||||
contactManifold.friction2Impulse *
|
||||
contactManifold.oldFrictionVector2;
|
||||
contactManifold.friction1Impulse = oldFrictionImpulse.dot(
|
||||
contactManifold.frictionVector1);
|
||||
contactManifold.friction2Impulse = oldFrictionImpulse.dot(
|
||||
contactManifold.frictionVector2);
|
||||
|
||||
// ------ First friction constraint at the center of the contact manifol ------ //
|
||||
// ------ First friction constraint at the center of the contact manifold ------ //
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
Vector3 linearImpulseBody1 = -contactManifold.frictionVector1 * contactManifold.friction1Impulse;
|
||||
Vector3 angularImpulseBody1 = -contactManifold.r1CrossT1 * contactManifold.friction1Impulse;
|
||||
Vector3 linearImpulseBody2 = contactManifold.frictionVector1 * contactManifold.friction1Impulse;
|
||||
Vector3 angularImpulseBody2 = contactManifold.r2CrossT1 * contactManifold.friction1Impulse;
|
||||
// Compute the impulse P = J^T * lambda
|
||||
Vector3 linearImpulseBody1 = -contactManifold.frictionVector1 *
|
||||
contactManifold.friction1Impulse;
|
||||
Vector3 angularImpulseBody1 = -contactManifold.r1CrossT1 *
|
||||
contactManifold.friction1Impulse;
|
||||
Vector3 linearImpulseBody2 = contactManifold.frictionVector1 *
|
||||
contactManifold.friction1Impulse;
|
||||
Vector3 angularImpulseBody2 = contactManifold.r2CrossT1 *
|
||||
contactManifold.friction1Impulse;
|
||||
const Impulse impulseFriction1(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction1, contactManifold);
|
||||
|
||||
// ------ Second friction constraint at the center of the contact manifol ----- //
|
||||
// ------ Second friction constraint at the center of the contact manifold ----- //
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
linearImpulseBody1 = -contactManifold.frictionVector2 * contactManifold.friction2Impulse;
|
||||
angularImpulseBody1 = -contactManifold.r1CrossT2 * contactManifold.friction2Impulse;
|
||||
linearImpulseBody2 = contactManifold.frictionVector2 * contactManifold.friction2Impulse;
|
||||
angularImpulseBody2 = contactManifold.r2CrossT2 * contactManifold.friction2Impulse;
|
||||
// Compute the impulse P = J^T * lambda
|
||||
linearImpulseBody1 = -contactManifold.frictionVector2 *
|
||||
contactManifold.friction2Impulse;
|
||||
angularImpulseBody1 = -contactManifold.r1CrossT2 *
|
||||
contactManifold.friction2Impulse;
|
||||
linearImpulseBody2 = contactManifold.frictionVector2 *
|
||||
contactManifold.friction2Impulse;
|
||||
angularImpulseBody2 = contactManifold.r2CrossT2 *
|
||||
contactManifold.friction2Impulse;
|
||||
const Impulse impulseFriction2(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction2, contactManifold);
|
||||
|
||||
// ------ Twist friction constraint at the center of the contact manifol ------ //
|
||||
// ------ Twist friction constraint at the center of the contact manifold ------ //
|
||||
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
// Compute the impulse P = J^T * lambda
|
||||
linearImpulseBody1 = Vector3(0.0, 0.0, 0.0);
|
||||
angularImpulseBody1 = -contactManifold.normal * contactManifold.frictionTwistImpulse;
|
||||
linearImpulseBody2 = Vector3(0.0, 0.0, 0.0);
|
||||
|
@ -465,16 +523,17 @@ void ContactSolver::solveContactConstraints() {
|
|||
decimal lambdaTemp;
|
||||
uint iter;
|
||||
|
||||
// For each iteration
|
||||
// For each iteration of the contact solver
|
||||
for(iter=0; iter<mNbIterations; iter++) {
|
||||
|
||||
// For each constraint
|
||||
for (uint c=0; c<mNbContactConstraints; c++) {
|
||||
// For each contact manifold
|
||||
for (uint c=0; c<mNbContactManifolds; c++) {
|
||||
|
||||
ContactManifoldSolver& contactManifold = mContactConstraints[c];
|
||||
|
||||
decimal sumPenetrationImpulse = 0.0;
|
||||
|
||||
// Get the constrained velocities
|
||||
const Vector3& v1 = mConstrainedLinearVelocities[contactManifold.indexBody1];
|
||||
const Vector3& w1 = mConstrainedAngularVelocities[contactManifold.indexBody1];
|
||||
const Vector3& v2 = mConstrainedLinearVelocities[contactManifold.indexBody2];
|
||||
|
@ -498,19 +557,22 @@ void ContactSolver::solveContactConstraints() {
|
|||
max(0.0f, float(contactPoint.penetrationDepth - SLOP));
|
||||
decimal b = biasPenetrationDepth + contactPoint.restitutionBias;
|
||||
|
||||
// Compute the Lagrange multiplier
|
||||
// Compute the Lagrange multiplier lambda
|
||||
if (mIsSplitImpulseActive) {
|
||||
deltaLambda = - (Jv + contactPoint.restitutionBias) * contactPoint.inversePenetrationMass;
|
||||
deltaLambda = - (Jv + contactPoint.restitutionBias) *
|
||||
contactPoint.inversePenetrationMass;
|
||||
}
|
||||
else {
|
||||
deltaLambda = - (Jv + b) * contactPoint.inversePenetrationMass;
|
||||
}
|
||||
lambdaTemp = contactPoint.penetrationImpulse;
|
||||
contactPoint.penetrationImpulse = std::max(contactPoint.penetrationImpulse + deltaLambda, 0.0f);
|
||||
contactPoint.penetrationImpulse = std::max(contactPoint.penetrationImpulse +
|
||||
deltaLambda, decimal(0.0));
|
||||
deltaLambda = contactPoint.penetrationImpulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
const Impulse impulsePenetration = computePenetrationImpulse(deltaLambda, contactPoint);
|
||||
const Impulse impulsePenetration = computePenetrationImpulse(deltaLambda,
|
||||
contactPoint);
|
||||
|
||||
// Apply the impulse to the bodies of the constraint
|
||||
applyImpulse(impulsePenetration, contactManifold);
|
||||
|
@ -525,16 +587,20 @@ void ContactSolver::solveContactConstraints() {
|
|||
const Vector3& w1Split = mSplitAngularVelocities[contactManifold.indexBody1];
|
||||
const Vector3& v2Split = mSplitLinearVelocities[contactManifold.indexBody2];
|
||||
const Vector3& w2Split = mSplitAngularVelocities[contactManifold.indexBody2];
|
||||
Vector3 deltaVSplit = v2Split + w2Split.cross(contactPoint.r2) - v1Split - w1Split.cross(contactPoint.r1);
|
||||
Vector3 deltaVSplit = v2Split + w2Split.cross(contactPoint.r2) -
|
||||
v1Split - w1Split.cross(contactPoint.r1);
|
||||
decimal JvSplit = deltaVSplit.dot(contactPoint.normal);
|
||||
decimal deltaLambdaSplit = - (JvSplit + biasPenetrationDepth) * contactPoint.inversePenetrationMass;
|
||||
decimal deltaLambdaSplit = - (JvSplit + biasPenetrationDepth) *
|
||||
contactPoint.inversePenetrationMass;
|
||||
decimal lambdaTempSplit = contactPoint.penetrationSplitImpulse;
|
||||
contactPoint.penetrationSplitImpulse = std::max(contactPoint.penetrationSplitImpulse + deltaLambdaSplit, 0.0f);
|
||||
contactPoint.penetrationSplitImpulse = std::max(
|
||||
contactPoint.penetrationSplitImpulse +
|
||||
deltaLambdaSplit, decimal(0.0));
|
||||
deltaLambda = contactPoint.penetrationSplitImpulse - lambdaTempSplit;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
const Impulse splitImpulsePenetration = computePenetrationImpulse(deltaLambdaSplit,
|
||||
contactPoint);
|
||||
const Impulse splitImpulsePenetration = computePenetrationImpulse(
|
||||
deltaLambdaSplit, contactPoint);
|
||||
|
||||
applySplitImpulse(splitImpulsePenetration, contactManifold);
|
||||
}
|
||||
|
@ -548,15 +614,20 @@ void ContactSolver::solveContactConstraints() {
|
|||
deltaV = v2 + w2.cross(contactPoint.r2) - v1 - w1.cross(contactPoint.r1);
|
||||
Jv = deltaV.dot(contactPoint.frictionVector1);
|
||||
|
||||
// Compute the Lagrange multiplier lambda
|
||||
deltaLambda = -Jv;
|
||||
deltaLambda *= contactPoint.inverseFriction1Mass;
|
||||
decimal frictionLimit = contactManifold.frictionCoefficient * contactPoint.penetrationImpulse;
|
||||
decimal frictionLimit = contactManifold.frictionCoefficient *
|
||||
contactPoint.penetrationImpulse;
|
||||
lambdaTemp = contactPoint.friction1Impulse;
|
||||
contactPoint.friction1Impulse = std::max(-frictionLimit, std::min(contactPoint.friction1Impulse + deltaLambda, frictionLimit));
|
||||
contactPoint.friction1Impulse = std::max(-frictionLimit,
|
||||
std::min(contactPoint.friction1Impulse
|
||||
+ deltaLambda, frictionLimit));
|
||||
deltaLambda = contactPoint.friction1Impulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
const Impulse impulseFriction1 = computeFriction1Impulse(deltaLambda, contactPoint);
|
||||
const Impulse impulseFriction1 = computeFriction1Impulse(deltaLambda,
|
||||
contactPoint);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction1, contactManifold);
|
||||
|
@ -567,15 +638,20 @@ void ContactSolver::solveContactConstraints() {
|
|||
deltaV = v2 + w2.cross(contactPoint.r2) - v1 - w1.cross(contactPoint.r1);
|
||||
Jv = deltaV.dot(contactPoint.frictionVector2);
|
||||
|
||||
// Compute the Lagrange multiplier lambda
|
||||
deltaLambda = -Jv;
|
||||
deltaLambda *= contactPoint.inverseFriction2Mass;
|
||||
frictionLimit = contactManifold.frictionCoefficient * contactPoint.penetrationImpulse;
|
||||
frictionLimit = contactManifold.frictionCoefficient *
|
||||
contactPoint.penetrationImpulse;
|
||||
lambdaTemp = contactPoint.friction2Impulse;
|
||||
contactPoint.friction2Impulse = std::max(-frictionLimit, std::min(contactPoint.friction2Impulse + deltaLambda, frictionLimit));
|
||||
contactPoint.friction2Impulse = std::max(-frictionLimit,
|
||||
std::min(contactPoint.friction2Impulse
|
||||
+ deltaLambda, frictionLimit));
|
||||
deltaLambda = contactPoint.friction2Impulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
const Impulse impulseFriction2 = computeFriction2Impulse(deltaLambda, contactPoint);
|
||||
const Impulse impulseFriction2 = computeFriction2Impulse(deltaLambda,
|
||||
contactPoint);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction2, contactManifold);
|
||||
|
@ -588,13 +664,17 @@ void ContactSolver::solveContactConstraints() {
|
|||
// ------ First friction constraint at the center of the contact manifol ------ //
|
||||
|
||||
// Compute J*v
|
||||
Vector3 deltaV = v2 + w2.cross(contactManifold.r2Friction) - v1 - w1.cross(contactManifold.r1Friction);
|
||||
Vector3 deltaV = v2 + w2.cross(contactManifold.r2Friction)
|
||||
- v1 - w1.cross(contactManifold.r1Friction);
|
||||
decimal Jv = deltaV.dot(contactManifold.frictionVector1);
|
||||
|
||||
// Compute the Lagrange multiplier lambda
|
||||
decimal deltaLambda = -Jv * contactManifold.inverseFriction1Mass;
|
||||
decimal frictionLimit = contactManifold.frictionCoefficient * sumPenetrationImpulse;
|
||||
lambdaTemp = contactManifold.friction1Impulse;
|
||||
contactManifold.friction1Impulse = std::max(-frictionLimit, std::min(contactManifold.friction1Impulse + deltaLambda, frictionLimit));
|
||||
contactManifold.friction1Impulse = std::max(-frictionLimit,
|
||||
std::min(contactManifold.friction1Impulse +
|
||||
deltaLambda, frictionLimit));
|
||||
deltaLambda = contactManifold.friction1Impulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
|
@ -611,13 +691,17 @@ void ContactSolver::solveContactConstraints() {
|
|||
// ------ Second friction constraint at the center of the contact manifol ----- //
|
||||
|
||||
// Compute J*v
|
||||
deltaV = v2 + w2.cross(contactManifold.r2Friction) - v1 - w1.cross(contactManifold.r1Friction);
|
||||
deltaV = v2 + w2.cross(contactManifold.r2Friction)
|
||||
- v1 - w1.cross(contactManifold.r1Friction);
|
||||
Jv = deltaV.dot(contactManifold.frictionVector2);
|
||||
|
||||
// Compute the Lagrange multiplier lambda
|
||||
deltaLambda = -Jv * contactManifold.inverseFriction2Mass;
|
||||
frictionLimit = contactManifold.frictionCoefficient * sumPenetrationImpulse;
|
||||
lambdaTemp = contactManifold.friction2Impulse;
|
||||
contactManifold.friction2Impulse = std::max(-frictionLimit, std::min(contactManifold.friction2Impulse + deltaLambda, frictionLimit));
|
||||
contactManifold.friction2Impulse = std::max(-frictionLimit,
|
||||
std::min(contactManifold.friction2Impulse +
|
||||
deltaLambda, frictionLimit));
|
||||
deltaLambda = contactManifold.friction2Impulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
|
@ -633,19 +717,16 @@ void ContactSolver::solveContactConstraints() {
|
|||
|
||||
// ------ Twist friction constraint at the center of the contact manifol ------ //
|
||||
|
||||
// TODO : Put this in the initialization method
|
||||
decimal K = contactManifold.normal.dot(contactManifold.inverseInertiaTensorBody1 * contactManifold.normal) +
|
||||
contactManifold.normal.dot(contactManifold.inverseInertiaTensorBody2 * contactManifold.normal);
|
||||
|
||||
// Compute J*v
|
||||
deltaV = w2 - w1;
|
||||
Jv = deltaV.dot(contactManifold.normal);
|
||||
|
||||
// TODO : Compute the inverse mass matrix here for twist friction
|
||||
deltaLambda = -Jv * (decimal(1.0) / K);
|
||||
deltaLambda = -Jv * (contactManifold.inverseTwistFrictionMass);
|
||||
frictionLimit = contactManifold.frictionCoefficient * sumPenetrationImpulse;
|
||||
lambdaTemp = contactManifold.frictionTwistImpulse;
|
||||
contactManifold.frictionTwistImpulse = std::max(-frictionLimit, std::min(contactManifold.frictionTwistImpulse + deltaLambda, frictionLimit));
|
||||
contactManifold.frictionTwistImpulse = std::max(-frictionLimit,
|
||||
std::min(contactManifold.frictionTwistImpulse
|
||||
+ deltaLambda, frictionLimit));
|
||||
deltaLambda = contactManifold.frictionTwistImpulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
|
@ -666,13 +747,12 @@ void ContactSolver::solveContactConstraints() {
|
|||
// Solve the constraints
|
||||
void ContactSolver::solve(decimal timeStep) {
|
||||
|
||||
// Set the current time step
|
||||
mTimeStep = timeStep;
|
||||
|
||||
// Initialize the solver
|
||||
initialize();
|
||||
|
||||
initializeBodies();
|
||||
|
||||
// Fill-in all the matrices needed to solve the LCP problem
|
||||
initializeContactConstraints();
|
||||
|
||||
|
@ -692,64 +772,65 @@ void ContactSolver::solve(decimal timeStep) {
|
|||
// warm start the solver at the next iteration
|
||||
void ContactSolver::storeImpulses() {
|
||||
|
||||
// For each constraint
|
||||
for (uint c=0; c<mNbContactConstraints; c++) {
|
||||
// For each contact manifold
|
||||
for (uint c=0; c<mNbContactManifolds; c++) {
|
||||
|
||||
ContactManifoldSolver& contactManifold = mContactConstraints[c];
|
||||
ContactManifoldSolver& manifold = mContactConstraints[c];
|
||||
|
||||
for (uint i=0; i<contactManifold.nbContacts; i++) {
|
||||
for (uint i=0; i<manifold.nbContacts; i++) {
|
||||
|
||||
ContactPointSolver& contactPoint = contactManifold.contacts[i];
|
||||
ContactPointSolver& contactPoint = manifold.contacts[i];
|
||||
|
||||
contactPoint.contact->setCachedLambda(0, contactPoint.penetrationImpulse);
|
||||
contactPoint.contact->setCachedLambda(1, contactPoint.friction1Impulse);
|
||||
contactPoint.contact->setCachedLambda(2, contactPoint.friction2Impulse);
|
||||
contactPoint.externalContact->setCachedLambda(0, contactPoint.penetrationImpulse);
|
||||
contactPoint.externalContact->setCachedLambda(1, contactPoint.friction1Impulse);
|
||||
contactPoint.externalContact->setCachedLambda(2, contactPoint.friction2Impulse);
|
||||
|
||||
contactPoint.contact->setFrictionVector1(contactPoint.frictionVector1);
|
||||
contactPoint.contact->setFrictionVector2(contactPoint.frictionVector2);
|
||||
contactPoint.externalContact->setFrictionVector1(contactPoint.frictionVector1);
|
||||
contactPoint.externalContact->setFrictionVector2(contactPoint.frictionVector2);
|
||||
}
|
||||
|
||||
contactManifold.contactManifold->friction1Impulse = contactManifold.friction1Impulse;
|
||||
contactManifold.contactManifold->friction2Impulse = contactManifold.friction2Impulse;
|
||||
contactManifold.contactManifold->frictionTwistImpulse = contactManifold.frictionTwistImpulse;
|
||||
contactManifold.contactManifold->frictionVector1 = contactManifold.frictionVector1;
|
||||
contactManifold.contactManifold->frictionVector2 = contactManifold.frictionVector2;
|
||||
manifold.externalContactManifold->setFrictionImpulse1(manifold.friction1Impulse);
|
||||
manifold.externalContactManifold->setFrictionImpulse2(manifold.friction2Impulse);
|
||||
manifold.externalContactManifold->setFrictionTwistImpulse(manifold.frictionTwistImpulse);
|
||||
manifold.externalContactManifold->setFrictionVector1(manifold.frictionVector1);
|
||||
manifold.externalContactManifold->setFrictionVector2(manifold.frictionVector2);
|
||||
}
|
||||
}
|
||||
|
||||
// Apply an impulse to the two bodies of a constraint
|
||||
void ContactSolver::applyImpulse(const Impulse& impulse, const ContactManifoldSolver& contactManifold) {
|
||||
void ContactSolver::applyImpulse(const Impulse& impulse,
|
||||
const ContactManifoldSolver& manifold) {
|
||||
|
||||
// Update the velocities of the bodies by applying the impulse P
|
||||
if (contactManifold.isBody1Moving) {
|
||||
mConstrainedLinearVelocities[contactManifold.indexBody1] += contactManifold.massInverseBody1 *
|
||||
if (manifold.isBody1Moving) {
|
||||
mConstrainedLinearVelocities[manifold.indexBody1] += manifold.massInverseBody1 *
|
||||
impulse.linearImpulseBody1;
|
||||
mConstrainedAngularVelocities[contactManifold.indexBody1] += contactManifold.inverseInertiaTensorBody1 *
|
||||
mConstrainedAngularVelocities[manifold.indexBody1] += manifold.inverseInertiaTensorBody1 *
|
||||
impulse.angularImpulseBody1;
|
||||
}
|
||||
if (contactManifold.isBody2Moving) {
|
||||
mConstrainedLinearVelocities[contactManifold.indexBody2] += contactManifold.massInverseBody2 *
|
||||
if (manifold.isBody2Moving) {
|
||||
mConstrainedLinearVelocities[manifold.indexBody2] += manifold.massInverseBody2 *
|
||||
impulse.linearImpulseBody2;
|
||||
mConstrainedAngularVelocities[contactManifold.indexBody2] += contactManifold.inverseInertiaTensorBody2 *
|
||||
mConstrainedAngularVelocities[manifold.indexBody2] += manifold.inverseInertiaTensorBody2 *
|
||||
impulse.angularImpulseBody2;
|
||||
}
|
||||
}
|
||||
|
||||
// Apply an impulse to the two bodies of a constraint
|
||||
void ContactSolver::applySplitImpulse(const Impulse& impulse,
|
||||
const ContactManifoldSolver& contactManifold) {
|
||||
const ContactManifoldSolver& manifold) {
|
||||
|
||||
// Update the velocities of the bodies by applying the impulse P
|
||||
if (contactManifold.isBody1Moving) {
|
||||
mSplitLinearVelocities[contactManifold.indexBody1] += contactManifold.massInverseBody1 *
|
||||
if (manifold.isBody1Moving) {
|
||||
mSplitLinearVelocities[manifold.indexBody1] += manifold.massInverseBody1 *
|
||||
impulse.linearImpulseBody1;
|
||||
mSplitAngularVelocities[contactManifold.indexBody1] += contactManifold.inverseInertiaTensorBody1 *
|
||||
mSplitAngularVelocities[manifold.indexBody1] += manifold.inverseInertiaTensorBody1 *
|
||||
impulse.angularImpulseBody1;
|
||||
}
|
||||
if (contactManifold.isBody2Moving) {
|
||||
mSplitLinearVelocities[contactManifold.indexBody2] += contactManifold.massInverseBody2 *
|
||||
impulse.linearImpulseBody2;
|
||||
mSplitAngularVelocities[contactManifold.indexBody2] += contactManifold.inverseInertiaTensorBody2 *
|
||||
if (manifold.isBody2Moving) {
|
||||
mSplitLinearVelocities[manifold.indexBody2] += manifold.massInverseBody2 *
|
||||
impulse.linearImpulseBody2;
|
||||
mSplitAngularVelocities[manifold.indexBody2] += manifold.inverseInertiaTensorBody2 *
|
||||
impulse.angularImpulseBody2;
|
||||
}
|
||||
}
|
||||
|
@ -781,7 +862,7 @@ void ContactSolver::computeFrictionVectors(const Vector3& deltaVelocity,
|
|||
|
||||
// The second friction vector is computed by the cross product of the firs
|
||||
// friction vector and the contact normal
|
||||
contactPoint.frictionVector2 = contactPoint.normal.cross(contactPoint.frictionVector1).getUnit();
|
||||
contactPoint.frictionVector2 =contactPoint.normal.cross(contactPoint.frictionVector1).getUnit();
|
||||
}
|
||||
|
||||
// Compute the two unit orthogonal vectors "t1" and "t2" that span the tangential friction plane
|
||||
|
@ -816,7 +897,7 @@ void ContactSolver::computeFrictionVectors(const Vector3& deltaVelocity,
|
|||
|
||||
// Clean up the constraint solver
|
||||
void ContactSolver::cleanup() {
|
||||
//mMapBodyToIndex.clear();
|
||||
|
||||
mConstraintBodies.clear();
|
||||
|
||||
if (mContactConstraints != NULL) {
|
||||
|
|
|
@ -23,14 +23,14 @@
|
|||
* *
|
||||
********************************************************************************/
|
||||
|
||||
#ifndef CONSTRAINT_SOLVER_H
|
||||
#define CONSTRAINT_SOLVER_H
|
||||
#ifndef CONTACT_SOLVER_H
|
||||
#define CONTACT_SOLVER_H
|
||||
|
||||
// Libraries
|
||||
#include "../constraint/Contact.h"
|
||||
#include "ContactManifold.h"
|
||||
#include "../constraint/ContactPoint.h"
|
||||
#include "../configuration.h"
|
||||
#include "../constraint/Constraint.h"
|
||||
#include "ContactManifold.h"
|
||||
#include <map>
|
||||
#include <set>
|
||||
|
||||
|
@ -124,10 +124,10 @@ struct Impulse {
|
|||
There are two ways to apply the friction constraints. Either the friction constraints are
|
||||
applied at each contact point or they are applied only at the center of the contact manifold
|
||||
between two bodies. If we solve the friction constraints at each contact point, we need
|
||||
two constraints (two tangential friction directions) and if we solve the friction constraints
|
||||
at the center of the contact manifold, we need two constraints for tangential friction but
|
||||
also another twist friction constraint to prevent spin of the body around the contact
|
||||
manifold center.
|
||||
two constraints (two tangential friction directions) and if we solve the friction
|
||||
constraints at the center of the contact manifold, we need two constraints for tangential
|
||||
friction but also another twist friction constraint to prevent spin of the body around the
|
||||
contact manifold center.
|
||||
|
||||
-------------------------------------------------------------------
|
||||
*/
|
||||
|
@ -135,7 +135,7 @@ class ContactSolver {
|
|||
|
||||
private:
|
||||
|
||||
// Structure ContactPoint
|
||||
// Structure ContactPointSolver
|
||||
// Contact solver internal data structure that to store all the
|
||||
// information relative to a contact point
|
||||
struct ContactPointSolver {
|
||||
|
@ -163,16 +163,14 @@ class ContactSolver {
|
|||
decimal inverseFriction1Mass; // Inverse of the matrix K for the 1st friction
|
||||
decimal inverseFriction2Mass; // Inverse of the matrix K for the 2nd friction
|
||||
bool isRestingContact; // True if the contact was existing last time step
|
||||
Contact* contact; // Pointer to the external contact
|
||||
ContactPoint* externalContact; // Pointer to the external contact
|
||||
};
|
||||
|
||||
// Structure ContactManifold
|
||||
// Structure ContactManifoldSolver
|
||||
// Contact solver internal data structure to store all the
|
||||
// information relative to a contact manifold
|
||||
struct ContactManifoldSolver {
|
||||
|
||||
// TODO : Use a constant for the number of contact points
|
||||
|
||||
uint indexBody1; // Index of body 1 in the constraint solver
|
||||
uint indexBody2; // Index of body 2 in the constraint solver
|
||||
decimal massInverseBody1; // Inverse of the mass of body 1
|
||||
|
@ -181,11 +179,11 @@ class ContactSolver {
|
|||
Matrix3x3 inverseInertiaTensorBody2; // Inverse inertia tensor of body 2
|
||||
bool isBody1Moving; // True if the body 1 is allowed to move
|
||||
bool isBody2Moving; // True if the body 2 is allowed to move
|
||||
ContactPointSolver contacts[4]; // Contact point constraints
|
||||
ContactPointSolver contacts[MAX_CONTACT_POINTS_IN_MANIFOLD];// Contact point constraints
|
||||
uint nbContacts; // Number of contact points
|
||||
decimal restitutionFactor; // Mix of the restitution factor for two bodies
|
||||
decimal frictionCoefficient; // Mix friction coefficient for the two bodies
|
||||
ContactManifold* contactManifold; // Pointer to the external contact manifold
|
||||
ContactManifold* externalContactManifold; // Pointer to the external contact manifold
|
||||
|
||||
// Variables used when friction constraints are apply at the center of the manifold //
|
||||
|
||||
|
@ -200,6 +198,7 @@ class ContactSolver {
|
|||
Vector3 r2CrossT2; // Cross product of r2 with 2nd friction vector
|
||||
decimal inverseFriction1Mass; // Matrix K for the first friction constraint
|
||||
decimal inverseFriction2Mass; // Matrix K for the second friction constraint
|
||||
decimal inverseTwistFrictionMass; // Matrix K for the twist friction constraint
|
||||
Vector3 frictionVector1; // First friction direction at contact manifold center
|
||||
Vector3 frictionVector2; // Second friction direction at contact manifold center
|
||||
Vector3 oldFrictionVector1; // Old 1st friction direction at contact manifold center
|
||||
|
@ -241,7 +240,7 @@ class ContactSolver {
|
|||
ContactManifoldSolver* mContactConstraints;
|
||||
|
||||
// Number of contact constraints
|
||||
uint mNbContactConstraints;
|
||||
uint mNbContactManifolds;
|
||||
|
||||
// Constrained bodies
|
||||
std::set<RigidBody*> mConstraintBodies;
|
||||
|
@ -272,8 +271,8 @@ class ContactSolver {
|
|||
// Initialize the constraint solver
|
||||
void initialize();
|
||||
|
||||
// Initialize the constrained bodies
|
||||
void initializeBodies();
|
||||
// Initialize the split impulse velocities
|
||||
void initializeSplitImpulseVelocities();
|
||||
|
||||
// Initialize the contact constraints before solving the system
|
||||
void initializeContactConstraints();
|
||||
|
@ -289,16 +288,19 @@ class ContactSolver {
|
|||
void solveContactConstraints();
|
||||
|
||||
// Apply an impulse to the two bodies of a constraint
|
||||
void applyImpulse(const Impulse& impulse, const ContactManifoldSolver& contactManifold);
|
||||
void applyImpulse(const Impulse& impulse, const ContactManifoldSolver& manifold);
|
||||
|
||||
// Apply an impulse to the two bodies of a constraint
|
||||
void applySplitImpulse(const Impulse& impulse, const ContactManifoldSolver& contactManifold);
|
||||
void applySplitImpulse(const Impulse& impulse,
|
||||
const ContactManifoldSolver& manifold);
|
||||
|
||||
// Compute the collision restitution factor from the restitution factor of each body
|
||||
decimal computeMixedRestitutionFactor(const RigidBody* body1, const RigidBody* body2) const;
|
||||
decimal computeMixedRestitutionFactor(const RigidBody* body1,
|
||||
const RigidBody* body2) const;
|
||||
|
||||
// Compute the mixed friction coefficient from the friction coefficient of each body
|
||||
decimal computeMixedFrictionCoefficient(const RigidBody* body1, const RigidBody* body2)const;
|
||||
decimal computeMixedFrictionCoefficient(const RigidBody* body1,
|
||||
const RigidBody* body2)const;
|
||||
|
||||
// Compute the two unit orthogonal vectors "t1" and "t2" that span the tangential friction
|
||||
// plane for a contact point constraint. The two vectors have to be
|
||||
|
@ -330,8 +332,8 @@ class ContactSolver {
|
|||
|
||||
// Constructor
|
||||
ContactSolver(DynamicsWorld& mWorld, std::vector<Vector3>& constrainedLinearVelocities,
|
||||
std::vector<Vector3>& constrainedAngularVelocities, const std::map<RigidBody*, uint>&
|
||||
mapBodyToVelocityIndex);
|
||||
std::vector<Vector3>& constrainedAngularVelocities,
|
||||
const std::map<RigidBody*, uint>& mapBodyToVelocityIndex);
|
||||
|
||||
// Destructor
|
||||
virtual ~ContactSolver();
|
||||
|
@ -432,16 +434,20 @@ inline const Impulse ContactSolver::computePenetrationImpulse(decimal deltaLambd
|
|||
inline const Impulse ContactSolver::computeFriction1Impulse(decimal deltaLambda,
|
||||
const ContactPointSolver& contactPoint)
|
||||
const {
|
||||
return Impulse(-contactPoint.frictionVector1 * deltaLambda, -contactPoint.r1CrossT1 * deltaLambda,
|
||||
contactPoint.frictionVector1 * deltaLambda, contactPoint.r2CrossT1 * deltaLambda);
|
||||
return Impulse(-contactPoint.frictionVector1 * deltaLambda,
|
||||
-contactPoint.r1CrossT1 * deltaLambda,
|
||||
contactPoint.frictionVector1 * deltaLambda,
|
||||
contactPoint.r2CrossT1 * deltaLambda);
|
||||
}
|
||||
|
||||
// Compute the second friction constraint impulse
|
||||
inline const Impulse ContactSolver::computeFriction2Impulse(decimal deltaLambda,
|
||||
const ContactPointSolver& contactPoint)
|
||||
const {
|
||||
return Impulse(-contactPoint.frictionVector2 * deltaLambda, -contactPoint.r1CrossT2 * deltaLambda,
|
||||
contactPoint.frictionVector2 * deltaLambda, contactPoint.r2CrossT2 * deltaLambda);
|
||||
return Impulse(-contactPoint.frictionVector2 * deltaLambda,
|
||||
-contactPoint.r1CrossT2 * deltaLambda,
|
||||
contactPoint.frictionVector2 * deltaLambda,
|
||||
contactPoint.r2CrossT2 * deltaLambda);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -305,7 +305,7 @@ void DynamicsWorld::notifyNewContact(const BroadPhasePair* broadPhasePair, const
|
|||
assert(rigidBody2);
|
||||
|
||||
// Create a new contact
|
||||
Contact* contact = new (mMemoryPoolContacts.allocateObject()) Contact(rigidBody1, rigidBody2, contactInfo);
|
||||
ContactPoint* contact = new (mMemoryPoolContacts.allocateObject()) ContactPoint(rigidBody1, rigidBody2, contactInfo);
|
||||
assert(contact);
|
||||
|
||||
// Get the corresponding overlapping pair
|
||||
|
@ -316,6 +316,8 @@ void DynamicsWorld::notifyNewContact(const BroadPhasePair* broadPhasePair, const
|
|||
// Add the contact to the contact cache of the corresponding overlapping pair
|
||||
overlappingPair->addContact(contact);
|
||||
|
||||
// TODO : Remove this
|
||||
/*
|
||||
// Create a contact manifold with the contact points of the two bodies
|
||||
ContactManifold contactManifold;
|
||||
contactManifold.nbContacts = 0;
|
||||
|
@ -326,7 +328,8 @@ void DynamicsWorld::notifyNewContact(const BroadPhasePair* broadPhasePair, const
|
|||
contactManifold.contacts[i] = overlappingPair->getContact(i);
|
||||
contactManifold.nbContacts++;
|
||||
}
|
||||
*/
|
||||
|
||||
// Add the contact manifold to the world
|
||||
mContactManifolds.push_back(contactManifold);
|
||||
mContactManifolds.push_back(overlappingPair->getContactManifold());
|
||||
}
|
||||
|
|
|
@ -28,7 +28,6 @@
|
|||
|
||||
// Libraries
|
||||
#include "CollisionWorld.h"
|
||||
#include "ContactManifold.h"
|
||||
#include "../collision/CollisionDetection.h"
|
||||
#include "ContactSolver.h"
|
||||
#include "../body/RigidBody.h"
|
||||
|
@ -64,7 +63,7 @@ class DynamicsWorld : public CollisionWorld {
|
|||
std::set<RigidBody*> mRigidBodies;
|
||||
|
||||
// All the contact constraints
|
||||
std::vector<ContactManifold> mContactManifolds;
|
||||
std::vector<ContactManifold*> mContactManifolds;
|
||||
|
||||
// All the constraints (except contact constraints)
|
||||
std::vector<Constraint*> mConstraints;
|
||||
|
@ -82,7 +81,7 @@ class DynamicsWorld : public CollisionWorld {
|
|||
MemoryPool<RigidBody> mMemoryPoolRigidBodies;
|
||||
|
||||
// Memory pool for the contacts
|
||||
MemoryPool<Contact> mMemoryPoolContacts;
|
||||
MemoryPool<ContactPoint> mMemoryPoolContacts;
|
||||
|
||||
// Array of constrained linear velocities (state of the linear velocities
|
||||
// after solving the constraints)
|
||||
|
@ -208,10 +207,10 @@ public :
|
|||
std::vector<Constraint*>::iterator getConstraintsEndIterator();
|
||||
|
||||
// Return a start iterator on the contact manifolds list
|
||||
std::vector<ContactManifold>::iterator getContactManifoldsBeginIterator();
|
||||
std::vector<ContactManifold*>::iterator getContactManifoldsBeginIterator();
|
||||
|
||||
// Return a end iterator on the contact manifolds list
|
||||
std::vector<ContactManifold>::iterator getContactManifoldsEndIterator();
|
||||
std::vector<ContactManifold*>::iterator getContactManifoldsEndIterator();
|
||||
|
||||
// Return an iterator to the beginning of the rigid bodies of the physics world
|
||||
std::set<RigidBody*>::iterator getRigidBodiesBeginIterator();
|
||||
|
@ -337,12 +336,12 @@ inline std::vector<Constraint*>::iterator DynamicsWorld::getConstraintsEndIterat
|
|||
}
|
||||
|
||||
// Return a start iterator on the contact manifolds list
|
||||
inline std::vector<ContactManifold>::iterator DynamicsWorld::getContactManifoldsBeginIterator() {
|
||||
inline std::vector<ContactManifold*>::iterator DynamicsWorld::getContactManifoldsBeginIterator() {
|
||||
return mContactManifolds.begin();
|
||||
}
|
||||
|
||||
// Return a end iterator on the contact manifolds list
|
||||
inline std::vector<ContactManifold>::iterator DynamicsWorld::getContactManifoldsEndIterator() {
|
||||
inline std::vector<ContactManifold*>::iterator DynamicsWorld::getContactManifoldsEndIterator() {
|
||||
return mContactManifolds.end();
|
||||
}
|
||||
|
||||
|
|
|
@ -31,11 +31,11 @@ using namespace reactphysics3d;
|
|||
|
||||
// Constructor
|
||||
OverlappingPair::OverlappingPair(CollisionBody* body1, CollisionBody* body2,
|
||||
MemoryPool<Contact>& memoryPoolContacts)
|
||||
: mBody1(body1), mBody2(body2), mContactsCache(body1, body2, memoryPoolContacts),
|
||||
MemoryPool<ContactPoint>& memoryPoolContacts)
|
||||
: mBody1(body1), mBody2(body2), mContactManifold(body1, body2, memoryPoolContacts),
|
||||
mCachedSeparatingAxis(1.0, 1.0, 1.0) {
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Destructor
|
||||
OverlappingPair::~OverlappingPair() {
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
#define OVERLAPPING_PAIR_H
|
||||
|
||||
// Libraries
|
||||
#include "PersistentContactCache.h"
|
||||
#include "ContactManifold.h"
|
||||
|
||||
// ReactPhysics3D namespace
|
||||
namespace reactphysics3d {
|
||||
|
@ -53,8 +53,8 @@ class OverlappingPair {
|
|||
// Pointer to the second body of the contact
|
||||
CollisionBody* const mBody2;
|
||||
|
||||
// Persistent contact cache
|
||||
PersistentContactCache mContactsCache;
|
||||
// Persistent contact manifold
|
||||
ContactManifold mContactManifold;
|
||||
|
||||
// Cached previous separating axis
|
||||
Vector3 mCachedSeparatingAxis;
|
||||
|
@ -73,7 +73,7 @@ class OverlappingPair {
|
|||
|
||||
// Constructor
|
||||
OverlappingPair(CollisionBody* body1, CollisionBody* body2,
|
||||
MemoryPool<Contact>& memoryPoolContacts);
|
||||
MemoryPool<ContactPoint>& memoryPoolContacts);
|
||||
|
||||
// Destructor
|
||||
~OverlappingPair();
|
||||
|
@ -85,7 +85,7 @@ class OverlappingPair {
|
|||
CollisionBody* const getBody2() const;
|
||||
|
||||
// Add a contact to the contact cache
|
||||
void addContact(Contact* contact);
|
||||
void addContact(ContactPoint* contact);
|
||||
|
||||
// Update the contact cache
|
||||
void update();
|
||||
|
@ -99,8 +99,12 @@ class OverlappingPair {
|
|||
// Return the number of contacts in the cache
|
||||
uint getNbContacts() const;
|
||||
|
||||
// Return the contact manifold
|
||||
ContactManifold* getContactManifold();
|
||||
|
||||
// Return a contact of the cache
|
||||
Contact* getContact(uint index) const;
|
||||
// TODO : Maybe remove this method
|
||||
ContactPoint* getContact(uint index) const;
|
||||
};
|
||||
|
||||
// Return the pointer to first body
|
||||
|
@ -113,14 +117,14 @@ inline CollisionBody* const OverlappingPair::getBody2() const {
|
|||
return mBody2;
|
||||
}
|
||||
|
||||
// Add a contact to the contact cache
|
||||
inline void OverlappingPair::addContact(Contact* contact) {
|
||||
mContactsCache.addContact(contact);
|
||||
// Add a contact to the contact manifold
|
||||
inline void OverlappingPair::addContact(ContactPoint* contact) {
|
||||
mContactManifold.addContactPoint(contact);
|
||||
}
|
||||
|
||||
// Update the contact cache
|
||||
// Update the contact manifold
|
||||
inline void OverlappingPair::update() {
|
||||
mContactsCache.update(mBody1->getTransform(), mBody2->getTransform());
|
||||
mContactManifold.update(mBody1->getTransform(), mBody2->getTransform());
|
||||
}
|
||||
|
||||
// Return the cached separating axis
|
||||
|
@ -136,12 +140,17 @@ inline void OverlappingPair::setCachedSeparatingAxis(const Vector3& axis) {
|
|||
|
||||
// Return the number of contacts in the cache
|
||||
inline uint OverlappingPair::getNbContacts() const {
|
||||
return mContactsCache.getNbContacts();
|
||||
return mContactManifold.getNbContactPoints();
|
||||
}
|
||||
|
||||
// Return the contact manifold
|
||||
inline ContactManifold* OverlappingPair::getContactManifold() {
|
||||
return &mContactManifold;
|
||||
}
|
||||
|
||||
// Return a contact of the cache
|
||||
inline Contact* OverlappingPair::getContact(uint index) const {
|
||||
return mContactsCache.getContact(index);
|
||||
inline ContactPoint* OverlappingPair::getContact(uint index) const {
|
||||
return mContactManifold.getContactPoint(index);
|
||||
}
|
||||
|
||||
} // End of the ReactPhysics3D namespace
|
||||
|
|
|
@ -1,147 +0,0 @@
|
|||
/********************************************************************************
|
||||
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
|
||||
* Copyright (c) 2010-2012 Daniel Chappuis *
|
||||
*********************************************************************************
|
||||
* *
|
||||
* This software is provided 'as-is', without any express or implied warranty. *
|
||||
* In no event will the authors be held liable for any damages arising from the *
|
||||
* use of this software. *
|
||||
* *
|
||||
* Permission is granted to anyone to use this software for any purpose, *
|
||||
* including commercial applications, and to alter it and redistribute it *
|
||||
* freely, subject to the following restrictions: *
|
||||
* *
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||||
* that you wrote the original software. If you use this software in a *
|
||||
* product, an acknowledgment in the product documentation would be *
|
||||
* appreciated but is not required. *
|
||||
* *
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||||
* misrepresented as being the original software. *
|
||||
* *
|
||||
* 3. This notice may not be removed or altered from any source distribution. *
|
||||
* *
|
||||
********************************************************************************/
|
||||
|
||||
#ifndef PERSISTENT_CONTACT_CACHE_H
|
||||
#define PERSISTENT_CONTACT_CACHE_H
|
||||
|
||||
// Libraries
|
||||
#include <vector>
|
||||
#include "../body/Body.h"
|
||||
#include "../constraint/Contact.h"
|
||||
|
||||
// ReactPhysics3D namespace
|
||||
namespace reactphysics3d {
|
||||
|
||||
// Constants
|
||||
const uint MAX_CONTACTS_IN_CACHE = 4; // Maximum number of contacts in the persistent cache
|
||||
|
||||
|
||||
/* -------------------------------------------------------------------
|
||||
Class PersistentContactCache :
|
||||
This class represents a cache of at most 4 contact points between
|
||||
two given bodies. The contacts between two bodies are added one
|
||||
after the other in the cache. When the cache is full, we have
|
||||
to remove one point. The idea is to keep the point with the deepest
|
||||
penetration depth and also to keep the points producing the larger
|
||||
area (for a more stable contact manifold). The new added point is
|
||||
always kept. This kind of persistent cache has been explained for
|
||||
instance in the presentation from Erin Catto about contact manifolds
|
||||
at the GDC 2007 conference.
|
||||
-------------------------------------------------------------------
|
||||
*/
|
||||
class PersistentContactCache {
|
||||
|
||||
private:
|
||||
|
||||
// -------------------- Attributes -------------------- //
|
||||
|
||||
// Pointer to the first body
|
||||
Body* const mBody1;
|
||||
|
||||
// Pointer to the second body
|
||||
Body* const mBody2;
|
||||
|
||||
// Contacts in the cache
|
||||
Contact* mContacts[MAX_CONTACTS_IN_CACHE];
|
||||
|
||||
// Number of contacts in the cache
|
||||
uint mNbContacts;
|
||||
|
||||
// Reference to the memory pool with the contacts
|
||||
MemoryPool<Contact>& mMemoryPoolContacts;
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
// Private copy-constructor
|
||||
PersistentContactCache(const PersistentContactCache& persistentContactCache);
|
||||
|
||||
// Private assignment operator
|
||||
PersistentContactCache& operator=(const PersistentContactCache& persistentContactCache);
|
||||
|
||||
// Return the index of maximum area
|
||||
int getMaxArea(decimal area0, decimal area1, decimal area2, decimal area3) const;
|
||||
|
||||
// Return the index of the contact with the larger penetration depth
|
||||
int getIndexOfDeepestPenetration(Contact* newContact) const;
|
||||
|
||||
// Return the index that will be removed
|
||||
int getIndexToRemove(int indexMaxPenetration, const Vector3& newPoint) const;
|
||||
|
||||
// Remove a contact from the cache
|
||||
void removeContact(int index);
|
||||
|
||||
// Return true if two vectors are approximatively equal
|
||||
bool isApproxEqual(const Vector3& vector1, const Vector3& vector2) const;
|
||||
|
||||
public:
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
// Constructor
|
||||
PersistentContactCache(Body* const mBody1, Body* const mBody2,
|
||||
MemoryPool<Contact>& mMemoryPoolContacts);
|
||||
|
||||
// Destructor
|
||||
~PersistentContactCache();
|
||||
|
||||
// Add a contact
|
||||
void addContact(Contact* contact);
|
||||
|
||||
// Update the contact cache
|
||||
void update(const Transform& transform1, const Transform& transform2);
|
||||
|
||||
// Clear the cache
|
||||
void clear();
|
||||
|
||||
// Return the number of contacts in the cache
|
||||
uint getNbContacts() const;
|
||||
|
||||
// Return a contact of the cache
|
||||
Contact* getContact(uint index) const;
|
||||
};
|
||||
|
||||
// Return the number of contacts in the cache
|
||||
inline uint PersistentContactCache::getNbContacts() const {
|
||||
return mNbContacts;
|
||||
}
|
||||
|
||||
// Return a contact of the cache
|
||||
inline Contact* PersistentContactCache::getContact(uint index) const {
|
||||
assert(index >= 0 && index < mNbContacts);
|
||||
return mContacts[index];
|
||||
}
|
||||
|
||||
// Return true if two vectors are approximatively equal
|
||||
inline bool PersistentContactCache::isApproxEqual(const Vector3& vector1,
|
||||
const Vector3& vector2) const {
|
||||
const decimal epsilon = decimal(0.1);
|
||||
return (approxEqual(vector1.getX(), vector2.getX(), epsilon) &&
|
||||
approxEqual(vector1.getY(), vector2.getY(), epsilon) &&
|
||||
approxEqual(vector1.getZ(), vector2.getZ(), epsilon));
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user