Merge branch 'develop' of https://code.google.com/p/reactphysics3d into develop

This commit is contained in:
Daniel Chappuis 2013-03-17 17:10:15 +01:00
commit ae117097ca
44 changed files with 1967 additions and 317 deletions

6
CMakeLists.txt Executable file → Normal file
View File

@ -9,6 +9,7 @@ SET(LIBRARY_OUTPUT_PATH lib/)
# Options
OPTION(COMPILE_EXAMPLES "Select this if you want to build the examples" OFF)
OPTION(COMPILE_TESTS "Select this if you want to build the tests" OFF)
# Headers
INCLUDE_DIRECTORIES(src)
@ -31,3 +32,8 @@ ADD_LIBRARY (
IF (COMPILE_EXAMPLES)
add_subdirectory(examples/fallingcubes)
ENDIF (COMPILE_EXAMPLES)
# If we need to compile the tests
IF (COMPILE_TESTS)
add_subdirectory(test/)
ENDIF (COMPILE_TESTS)

View File

@ -44,13 +44,11 @@ CollisionBody::CollisionBody(const Transform& transform, CollisionShape *collisi
// Initialize the old transform
mOldTransform = transform;
// Create the AABB for broad-phase collision detection
mAabb = new AABB(transform, collisionShape->getLocalExtents(OBJECT_MARGIN));
// Initialize the AABB for broad-phase collision detection
mCollisionShape->updateAABB(mAabb, transform);
}
// Destructor
CollisionBody::~CollisionBody() {
// Delete the AABB
delete mAabb;
}

View File

@ -71,7 +71,7 @@ class CollisionBody : public Body {
bool mIsCollisionEnabled;
/// AABB for Broad-Phase collision detection
AABB* mAabb;
AABB mAabb;
/// True if the body has moved during the last frame
bool mHasMoved;
@ -119,7 +119,7 @@ class CollisionBody : public Body {
void setTransform(const Transform& transform);
/// Return the AAABB of the body
const AABB* getAABB() const;
const AABB& getAABB() const;
/// Return the interpolated transform for rendering
Transform getInterpolatedTransform() const;
@ -216,7 +216,7 @@ inline void CollisionBody::setTransform(const Transform& transform) {
}
// Return the AAABB of the body
inline const AABB* CollisionBody::getAABB() const {
inline const AABB& CollisionBody::getAABB() const {
return mAabb;
}
@ -242,7 +242,7 @@ inline void CollisionBody::updateAABB() {
// TODO : An AABB should not be updated every frame but only if the body has moved
// Update the AABB
mAabb->update(mTransform, mCollisionShape->getLocalExtents(OBJECT_MARGIN));
mCollisionShape->updateAABB(mAabb, mTransform);
}
}

View File

@ -39,11 +39,7 @@ using namespace reactphysics3d;
mRestitution = decimal(1.0);
// Set the body pointer of the AABB and the collision shape
mAabb->setBodyPointer(this);
assert(collisionShape);
assert(mAabb);
}
// Destructor

View File

@ -153,7 +153,7 @@ class RigidBody : public CollisionBody {
decimal getRestitution() const;
/// Set the restitution coefficient
void setRestitution(decimal restitution) throw(std::invalid_argument);
void setRestitution(decimal restitution);
/// Get the friction coefficient
decimal getFrictionCoefficient() const;
@ -273,15 +273,9 @@ inline decimal RigidBody::getRestitution() const {
}
// Set the restitution coefficient
inline void RigidBody::setRestitution(decimal restitution) throw(std::invalid_argument) {
// Check if the restitution coefficient is between 0 and 1
if (restitution >= 0.0 && restitution <= 1.0) {
mRestitution = restitution;
}
else {
throw std::invalid_argument("Error : the restitution coefficent must be between 0 and 1");
}
inline void RigidBody::setRestitution(decimal restitution) {
assert(restitution >= 0.0 && restitution <= 1.0);
mRestitution = restitution;
}
// Get the friction coefficient

View File

@ -37,8 +37,6 @@
#include <set>
#include <utility>
#include <utility>
#include <sys/time.h> // TODO : Delete this
#include <iostream> // TODO : Delete this
// We want to use the ReactPhysics3D namespace
using namespace reactphysics3d;
@ -62,48 +60,33 @@ CollisionDetection::~CollisionDetection() {
}
// Compute the collision detection
bool CollisionDetection::computeCollisionDetection() {
void CollisionDetection::computeCollisionDetection() {
// TODO : Remove this code
timeval timeValueStart;
timeval timeValueStop;
gettimeofday(&timeValueStart, NULL);
// Compute the broad-phase collision detection
computeBroadPhase();
// TODO : Remove this code
gettimeofday(&timeValueStop, NULL);
double startTime = timeValueStart.tv_sec * 1000000.0 + (timeValueStart.tv_usec);
double stopTime = timeValueStop.tv_sec * 1000000.0 + (timeValueStop.tv_usec);
double deltaTime = stopTime - startTime;
//printf("Broadphase time : %f micro sec \n", deltaTime);
// Compute the narrow-phase collision detection
bool collisionExists = computeNarrowPhase();
// Return true if at least one contact has been found
return collisionExists;
computeNarrowPhase();
}
// Compute the broad-phase collision detection
void CollisionDetection::computeBroadPhase() {
// Notify the broad-phase algorithm about the bodies that have moved since last frame
for (set<CollisionBody*>::iterator it = mWorld->getBodiesBeginIterator(); it != mWorld->getBodiesEndIterator(); it++) {
for (set<CollisionBody*>::iterator it = mWorld->getBodiesBeginIterator();
it != mWorld->getBodiesEndIterator(); it++) {
// If the body has moved
if ((*it)->getHasMoved()) {
// Notify the broad-phase that the body has moved
mBroadPhaseAlgorithm->updateObject(*it, *((*it)->getAABB()));
mBroadPhaseAlgorithm->updateObject(*it, (*it)->getAABB());
}
}
}
// Compute the narrow-phase collision detection
bool CollisionDetection::computeNarrowPhase() {
bool collisionExists = false;
void CollisionDetection::computeNarrowPhase() {
map<bodyindexpair, BroadPhasePair*>::iterator it;
// For each possible collision pair of bodies
@ -120,16 +103,19 @@ bool CollisionDetection::computeNarrowPhase() {
mWorld->updateOverlappingPair(pair);
// Select the narrow phase algorithm to use according to the two collision shapes
NarrowPhaseAlgorithm& narrowPhaseAlgorithm = SelectNarrowPhaseAlgorithm(body1->getCollisionShape(), body2->getCollisionShape());
NarrowPhaseAlgorithm& narrowPhaseAlgorithm = SelectNarrowPhaseAlgorithm(
body1->getCollisionShape(),
body2->getCollisionShape());
// Notify the narrow-phase algorithm about the overlapping pair we are going to test
narrowPhaseAlgorithm.setCurrentOverlappingPair(pair);
// Use the narrow-phase collision detection algorithm to check if there really is a collision
// Use the narrow-phase collision detection algorithm to check
// if there really is a collision
if (narrowPhaseAlgorithm.testCollision(body1->getCollisionShape(), body1->getTransform(),
body2->getCollisionShape(), body2->getTransform(), contactInfo)) {
body2->getCollisionShape(), body2->getTransform(),
contactInfo)) {
assert(contactInfo != NULL);
collisionExists = true;
// Notify the world about the new narrow-phase contact
mWorld->notifyNewContact(pair, contactInfo);
@ -139,8 +125,6 @@ bool CollisionDetection::computeNarrowPhase() {
mMemoryPoolContactInfos.freeObject(contactInfo);
}
}
return collisionExists;
}
// Allow the broadphase to notify the collision detection about an overlapping pair.
@ -151,11 +135,14 @@ void CollisionDetection::broadPhaseNotifyAddedOverlappingPair(BodyPair* addedPai
bodyindexpair indexPair = addedPair->getBodiesIndexPair();
// Create the corresponding broad-phase pair object
BroadPhasePair* broadPhasePair = new (mMemoryPoolBroadPhasePairs.allocateObject()) BroadPhasePair(addedPair->body1, addedPair->body2);
BroadPhasePair* broadPhasePair = new (mMemoryPoolBroadPhasePairs.allocateObject())
BroadPhasePair(addedPair->body1, addedPair->body2);
assert(broadPhasePair != NULL);
// Add the pair into the set of overlapping pairs (if not there yet)
pair<map<bodyindexpair, BroadPhasePair*>::iterator, bool> check = mOverlappingPairs.insert(make_pair(indexPair, broadPhasePair));
pair<map<bodyindexpair, BroadPhasePair*>::iterator, bool> check = mOverlappingPairs.insert(
make_pair(indexPair,
broadPhasePair));
assert(check.second);
// Notify the world about the new broad-phase overlapping pair

View File

@ -94,7 +94,7 @@ class CollisionDetection {
void computeBroadPhase();
/// Compute the narrow-phase collision detection
bool computeNarrowPhase();
void computeNarrowPhase();
/// Select the narrow phase algorithm to use given two collision shapes
NarrowPhaseAlgorithm& SelectNarrowPhaseAlgorithm(CollisionShape* collisionShape1,
@ -117,7 +117,7 @@ class CollisionDetection {
void removeBody(CollisionBody* body);
/// Compute the collision detection
bool computeCollisionDetection();
void computeCollisionDetection();
/// Allow the broadphase to notify the collision detection about a new overlapping pair.
void broadPhaseNotifyAddedOverlappingPair(BodyPair* pair);
@ -143,7 +143,7 @@ inline NarrowPhaseAlgorithm& CollisionDetection::SelectNarrowPhaseAlgorithm(
inline void CollisionDetection::addBody(CollisionBody* body) {
// Add the body to the broad-phase
mBroadPhaseAlgorithm->addObject(body, *(body->getAABB()));
mBroadPhaseAlgorithm->addObject(body, body->getAABB());
}
// Remove a body from the collision detection

View File

@ -101,8 +101,8 @@ void SweepAndPruneAlgorithm::addObject(CollisionBody* body, const AABB& aabb) {
// Create a new box
BoxAABB* box = &mBoxes[boxIndex];
box->body = body;
const uint minEndPointValue = encodeFloatIntoInteger(DECIMAL_LARGEST - 2.0);
const uint maxEndPointValue = encodeFloatIntoInteger(DECIMAL_LARGEST - 1.0);
const uint minEndPointValue = encodeFloatIntoInteger(FLT_MAX - 2.0f);
const uint maxEndPointValue = encodeFloatIntoInteger(FLT_MAX - 1.0f);
for (uint axis=0; axis<3; axis++) {
box->min[axis] = indexLimitEndPoint;
box->max[axis] = indexLimitEndPoint + 1;
@ -131,7 +131,7 @@ void SweepAndPruneAlgorithm::removeObject(CollisionBody* body) {
// in order to remove all overlapping pairs from the pair manager
const decimal max = DECIMAL_LARGEST;
const Vector3 maxVector(max, max, max);
const AABB aabb(maxVector, maxVector, body);
const AABB aabb(maxVector, maxVector);
updateObject(body, aabb);
// Get the corresponding box

View File

@ -72,7 +72,7 @@ bool TriangleEPA::computeClosestPoint(const Vector3* vertices) {
// If the determinant is positive
if (mDet > 0.0) {
// Compute the closest point v
mClosestPoint = p0 + 1.0 / mDet * (mLambda1 * v1 + mLambda2 * v2);
mClosestPoint = p0 + decimal(1.0) / mDet * (mLambda1 * v1 + mLambda2 * v2);
// Compute the square distance of closest point to the origin
mDistSquare = mClosestPoint.dot(mClosestPoint);

View File

@ -184,7 +184,7 @@ inline bool TriangleEPA::isVisibleFromVertex(const Vector3* vertices, uint index
// Compute the point of an object closest to the origin
inline Vector3 TriangleEPA::computeClosestPointOfObject(const Vector3* supportPointsOfObject) const{
const Vector3& p0 = supportPointsOfObject[mIndicesVertices[0]];
return p0 + 1.0/mDet * (mLambda1 * (supportPointsOfObject[mIndicesVertices[1]] - p0) +
return p0 + decimal(1.0)/mDet * (mLambda1 * (supportPointsOfObject[mIndicesVertices[1]] - p0) +
mLambda2 * (supportPointsOfObject[mIndicesVertices[2]] - p0));
}

View File

@ -309,7 +309,7 @@ void Simplex::computeClosestPointsOfAandB(Vector3& pA, Vector3& pB) const {
}
assert(deltaX > 0.0);
decimal factor = 1.0 / deltaX;
decimal factor = decimal(1.0) / deltaX;
pA *= factor;
pB *= factor;
}
@ -390,5 +390,5 @@ Vector3 Simplex::computeClosestPointForSubset(Bits subset) {
assert(deltaX > 0.0);
// Return the closet point "v" in the convex hull for the given subset
return (1.0 / deltaX) * v;
return (decimal(1.0) / deltaX) * v;
}

View File

@ -45,21 +45,16 @@ using namespace reactphysics3d;
using namespace std;
// Constructor
AABB::AABB() : mBodyPointer(NULL) {
AABB::AABB() {
}
// Constructor
AABB::AABB(const Vector3& minCoordinates, const Vector3& maxCoordinates, Body* modyPointer)
:mMinCoordinates(minCoordinates), mMaxCoordinates(maxCoordinates), mBodyPointer(modyPointer) {
AABB::AABB(const Vector3& minCoordinates, const Vector3& maxCoordinates)
:mMinCoordinates(minCoordinates), mMaxCoordinates(maxCoordinates) {
}
// Constructor
AABB::AABB(const Transform& transform, const Vector3& extents) : mBodyPointer(NULL) {
update(transform, extents);
}
// Destructor
AABB::~AABB() {

View File

@ -54,10 +54,6 @@ class AABB {
/// Maximum world coordinates of the AABB on the x,y and z axis
Vector3 mMaxCoordinates;
/// Pointer to the owner body (not the abstract class Body
/// but its derivative which is instanciable)
Body* mBodyPointer;
// -------------------- Methods -------------------- //
/// Private copy-constructor
@ -66,6 +62,9 @@ class AABB {
/// Private assignment operator
AABB& operator=(const AABB& aabb);
/// Constructor
AABB(const Transform& transform, const Vector3& extents);
public :
// -------------------- Methods -------------------- //
@ -74,10 +73,9 @@ class AABB {
AABB();
/// Constructor
AABB(const Vector3& minCoordinates, const Vector3& maxCoordinates, Body* modyPointer);
AABB(const Vector3& minCoordinates, const Vector3& maxCoordinates);
/// Constructor
AABB(const Transform& transform, const Vector3& extents);
/// Destructor
virtual ~AABB();
@ -88,22 +86,18 @@ class AABB {
/// Return the minimum coordinates of the AABB
const Vector3& getMin() const;
/// Set the minimum coordinates of the AABB
void setMin(const Vector3& min);
/// Return the maximum coordinates of the AABB
const Vector3& getMax() const;
/// Return a pointer to the owner body
Body* getBodyPointer() const;
/// Set the body pointer
void setBodyPointer(Body* bodyPointer);
/// Set the maximum coordinates of the AABB
void setMax(const Vector3& max);
/// Return true if the current AABB is overlapping with the AABB in argument
bool testCollision(const AABB& aabb) const;
/// Update the oriented bounding box orientation
/// according to a new orientation of the rigid body
virtual void update(const Transform& newTransform, const Vector3& extents);
#ifdef VISUAL_DEBUG
/// Draw the AABB (only for testing purpose)
virtual void draw() const;
@ -120,19 +114,19 @@ inline const Vector3& AABB::getMin() const {
return mMinCoordinates;
}
// Set the minimum coordinates of the AABB
inline void AABB::setMin(const Vector3& min) {
mMinCoordinates = min;
}
// Return the maximum coordinates of the AABB
inline const Vector3& AABB::getMax() const {
return mMaxCoordinates;
}
// Return a pointer to the owner body
inline Body* AABB::getBodyPointer() const {
return mBodyPointer;
}
// Set the body pointer
inline void AABB::setBodyPointer(Body* bodyPointer) {
mBodyPointer = bodyPointer;
/// Set the maximum coordinates of the AABB
inline void AABB::setMax(const Vector3& max) {
mMaxCoordinates = max;
}
// Return true if the current AABB is overlapping with the AABB in argument.
@ -147,16 +141,6 @@ inline bool AABB::testCollision(const AABB& aabb) const {
return true;
}
// Update the world minimum and maximum coordinates of the AABB on the three x,y and z axis
inline void AABB::update(const Transform& newTransform, const Vector3& extents) {
Matrix3x3 worldAxis = newTransform.getOrientation().getMatrix().getAbsoluteMatrix();
Vector3 worldExtents = Vector3(worldAxis.getColumn(0).dot(extents),
worldAxis.getColumn(1).dot(extents),
worldAxis.getColumn(2).dot(extents));
mMinCoordinates = newTransform.getPosition() - worldExtents;
mMaxCoordinates = newTransform.getPosition() + worldExtents;
}
}
#endif

View File

@ -38,3 +38,24 @@ CollisionShape::CollisionShape(CollisionShapeType type) : mType(type) {
CollisionShape::~CollisionShape() {
}
// Update the AABB of a body using its collision shape
inline void CollisionShape::updateAABB(AABB& aabb, const Transform& transform) {
// Get the local extents in x,y and z direction
Vector3 extents = getLocalExtents(OBJECT_MARGIN);
// Rotate the local extents according to the orientation of the body
Matrix3x3 worldAxis = transform.getOrientation().getMatrix().getAbsoluteMatrix();
Vector3 worldExtents = Vector3(worldAxis.getColumn(0).dot(extents),
worldAxis.getColumn(1).dot(extents),
worldAxis.getColumn(2).dot(extents));
// Compute the minimum and maximum coordinates of the rotated extents
Vector3 minCoordinates = transform.getPosition() - worldExtents;
Vector3 maxCoordinates = transform.getPosition() + worldExtents;
// Update the AABB with the new minimum and maximum coordinates
aabb.setMin(minCoordinates);
aabb.setMax(maxCoordinates);
}

View File

@ -30,6 +30,7 @@
#include <cassert>
#include "../../mathematics/Vector3.h"
#include "../../mathematics/Matrix3x3.h"
#include "AABB.h"
/// ReactPhysics3D namespace
namespace reactphysics3d {
@ -89,12 +90,15 @@ class CollisionShape {
/// Return the local inertia tensor of the collision shapes
virtual void computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const=0;
/// Update the AABB of a body using its collision shape
virtual void updateAABB(AABB& aabb, const Transform& transform);
};
// Return the type of the collision shape
inline CollisionShapeType CollisionShape::getType() const {
return mType;
}
}
}

View File

@ -44,7 +44,7 @@ using namespace reactphysics3d;
// Constructor
CylinderShape::CylinderShape(decimal radius, decimal height)
: CollisionShape(CYLINDER), mRadius(radius), mHalfHeight(height/2.0) {
: CollisionShape(CYLINDER), mRadius(radius), mHalfHeight(height/decimal(2.0)) {
}

View File

@ -116,7 +116,7 @@ inline void CylinderShape::setRadius(decimal radius) {
// Return the height
inline decimal CylinderShape::getHeight() const {
return mHalfHeight * 2.0;
return mHalfHeight * decimal(2.0);
}
// Set the height

View File

@ -86,6 +86,9 @@ class SphereShape : public CollisionShape {
/// Return the margin distance around the shape
virtual decimal getMargin() const;
/// Update the AABB of a body using its collision shape
virtual void updateAABB(AABB& aabb, const Transform& transform);
#ifdef VISUAL_DEBUG
/// Draw the sphere (only for testing purpose)
virtual void draw() const;
@ -145,6 +148,21 @@ inline decimal SphereShape::getMargin() const {
return mRadius + OBJECT_MARGIN;
}
// Update the AABB of a body using its collision shape
inline void SphereShape::updateAABB(AABB& aabb, const Transform& transform) {
// Get the local extents in x,y and z direction
Vector3 extents = getLocalExtents(OBJECT_MARGIN);
// Compute the minimum and maximum coordinates of the rotated extents
Vector3 minCoordinates = transform.getPosition() - extents;
Vector3 maxCoordinates = transform.getPosition() + extents;
// Update the AABB with the new minimum and maximum coordinates
aabb.setMin(minCoordinates);
aabb.setMax(maxCoordinates);
}
}
#endif

View File

@ -48,7 +48,7 @@ namespace reactphysics3d {
typedef unsigned int uint;
typedef long unsigned int luint;
typedef short unsigned int bodyindex;
typedef luint bodyindex;
typedef std::pair<bodyindex, bodyindex> bodyindexpair;
// ------------------- Constants ------------------- //

View File

@ -35,7 +35,7 @@ Constraint::Constraint(RigidBody* const body1, RigidBody* const body2,
mNbConstraints(nbConstraints), mType(type) {
// Initialize the cached lambda values
for (int i=0; i<nbConstraints; i++) {
for (uint i=0; i<nbConstraints; i++) {
mCachedLambdas.push_back(0.0);
}
}

View File

@ -103,10 +103,10 @@ class Constraint {
unsigned int getNbConstraints() const;
/// Get one cached lambda value
decimal getCachedLambda(int index) const;
decimal getCachedLambda(uint index) const;
/// Set on cached lambda value
void setCachedLambda(int index, decimal lambda);
void setCachedLambda(uint index, decimal lambda);
};
// Return the reference to the body 1
@ -136,14 +136,14 @@ inline uint Constraint::getNbConstraints() const {
}
// Get one previous lambda value
inline decimal Constraint::getCachedLambda(int index) const {
assert(index >= 0 && index < mNbConstraints);
inline decimal Constraint::getCachedLambda(uint index) const {
assert(index < mNbConstraints);
return mCachedLambdas[index];
}
// Set on cached lambda value
inline void Constraint::setCachedLambda(int index, decimal lambda) {
assert(index >= 0 && index < mNbConstraints);
inline void Constraint::setCachedLambda(uint index, decimal lambda) {
assert(index < mNbConstraints);
mCachedLambdas[index] = lambda;
}

View File

@ -24,6 +24,7 @@
********************************************************************************/
// Libraries
#include <iostream>
#include "ContactManifold.h"
using namespace reactphysics3d;
@ -77,8 +78,8 @@ void ContactManifold::addContactPoint(ContactPoint* contact) {
}
// Remove a contact point from the manifold
void ContactManifold::removeContactPoint(int index) {
assert(index >= 0 && index < mNbContactPoints);
void ContactManifold::removeContactPoint(uint index) {
assert(index < mNbContactPoints);
assert(mNbContactPoints > 0);
// Call the destructor explicitly and tell the memory pool that
@ -101,10 +102,11 @@ void ContactManifold::removeContactPoint(int index) {
/// the contacts with a too large distance between the contact points in the plane orthogonal to the
/// contact normal.
void ContactManifold::update(const Transform& transform1, const Transform& transform2) {
if (mNbContactPoints == 0) return;
// Update the world coordinates and penetration depth of the contact points in the manifold
for (int i=0; i<mNbContactPoints; i++) {
for (uint i=0; i<mNbContactPoints; i++) {
mContactPoints[i]->setWorldPointOnBody1(transform1 * mContactPoints[i]->getLocalPointOnBody1());
mContactPoints[i]->setWorldPointOnBody2(transform2 * mContactPoints[i]->getLocalPointOnBody2());
mContactPoints[i]->setPenetrationDepth((mContactPoints[i]->getWorldPointOnBody1() - mContactPoints[i]->getWorldPointOnBody2()).dot(mContactPoints[i]->getNormal()));
@ -114,8 +116,8 @@ void ContactManifold::update(const Transform& transform1, const Transform& trans
PERSISTENT_CONTACT_DIST_THRESHOLD;
// Remove the contact points that don't represent very well the contact manifold
for (int i=mNbContactPoints-1; i>=0; i--) {
assert(i>= 0 && i < mNbContactPoints);
for (int i=static_cast<int>(mNbContactPoints)-1; i>=0; i--) {
assert(i < static_cast<int>(mNbContactPoints));
// Compute the distance between contact points in the normal direction
decimal distanceNormal = -mContactPoints[i]->getPenetrationDepth();

View File

@ -106,7 +106,7 @@ class ContactManifold {
int getIndexToRemove(int indexMaxPenetration, const Vector3& newPoint) const;
/// Remove a contact point from the manifold
void removeContactPoint(int index);
void removeContactPoint(uint index);
/// Return true if two vectors are approximatively equal
bool isApproxEqual(const Vector3& vector1, const Vector3& vector2) const;

View File

@ -27,6 +27,7 @@
#include "ContactSolver.h"
#include "DynamicsWorld.h"
#include "../body/RigidBody.h"
#include <limits>
using namespace reactphysics3d;
using namespace std;

View File

@ -81,7 +81,7 @@ void DynamicsWorld::update() {
if (!mContactManifolds.empty()) {
// Solve the contacts
mContactSolver.solve(mTimer.getTimeStep());
mContactSolver.solve(static_cast<decimal>(mTimer.getTimeStep()));
}
// Update the timer
@ -106,7 +106,7 @@ void DynamicsWorld::update() {
// Update the position and orientation of the rigid bodies
void DynamicsWorld::updateRigidBodiesPositionAndOrientation() {
decimal dt = mTimer.getTimeStep();
decimal dt = static_cast<decimal>(mTimer.getTimeStep());
// For each rigid body of the world
set<RigidBody*>::iterator it;
@ -289,7 +289,7 @@ void DynamicsWorld::removeAllConstraints() {
void DynamicsWorld::notifyAddedOverlappingPair(const BroadPhasePair* addedPair) {
// Get the pair of body index
std::pair<bodyindex, bodyindex> indexPair = addedPair->getBodiesIndexPair();
bodyindexpair indexPair = addedPair->getBodiesIndexPair();
// Add the pair into the set of overlapping pairs (if not there yet)
OverlappingPair* newPair = new (mMemoryPoolOverlappingPairs.allocateObject()) OverlappingPair(

View File

@ -34,6 +34,7 @@
#include "../configuration.h"
#if defined(WINDOWS_OS) // For Windows platform
#define NOMINMAX // This is used to avoid definition of max() and min() macros
#include <windows.h>
#else // For Mac OS or Linux platform
#include <sys/time.h>
@ -119,7 +120,7 @@ class Timer {
void nextStep();
/// Compute the interpolation factor
double computeInterpolationFactor();
decimal computeInterpolationFactor();
};
// Return the timestep of the physics engine
@ -188,8 +189,8 @@ inline void Timer::nextStep() {
}
// Compute the interpolation factor
inline double Timer::computeInterpolationFactor() {
return (mAccumulator / mTimeStep);
inline decimal Timer::computeInterpolationFactor() {
return (decimal(mAccumulator / mTimeStep));
}
// Compute the time since the last update() call and add it to the accumulator

View File

@ -56,9 +56,9 @@ Matrix3x3::~Matrix3x3() {
// Copy-constructor
Matrix3x3::Matrix3x3(const Matrix3x3& matrix) {
setAllValues(matrix.mArray[0][0], matrix.mArray[0][1], matrix.mArray[0][2],
matrix.mArray[1][0], matrix.mArray[1][1], matrix.mArray[1][2],
matrix.mArray[2][0], matrix.mArray[2][1], matrix.mArray[2][2]);
setAllValues(matrix.mRows[0][0], matrix.mRows[0][1], matrix.mRows[0][2],
matrix.mRows[1][0], matrix.mRows[1][1], matrix.mRows[1][2],
matrix.mRows[2][0], matrix.mRows[2][1], matrix.mRows[2][2]);
}
// Assignment operator
@ -66,9 +66,9 @@ Matrix3x3& Matrix3x3::operator=(const Matrix3x3& matrix) {
// Check for self-assignment
if (&matrix != this) {
setAllValues(matrix.mArray[0][0], matrix.mArray[0][1], matrix.mArray[0][2],
matrix.mArray[1][0], matrix.mArray[1][1], matrix.mArray[1][2],
matrix.mArray[2][0], matrix.mArray[2][1], matrix.mArray[2][2]);
setAllValues(matrix.mRows[0][0], matrix.mRows[0][1], matrix.mRows[0][2],
matrix.mRows[1][0], matrix.mRows[1][1], matrix.mRows[1][2],
matrix.mRows[2][0], matrix.mRows[2][1], matrix.mRows[2][2]);
}
return *this;
}
@ -84,15 +84,15 @@ Matrix3x3 Matrix3x3::getInverse() const {
decimal invDeterminant = decimal(1.0) / determinant;
Matrix3x3 tempMatrix((mArray[1][1]*mArray[2][2]-mArray[2][1]*mArray[1][2]),
-(mArray[0][1]*mArray[2][2]-mArray[2][1]*mArray[0][2]),
(mArray[0][1]*mArray[1][2]-mArray[0][2]*mArray[1][1]),
-(mArray[1][0]*mArray[2][2]-mArray[2][0]*mArray[1][2]),
(mArray[0][0]*mArray[2][2]-mArray[2][0]*mArray[0][2]),
-(mArray[0][0]*mArray[1][2]-mArray[1][0]*mArray[0][2]),
(mArray[1][0]*mArray[2][1]-mArray[2][0]*mArray[1][1]),
-(mArray[0][0]*mArray[2][1]-mArray[2][0]*mArray[0][1]),
(mArray[0][0]*mArray[1][1]-mArray[0][1]*mArray[1][0]));
Matrix3x3 tempMatrix((mRows[1][1]*mRows[2][2]-mRows[2][1]*mRows[1][2]),
-(mRows[0][1]*mRows[2][2]-mRows[2][1]*mRows[0][2]),
(mRows[0][1]*mRows[1][2]-mRows[0][2]*mRows[1][1]),
-(mRows[1][0]*mRows[2][2]-mRows[2][0]*mRows[1][2]),
(mRows[0][0]*mRows[2][2]-mRows[2][0]*mRows[0][2]),
-(mRows[0][0]*mRows[1][2]-mRows[1][0]*mRows[0][2]),
(mRows[1][0]*mRows[2][1]-mRows[2][0]*mRows[1][1]),
-(mRows[0][0]*mRows[2][1]-mRows[2][0]*mRows[0][1]),
(mRows[0][0]*mRows[1][1]-mRows[0][1]*mRows[1][0]));
// Return the inverse matrix
return (invDeterminant * tempMatrix);

View File

@ -45,8 +45,8 @@ class Matrix3x3 {
// -------------------- Attributes -------------------- //
/// Array with the values of the matrix
decimal mArray[3][3];
/// Rows of the matrix;
Vector3 mRows[3];
public :
@ -71,19 +71,19 @@ class Matrix3x3 {
/// Assignment operator
Matrix3x3& operator=(const Matrix3x3& matrix);
/// Get a value in the matrix
decimal getValue(int i, int j) const;
/// Set a value in the matrix
void setValue(int i, int j, decimal value);
/// Set all the values in the matrix
void setAllValues(decimal a1, decimal a2, decimal a3, decimal b1, decimal b2, decimal b3,
decimal c1, decimal c2, decimal c3);
/// Set the matrix to zero
void setToZero();
/// Return a column
Vector3 getColumn(int i) const;
/// Return a row
Vector3 getRow(int i) const;
/// Return the transpose matrix
Matrix3x3 getTranspose() const;
@ -140,110 +140,120 @@ class Matrix3x3 {
/// Overloaded operator for multiplication with a number with assignment
Matrix3x3& operator*=(decimal nb);
/// Overloaded operator to read element of the matrix.
const Vector3& operator[](int row) const;
/// Overloaded operator to read/write element of the matrix.
Vector3& operator[](int row);
};
// Method to get a value in the matrix (inline)
inline decimal Matrix3x3::getValue(int i, int j) const {
assert(i>=0 && i<3 && j>=0 && j<3);
return mArray[i][j];
}
// Method to set a value in the matrix (inline)
inline void Matrix3x3::setValue(int i, int j, decimal value) {
assert(i>=0 && i<3 && j>=0 && j<3);
mArray[i][j] = value;
}
// Method to set all the values in the matrix
inline void Matrix3x3::setAllValues(decimal a1, decimal a2, decimal a3,
decimal b1, decimal b2, decimal b3,
decimal c1, decimal c2, decimal c3) {
mArray[0][0] = a1; mArray[0][1] = a2; mArray[0][2] = a3;
mArray[1][0] = b1; mArray[1][1] = b2; mArray[1][2] = b3;
mArray[2][0] = c1; mArray[2][1] = c2; mArray[2][2] = c3;
mRows[0][0] = a1; mRows[0][1] = a2; mRows[0][2] = a3;
mRows[1][0] = b1; mRows[1][1] = b2; mRows[1][2] = b3;
mRows[2][0] = c1; mRows[2][1] = c2; mRows[2][2] = c3;
}
// Set the matrix to zero
inline void Matrix3x3::setToZero() {
mRows[0].setToZero();
mRows[1].setToZero();
mRows[2].setToZero();
}
// Return a column
inline Vector3 Matrix3x3::getColumn(int i) const {
assert(i>= 0 && i<3);
return Vector3(mArray[0][i], mArray[1][i], mArray[2][i]);
return Vector3(mRows[0][i], mRows[1][i], mRows[2][i]);
}
// Return a row
inline Vector3 Matrix3x3::getRow(int i) const {
assert(i>= 0 && i<3);
return mRows[i];
}
// Return the transpose matrix
inline Matrix3x3 Matrix3x3::getTranspose() const {
// Return the transpose matrix
return Matrix3x3(mArray[0][0], mArray[1][0], mArray[2][0],
mArray[0][1], mArray[1][1], mArray[2][1],
mArray[0][2], mArray[1][2], mArray[2][2]);
return Matrix3x3(mRows[0][0], mRows[1][0], mRows[2][0],
mRows[0][1], mRows[1][1], mRows[2][1],
mRows[0][2], mRows[1][2], mRows[2][2]);
}
// Return the determinant of the matrix
inline decimal Matrix3x3::getDeterminant() const {
// Compute and return the determinant of the matrix
return (mArray[0][0]*(mArray[1][1]*mArray[2][2]-mArray[2][1]*mArray[1][2]) -
mArray[0][1]*(mArray[1][0]*mArray[2][2]-mArray[2][0]*mArray[1][2]) +
mArray[0][2]*(mArray[1][0]*mArray[2][1]-mArray[2][0]*mArray[1][1]));
return (mRows[0][0]*(mRows[1][1]*mRows[2][2]-mRows[2][1]*mRows[1][2]) -
mRows[0][1]*(mRows[1][0]*mRows[2][2]-mRows[2][0]*mRows[1][2]) +
mRows[0][2]*(mRows[1][0]*mRows[2][1]-mRows[2][0]*mRows[1][1]));
}
// Return the trace of the matrix
inline decimal Matrix3x3::getTrace() const {
// Compute and return the trace
return (mArray[0][0] + mArray[1][1] + mArray[2][2]);
return (mRows[0][0] + mRows[1][1] + mRows[2][2]);
}
// Set the matrix to the identity matrix
inline void Matrix3x3::setToIdentity() {
mArray[0][0] = 1.0; mArray[0][1] = 0.0; mArray[0][2] = 0.0;
mArray[1][0] = 0.0; mArray[1][1] = 1.0; mArray[1][2] = 0.0;
mArray[2][0] = 0.0; mArray[2][1] = 0.0; mArray[2][2] = 1.0;
mRows[0][0] = 1.0; mRows[0][1] = 0.0; mRows[0][2] = 0.0;
mRows[1][0] = 0.0; mRows[1][1] = 1.0; mRows[1][2] = 0.0;
mRows[2][0] = 0.0; mRows[2][1] = 0.0; mRows[2][2] = 1.0;
}
// Return the 3x3 identity matrix
inline Matrix3x3 Matrix3x3::identity() {
// Return the isdentity matrix
return Matrix3x3(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0);
}
// Return the matrix with absolute values
inline Matrix3x3 Matrix3x3::getAbsoluteMatrix() const {
return Matrix3x3(fabs(mArray[0][0]), fabs(mArray[0][1]), fabs(mArray[0][2]),
fabs(mArray[1][0]), fabs(mArray[1][1]), fabs(mArray[1][2]),
fabs(mArray[2][0]), fabs(mArray[2][1]), fabs(mArray[2][2]));
return Matrix3x3(fabs(mRows[0][0]), fabs(mRows[0][1]), fabs(mRows[0][2]),
fabs(mRows[1][0]), fabs(mRows[1][1]), fabs(mRows[1][2]),
fabs(mRows[2][0]), fabs(mRows[2][1]), fabs(mRows[2][2]));
}
// Overloaded operator for addition
inline Matrix3x3 operator+(const Matrix3x3& matrix1, const Matrix3x3& matrix2) {
return Matrix3x3(matrix1.mArray[0][0] + matrix2.mArray[0][0], matrix1.mArray[0][1] +
matrix2.mArray[0][1], matrix1.mArray[0][2] + matrix2.mArray[0][2],
matrix1.mArray[1][0] + matrix2.mArray[1][0], matrix1.mArray[1][1] +
matrix2.mArray[1][1], matrix1.mArray[1][2] + matrix2.mArray[1][2],
matrix1.mArray[2][0] + matrix2.mArray[2][0], matrix1.mArray[2][1] +
matrix2.mArray[2][1], matrix1.mArray[2][2] + matrix2.mArray[2][2]);
return Matrix3x3(matrix1.mRows[0][0] + matrix2.mRows[0][0], matrix1.mRows[0][1] +
matrix2.mRows[0][1], matrix1.mRows[0][2] + matrix2.mRows[0][2],
matrix1.mRows[1][0] + matrix2.mRows[1][0], matrix1.mRows[1][1] +
matrix2.mRows[1][1], matrix1.mRows[1][2] + matrix2.mRows[1][2],
matrix1.mRows[2][0] + matrix2.mRows[2][0], matrix1.mRows[2][1] +
matrix2.mRows[2][1], matrix1.mRows[2][2] + matrix2.mRows[2][2]);
}
// Overloaded operator for substraction
inline Matrix3x3 operator-(const Matrix3x3& matrix1, const Matrix3x3& matrix2) {
return Matrix3x3(matrix1.mArray[0][0] - matrix2.mArray[0][0], matrix1.mArray[0][1] -
matrix2.mArray[0][1], matrix1.mArray[0][2] - matrix2.mArray[0][2],
matrix1.mArray[1][0] - matrix2.mArray[1][0], matrix1.mArray[1][1] -
matrix2.mArray[1][1], matrix1.mArray[1][2] - matrix2.mArray[1][2],
matrix1.mArray[2][0] - matrix2.mArray[2][0], matrix1.mArray[2][1] -
matrix2.mArray[2][1], matrix1.mArray[2][2] - matrix2.mArray[2][2]);
return Matrix3x3(matrix1.mRows[0][0] - matrix2.mRows[0][0], matrix1.mRows[0][1] -
matrix2.mRows[0][1], matrix1.mRows[0][2] - matrix2.mRows[0][2],
matrix1.mRows[1][0] - matrix2.mRows[1][0], matrix1.mRows[1][1] -
matrix2.mRows[1][1], matrix1.mRows[1][2] - matrix2.mRows[1][2],
matrix1.mRows[2][0] - matrix2.mRows[2][0], matrix1.mRows[2][1] -
matrix2.mRows[2][1], matrix1.mRows[2][2] - matrix2.mRows[2][2]);
}
// Overloaded operator for the negative of the matrix
inline Matrix3x3 operator-(const Matrix3x3& matrix) {
return Matrix3x3(-matrix.mArray[0][0], -matrix.mArray[0][1], -matrix.mArray[0][2],
-matrix.mArray[1][0], -matrix.mArray[1][1], -matrix.mArray[1][2],
-matrix.mArray[2][0], -matrix.mArray[2][1], -matrix.mArray[2][2]);
return Matrix3x3(-matrix.mRows[0][0], -matrix.mRows[0][1], -matrix.mRows[0][2],
-matrix.mRows[1][0], -matrix.mRows[1][1], -matrix.mRows[1][2],
-matrix.mRows[2][0], -matrix.mRows[2][1], -matrix.mRows[2][2]);
}
// Overloaded operator for multiplication with a number
inline Matrix3x3 operator*(decimal nb, const Matrix3x3& matrix) {
return Matrix3x3(matrix.mArray[0][0] * nb, matrix.mArray[0][1] * nb, matrix.mArray[0][2] * nb,
matrix.mArray[1][0] * nb, matrix.mArray[1][1] * nb, matrix.mArray[1][2] * nb,
matrix.mArray[2][0] * nb, matrix.mArray[2][1] * nb, matrix.mArray[2][2] * nb);
return Matrix3x3(matrix.mRows[0][0] * nb, matrix.mRows[0][1] * nb, matrix.mRows[0][2] * nb,
matrix.mRows[1][0] * nb, matrix.mRows[1][1] * nb, matrix.mRows[1][2] * nb,
matrix.mRows[2][0] * nb, matrix.mRows[2][1] * nb, matrix.mRows[2][2] * nb);
}
// Overloaded operator for multiplication with a matrix
@ -253,44 +263,44 @@ inline Matrix3x3 operator*(const Matrix3x3& matrix, decimal nb) {
// Overloaded operator for matrix multiplication
inline Matrix3x3 operator*(const Matrix3x3& matrix1, const Matrix3x3& matrix2) {
return Matrix3x3(matrix1.mArray[0][0]*matrix2.mArray[0][0] + matrix1.mArray[0][1] *
matrix2.mArray[1][0] + matrix1.mArray[0][2]*matrix2.mArray[2][0],
matrix1.mArray[0][0]*matrix2.mArray[0][1] + matrix1.mArray[0][1] *
matrix2.mArray[1][1] + matrix1.mArray[0][2]*matrix2.mArray[2][1],
matrix1.mArray[0][0]*matrix2.mArray[0][2] + matrix1.mArray[0][1] *
matrix2.mArray[1][2] + matrix1.mArray[0][2]*matrix2.mArray[2][2],
matrix1.mArray[1][0]*matrix2.mArray[0][0] + matrix1.mArray[1][1] *
matrix2.mArray[1][0] + matrix1.mArray[1][2]*matrix2.mArray[2][0],
matrix1.mArray[1][0]*matrix2.mArray[0][1] + matrix1.mArray[1][1] *
matrix2.mArray[1][1] + matrix1.mArray[1][2]*matrix2.mArray[2][1],
matrix1.mArray[1][0]*matrix2.mArray[0][2] + matrix1.mArray[1][1] *
matrix2.mArray[1][2] + matrix1.mArray[1][2]*matrix2.mArray[2][2],
matrix1.mArray[2][0]*matrix2.mArray[0][0] + matrix1.mArray[2][1] *
matrix2.mArray[1][0] + matrix1.mArray[2][2]*matrix2.mArray[2][0],
matrix1.mArray[2][0]*matrix2.mArray[0][1] + matrix1.mArray[2][1] *
matrix2.mArray[1][1] + matrix1.mArray[2][2]*matrix2.mArray[2][1],
matrix1.mArray[2][0]*matrix2.mArray[0][2] + matrix1.mArray[2][1] *
matrix2.mArray[1][2] + matrix1.mArray[2][2]*matrix2.mArray[2][2]);
return Matrix3x3(matrix1.mRows[0][0]*matrix2.mRows[0][0] + matrix1.mRows[0][1] *
matrix2.mRows[1][0] + matrix1.mRows[0][2]*matrix2.mRows[2][0],
matrix1.mRows[0][0]*matrix2.mRows[0][1] + matrix1.mRows[0][1] *
matrix2.mRows[1][1] + matrix1.mRows[0][2]*matrix2.mRows[2][1],
matrix1.mRows[0][0]*matrix2.mRows[0][2] + matrix1.mRows[0][1] *
matrix2.mRows[1][2] + matrix1.mRows[0][2]*matrix2.mRows[2][2],
matrix1.mRows[1][0]*matrix2.mRows[0][0] + matrix1.mRows[1][1] *
matrix2.mRows[1][0] + matrix1.mRows[1][2]*matrix2.mRows[2][0],
matrix1.mRows[1][0]*matrix2.mRows[0][1] + matrix1.mRows[1][1] *
matrix2.mRows[1][1] + matrix1.mRows[1][2]*matrix2.mRows[2][1],
matrix1.mRows[1][0]*matrix2.mRows[0][2] + matrix1.mRows[1][1] *
matrix2.mRows[1][2] + matrix1.mRows[1][2]*matrix2.mRows[2][2],
matrix1.mRows[2][0]*matrix2.mRows[0][0] + matrix1.mRows[2][1] *
matrix2.mRows[1][0] + matrix1.mRows[2][2]*matrix2.mRows[2][0],
matrix1.mRows[2][0]*matrix2.mRows[0][1] + matrix1.mRows[2][1] *
matrix2.mRows[1][1] + matrix1.mRows[2][2]*matrix2.mRows[2][1],
matrix1.mRows[2][0]*matrix2.mRows[0][2] + matrix1.mRows[2][1] *
matrix2.mRows[1][2] + matrix1.mRows[2][2]*matrix2.mRows[2][2]);
}
// Overloaded operator for multiplication with a vector
inline Vector3 operator*(const Matrix3x3& matrix, const Vector3& vector) {
return Vector3(matrix.mArray[0][0]*vector.x + matrix.mArray[0][1]*vector.y +
matrix.mArray[0][2]*vector.z,
matrix.mArray[1][0]*vector.x + matrix.mArray[1][1]*vector.y +
matrix.mArray[1][2]*vector.z,
matrix.mArray[2][0]*vector.x + matrix.mArray[2][1]*vector.y +
matrix.mArray[2][2]*vector.z);
return Vector3(matrix.mRows[0][0]*vector.x + matrix.mRows[0][1]*vector.y +
matrix.mRows[0][2]*vector.z,
matrix.mRows[1][0]*vector.x + matrix.mRows[1][1]*vector.y +
matrix.mRows[1][2]*vector.z,
matrix.mRows[2][0]*vector.x + matrix.mRows[2][1]*vector.y +
matrix.mRows[2][2]*vector.z);
}
// Overloaded operator for equality condition
inline bool Matrix3x3::operator==(const Matrix3x3& matrix) const {
return (mArray[0][0] == matrix.mArray[0][0] && mArray[0][1] == matrix.mArray[0][1] &&
mArray[0][2] == matrix.mArray[0][2] &&
mArray[1][0] == matrix.mArray[1][0] && mArray[1][1] == matrix.mArray[1][1] &&
mArray[1][2] == matrix.mArray[1][2] &&
mArray[2][0] == matrix.mArray[2][0] && mArray[2][1] == matrix.mArray[2][1] &&
mArray[2][2] == matrix.mArray[2][2]);
return (mRows[0][0] == matrix.mRows[0][0] && mRows[0][1] == matrix.mRows[0][1] &&
mRows[0][2] == matrix.mRows[0][2] &&
mRows[1][0] == matrix.mRows[1][0] && mRows[1][1] == matrix.mRows[1][1] &&
mRows[1][2] == matrix.mRows[1][2] &&
mRows[2][0] == matrix.mRows[2][0] && mRows[2][1] == matrix.mRows[2][1] &&
mRows[2][2] == matrix.mRows[2][2]);
}
// Overloaded operator for the is different condition
@ -300,32 +310,46 @@ inline bool Matrix3x3::operator!= (const Matrix3x3& matrix) const {
// Overloaded operator for addition with assignment
inline Matrix3x3& Matrix3x3::operator+=(const Matrix3x3& matrix) {
mArray[0][0] += matrix.mArray[0][0]; mArray[0][1] += matrix.mArray[0][1];
mArray[0][2] += matrix.mArray[0][2]; mArray[1][0] += matrix.mArray[1][0];
mArray[1][1] += matrix.mArray[1][1]; mArray[1][2] += matrix.mArray[1][2];
mArray[2][0] += matrix.mArray[2][0]; mArray[2][1] += matrix.mArray[2][1];
mArray[2][2] += matrix.mArray[2][2];
mRows[0][0] += matrix.mRows[0][0]; mRows[0][1] += matrix.mRows[0][1];
mRows[0][2] += matrix.mRows[0][2]; mRows[1][0] += matrix.mRows[1][0];
mRows[1][1] += matrix.mRows[1][1]; mRows[1][2] += matrix.mRows[1][2];
mRows[2][0] += matrix.mRows[2][0]; mRows[2][1] += matrix.mRows[2][1];
mRows[2][2] += matrix.mRows[2][2];
return *this;
}
// Overloaded operator for substraction with assignment
inline Matrix3x3& Matrix3x3::operator-=(const Matrix3x3& matrix) {
mArray[0][0] -= matrix.mArray[0][0]; mArray[0][1] -= matrix.mArray[0][1];
mArray[0][2] -= matrix.mArray[0][2]; mArray[1][0] -= matrix.mArray[1][0];
mArray[1][1] -= matrix.mArray[1][1]; mArray[1][2] -= matrix.mArray[1][2];
mArray[2][0] -= matrix.mArray[2][0]; mArray[2][1] -= matrix.mArray[2][1];
mArray[2][2] -= matrix.mArray[2][2];
mRows[0][0] -= matrix.mRows[0][0]; mRows[0][1] -= matrix.mRows[0][1];
mRows[0][2] -= matrix.mRows[0][2]; mRows[1][0] -= matrix.mRows[1][0];
mRows[1][1] -= matrix.mRows[1][1]; mRows[1][2] -= matrix.mRows[1][2];
mRows[2][0] -= matrix.mRows[2][0]; mRows[2][1] -= matrix.mRows[2][1];
mRows[2][2] -= matrix.mRows[2][2];
return *this;
}
// Overloaded operator for multiplication with a number with assignment
inline Matrix3x3& Matrix3x3::operator*=(decimal nb) {
mArray[0][0] *= nb; mArray[0][1] *= nb; mArray[0][2] *= nb;
mArray[1][0] *= nb; mArray[1][1] *= nb; mArray[1][2] *= nb;
mArray[2][0] *= nb; mArray[2][1] *= nb; mArray[2][2] *= nb;
mRows[0][0] *= nb; mRows[0][1] *= nb; mRows[0][2] *= nb;
mRows[1][0] *= nb; mRows[1][1] *= nb; mRows[1][2] *= nb;
mRows[2][0] *= nb; mRows[2][1] *= nb; mRows[2][2] *= nb;
return *this;
}
// Overloaded operator to return a row of the matrix.
/// This operator is also used to access a matrix value using the syntax
/// matrix[row][col].
inline const Vector3& Matrix3x3::operator[](int row) const {
return mRows[row];
}
// Overloaded operator to return a row of the matrix.
/// This operator is also used to access a matrix value using the syntax
/// matrix[row][col].
inline Vector3& Matrix3x3::operator[](int row) {
return mRows[row];
}
}
#endif

View File

@ -59,69 +59,62 @@ Quaternion::Quaternion(const Matrix3x3& matrix) {
// Get the trace of the matrix
decimal trace = matrix.getTrace();
decimal array[3][3];
for (int i=0; i<3; i++) {
for (int j=0; j<3; j++) {
array[i][j] = matrix.getValue(i, j);
}
}
decimal r;
decimal s;
if (trace < 0.0) {
if (array[1][1] > array[0][0]) {
if(array[2][2] > array[1][1]) {
r = sqrt(array[2][2] - array[0][0] - array[1][1] + 1.0);
s = 0.5 / r;
if (matrix[1][1] > matrix[0][0]) {
if(matrix[2][2] > matrix[1][1]) {
r = sqrt(matrix[2][2] - matrix[0][0] - matrix[1][1] + decimal(1.0));
s = decimal(0.5) / r;
// Compute the quaternion
x = (array[2][0] + array[0][2])*s;
y = (array[1][2] + array[2][1])*s;
z = 0.5*r;
w = (array[1][0] - array[0][1])*s;
x = (matrix[2][0] + matrix[0][2]) * s;
y = (matrix[1][2] + matrix[2][1]) * s;
z = decimal(0.5) * r;
w = (matrix[1][0] - matrix[0][1]) * s;
}
else {
r = sqrt(array[1][1] - array[2][2] - array[0][0] + 1.0);
s = 0.5 / r;
r = sqrt(matrix[1][1] - matrix[2][2] - matrix[0][0] + decimal(1.0));
s = decimal(0.5) / r;
// Compute the quaternion
x = (array[0][1] + array[1][0])*s;
y = 0.5 * r;
z = (array[1][2] + array[2][1])*s;
w = (array[0][2] - array[2][0])*s;
x = (matrix[0][1] + matrix[1][0]) * s;
y = decimal(0.5) * r;
z = (matrix[1][2] + matrix[2][1]) * s;
w = (matrix[0][2] - matrix[2][0]) * s;
}
}
else if (array[2][2] > array[0][0]) {
r = sqrt(array[2][2] - array[0][0] - array[1][1] + 1.0);
s = 0.5 / r;
else if (matrix[2][2] > matrix[0][0]) {
r = sqrt(matrix[2][2] - matrix[0][0] - matrix[1][1] + decimal(1.0));
s = decimal(0.5) / r;
// Compute the quaternion
x = (array[2][0] + array[0][2])*s;
y = (array[1][2] + array[2][1])*s;
z = 0.5 * r;
w = (array[1][0] - array[0][1])*s;
x = (matrix[2][0] + matrix[0][2]) * s;
y = (matrix[1][2] + matrix[2][1]) * s;
z = decimal(0.5) * r;
w = (matrix[1][0] - matrix[0][1]) * s;
}
else {
r = sqrt(array[0][0] - array[1][1] - array[2][2] + 1.0);
s = 0.5 / r;
r = sqrt(matrix[0][0] - matrix[1][1] - matrix[2][2] + decimal(1.0));
s = decimal(0.5) / r;
// Compute the quaternion
x = 0.5 * r;
y = (array[0][1] + array[1][0])*s;
z = (array[2][0] - array[0][2])*s;
w = (array[2][1] - array[1][2])*s;
x = decimal(0.5) * r;
y = (matrix[0][1] + matrix[1][0]) * s;
z = (matrix[2][0] - matrix[0][2]) * s;
w = (matrix[2][1] - matrix[1][2]) * s;
}
}
else {
r = sqrt(trace + 1.0);
s = 0.5/r;
r = sqrt(trace + decimal(1.0));
s = decimal(0.5) / r;
// Compute the quaternion
x = (array[2][1]-array[1][2])*s;
y = (array[0][2]-array[2][0])*s;
z = (array[1][0]-array[0][1])*s;
w = 0.5 * r;
x = (matrix[2][1] - matrix[1][2]) * s;
y = (matrix[0][2] - matrix[2][0]) * s;
z = (matrix[1][0] - matrix[0][1]) * s;
w = decimal(0.5) * r;
}
}
@ -146,7 +139,7 @@ void Quaternion::getRotationAngleAxis(decimal& angle, Vector3& axis) const {
}
// Compute the roation angle
angle = acos(quaternion.w) * 2.0;
angle = acos(quaternion.w) * decimal(2.0);
// Compute the 3D rotation axis
Vector3 rotationAxis(quaternion.x, quaternion.y, quaternion.z);
@ -165,7 +158,7 @@ Matrix3x3 Quaternion::getMatrix() const {
decimal s = 0.0;
if (nQ > 0.0) {
s = 2.0/nQ;
s = decimal(2.0) / nQ;
}
// Computations used for optimization (less multiplications)
@ -183,9 +176,9 @@ Matrix3x3 Quaternion::getMatrix() const {
decimal zzs = z*zs;
// Create the matrix corresponding to the quaternion
return Matrix3x3(1.0-yys-zzs, xys-wzs, xzs + wys,
xys + wzs, 1.0-xxs-zzs, yzs-wxs,
xzs-wys, yzs + wxs, 1.0-xxs-yys);
return Matrix3x3(decimal(1.0) - yys - zzs, xys-wzs, xzs + wys,
xys + wzs, decimal(1.0) - xxs - zzs, yzs-wxs,
xzs-wys, yzs + wxs, decimal(1.0) - xxs - yys);
}
// Compute the spherical linear interpolation between two quaternions.
@ -208,9 +201,9 @@ Quaternion Quaternion::slerp(const Quaternion& quaternion1,
// Because of precision, if cos(theta) is nearly 1,
// therefore theta is nearly 0 and we can write
// sin((1-t)*theta) as (1-t) and sin(t*theta) as t
const decimal epsilon = 0.00001;
const decimal epsilon = decimal(0.00001);
if(1-cosineTheta < epsilon) {
return quaternion1 * (1.0-t) + quaternion2 * (t * invert);
return quaternion1 * (decimal(1.0)-t) + quaternion2 * (t * invert);
}
// Compute the theta angle
@ -220,7 +213,7 @@ Quaternion Quaternion::slerp(const Quaternion& quaternion1,
decimal sineTheta = sin(theta);
// Compute the two coefficients that are in the spherical linear interpolation formula
decimal coeff1 = sin((1.0-t)*theta) / sineTheta;
decimal coeff1 = sin((decimal(1.0)-t)*theta) / sineTheta;
decimal coeff2 = sin(t*theta) / sineTheta * invert;
// Compute and return the interpolated quaternion

View File

@ -46,8 +46,17 @@ struct Quaternion {
// -------------------- Attributes -------------------- //
/// Components of the quaternion
decimal x, y, z, w;
/// Component x
decimal x;
/// Component y
decimal y;
/// Component z
decimal z;
/// Component w
decimal w;
// -------------------- Methods -------------------- //
@ -69,12 +78,21 @@ struct Quaternion {
/// Destructor
~Quaternion();
/// Set all the values
void setAllValues(decimal newX, decimal newY, decimal newZ, decimal newW);
/// Set the quaternion to zero
void setToZero();
/// Return the vector v=(x y z) of the quaternion
Vector3 vectorV() const;
Vector3 getVectorV() const;
/// Return the length of the quaternion
decimal length() const;
/// Normalize the quaternion
void normalize();
/// Return the unit quaternion
Quaternion getUnit() const;
@ -112,6 +130,9 @@ struct Quaternion {
/// Overloaded operator for the multiplication
Quaternion operator*(const Quaternion& quaternion) const;
/// Overloaded operator for the multiplication with a vector
Vector3 operator*(const Vector3& point);
/// Overloaded operator for assignment
Quaternion& operator=(const Quaternion& quaternion);
@ -119,8 +140,24 @@ struct Quaternion {
bool operator==(const Quaternion& quaternion) const;
};
/// Set all the values
inline void Quaternion::setAllValues(decimal newX, decimal newY, decimal newZ, decimal newW) {
x = newX;
y = newY;
z = newZ;
w = newW;
}
/// Set the quaternion to zero
inline void Quaternion::setToZero() {
x = 0;
y = 0;
z = 0;
w = 0;
}
// Return the vector v=(x y z) of the quaternion
inline Vector3 Quaternion::vectorV() const {
inline Vector3 Quaternion::getVectorV() const {
// Return the vector v
return Vector3(x, y, z);
@ -131,6 +168,20 @@ inline decimal Quaternion::length() const {
return sqrt(x*x + y*y + z*z + w*w);
}
// Normalize the quaternion
inline void Quaternion::normalize() {
decimal l = length();
// Check if the length is not equal to zero
assert (l > MACHINE_EPSILON);
x /= l;
y /= l;
z /= l;
w /= l;
}
// Return the unit quaternion
inline Quaternion Quaternion::getUnit() const {
decimal lengthQuaternion = length();
@ -192,9 +243,16 @@ inline Quaternion Quaternion::operator*(decimal nb) const {
// Overloaded operator for the multiplication of two quaternions
inline Quaternion Quaternion::operator*(const Quaternion& quaternion) const {
return Quaternion(w * quaternion.w - vectorV().dot(quaternion.vectorV()),
w * quaternion.vectorV() + quaternion.w * vectorV() +
vectorV().cross(quaternion.vectorV()));
return Quaternion(w * quaternion.w - getVectorV().dot(quaternion.getVectorV()),
w * quaternion.getVectorV() + quaternion.w * getVectorV() +
getVectorV().cross(quaternion.getVectorV()));
}
// Overloaded operator for the multiplication with a vector.
/// This methods rotates a point given the rotation of a quaternion.
inline Vector3 Quaternion::operator*(const Vector3& point) {
Quaternion p(point.x, point.y, point.z, 0.0);
return (((*this) * p) * getConjugate()).getVectorV();
}
// Overloaded operator for the assignment

View File

@ -99,6 +99,9 @@ class Transform {
const Transform& newTransform,
decimal interpolationFactor);
/// Return the identity transform
static Transform identity();
/// Return the transformed vector
Vector3 operator*(const Vector3& vector) const;
@ -153,12 +156,12 @@ inline void Transform::setFromOpenGL(decimal* openglMatrix) {
// Get the OpenGL matrix of the transform
inline void Transform::getOpenGLMatrix(decimal* openglMatrix) const {
const Matrix3x3& matrix = mOrientation.getMatrix();
openglMatrix[0] = matrix.getValue(0, 0); openglMatrix[1] = matrix.getValue(1, 0);
openglMatrix[2] = matrix.getValue(2, 0); openglMatrix[3] = 0.0;
openglMatrix[4] = matrix.getValue(0, 1); openglMatrix[5] = matrix.getValue(1, 1);
openglMatrix[6] = matrix.getValue(2, 1); openglMatrix[7] = 0.0;
openglMatrix[8] = matrix.getValue(0, 2); openglMatrix[9] = matrix.getValue(1, 2);
openglMatrix[10] = matrix.getValue(2, 2); openglMatrix[11] = 0.0;
openglMatrix[0] = matrix[0][0]; openglMatrix[1] = matrix[1][0];
openglMatrix[2] = matrix[2][0]; openglMatrix[3] = 0.0;
openglMatrix[4] = matrix[0][1]; openglMatrix[5] = matrix[1][1];
openglMatrix[6] = matrix[2][1]; openglMatrix[7] = 0.0;
openglMatrix[8] = matrix[0][2]; openglMatrix[9] = matrix[1][2];
openglMatrix[10] = matrix[2][2]; openglMatrix[11] = 0.0;
openglMatrix[12] = mPosition.x; openglMatrix[13] = mPosition.y;
openglMatrix[14] = mPosition.z; openglMatrix[15] = 1.0;
}
@ -185,6 +188,11 @@ inline Transform Transform::interpolateTransforms(const Transform& oldTransform,
return Transform(interPosition, interOrientation);
}
// Return the identity transform
inline Transform Transform::identity() {
return Transform(Vector3(0, 0, 0), Quaternion::identity());
}
// Return the transformed vector
inline Vector3 Transform::operator*(const Vector3& vector) const {
return (mOrientation.getMatrix() * vector) + mPosition;

View File

@ -58,7 +58,7 @@ Vector3 Vector3::getUnit() const {
assert(lengthVector > MACHINE_EPSILON);
// Compute and return the unit vector
decimal lengthInv = 1.0 / lengthVector;
decimal lengthInv = decimal(1.0) / lengthVector;
return Vector3(x * lengthInv, y * lengthInv, z * lengthInv);
}

View File

@ -46,8 +46,14 @@ struct Vector3 {
// -------------------- Attributes -------------------- //
/// Values of the 3D vector
decimal x, y, z;
/// Component x
decimal x;
/// Component y
decimal y;
/// Component z
decimal z;
// -------------------- Methods -------------------- //
@ -66,7 +72,10 @@ struct Vector3 {
/// Set all the values of the vector
void setAllValues(decimal newX, decimal newY, decimal newZ);
/// Return the lenght of the vector
/// Set the vector to zero
void setToZero();
/// Return the length of the vector
decimal length() const;
/// Return the square of the length of the vector
@ -142,6 +151,13 @@ struct Vector3 {
friend Vector3 operator/(const Vector3& vector, decimal number);
};
// Set the vector to zero
inline void Vector3::setToZero() {
x = 0;
y = 0;
z = 0;
}
// Set all the values of the vector
inline void Vector3::setAllValues(decimal newX, decimal newY, decimal newZ) {
x = newX;
@ -183,14 +199,7 @@ inline void Vector3::normalize() {
// Return the corresponding absolute value vector
inline Vector3 Vector3::getAbsoluteVector() const {
return Vector3(std::abs(x), std::abs(y), std::abs(z));
}
// Return true if two vectors are parallel
inline bool Vector3::isParallelWith(const Vector3& vector) const {
decimal scalarProd = this->dot(vector);
return approxEqual(std::abs(scalarProd), length() * vector.length());
}
}
// Return the axis with the minimal value
inline int Vector3::getMinAxis() const {

View File

@ -35,9 +35,10 @@ namespace reactphysics3d {
// ---------- Mathematics functions ---------- //
/// function to test if two real numbers are (almost) equal
/// Function to test if two real numbers are (almost) equal
/// We test if two numbers a and b are such that (a-b) are in [-EPSILON; EPSILON]
inline bool approxEqual(decimal a, decimal b, decimal epsilon = 1.0e-10) {
inline bool approxEqual(decimal a, decimal b, decimal epsilon = MACHINE_EPSILON) {
decimal difference = a - b;
return (difference < epsilon && difference > -epsilon);
}

20
test/CMakeLists.txt Normal file
View File

@ -0,0 +1,20 @@
# Minimum cmake version required
cmake_minimum_required(VERSION 2.6)
# Project configuration
PROJECT(TESTS)
# Headers
INCLUDE_DIRECTORIES(${REACTPHYSICS3D_SOURCE_DIR}/test)
# Sources files of tests
file (
GLOB_RECURSE
TESTS_SOURCE_FILES
${REACTPHYSICS3D_SOURCE_DIR}/test/*
)
# Create the tests executable
ADD_EXECUTABLE(tests ${TESTS_SOURCE_FILES})
TARGET_LINK_LIBRARIES(tests reactphysics3d)

86
test/Test.cpp Normal file
View File

@ -0,0 +1,86 @@
/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "Test.h"
using namespace reactphysics3d;
/// Constructor
Test::Test(std::ostream* stream) : mOutputStream(stream), mNbPassedTests(0), mNbFailedTests(0) {
}
/// Destructor
Test::~Test() {
}
// Called to test a boolean condition.
// This method should not be called directly in your test but you should call test() instead (macro)
void Test::applyTest(bool condition, const std::string& testText,
const char* filename, long lineNumber) {
// If the boolean condition is true
if (condition) {
// The test passed, call the succeed() method
succeed();
}
else { // If the boolean condition is false
// The test failed, call the applyFail() method
applyFail(testText, filename, lineNumber);
}
}
// Called when a test has failed.
// This method should not be called directly in your test buy you should call fail() instead (macro)
void Test::applyFail(const std::string& testText, const char* filename, long lineNumber) {
if (mOutputStream) {
// Display the failure message
*mOutputStream << typeid(*this).name() << "failure : (" << testText << "), " <<
filename << "(line " << lineNumber << ")" << std::endl;
}
// Increase the number of failed tests
mNbFailedTests++;
}
/// Display the report of the unit test and return the number of failed tests
long Test::report() const {
if(mOutputStream) {
*mOutputStream << "Test \"" <<
typeid(*this).name()
<< "\":\n\tPassed: " << mNbPassedTests << "\tFailed: " <<
mNbFailedTests << std::endl;
}
// Return the number of failed tests
return mNbFailedTests;
}

153
test/Test.h Normal file
View File

@ -0,0 +1,153 @@
/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef TEST_H
#define TEST_H
// Libraries
#include <string>
#include <iostream>
#include <cassert>
/// Reactphysics3D namespace
namespace reactphysics3d {
// Macros
#define test(condition) applyTest(condition, #condition, __FILE__, __LINE__)
#define fail(text) applyFail(text, __FILE__, __LINE__);
// Class Test
/**
* This abstract class represents a unit test. To create a unit test, you simply
* need to create a class that inherits from the Test class, override the run() method and
* use the test() and fail() macros.
*/
class Test {
private :
// ---------- Attributes ---------- //
/// Number of tests that passed
long mNbPassedTests;
/// Number of tests that failed
long mNbFailedTests;
/// Output stream
std::ostream* mOutputStream;
// ---------- Methods ---------- //
/// Copy constructor is private
Test(const Test&);
/// Assignment operator is private
Test& operator=(const Test& test);
protected :
// ---------- Methods ---------- //
/// Called to test a boolean condition.
/// This method should not be called directly in your test but you should
/// call test() instead (macro)
void applyTest(bool condition, const std::string& testText,
const char* filename, long lineNumber);
/// Called when a test has failed.
/// This method should not be called directly in your test buy you should
/// call fail() instead (macro)
void applyFail(const std::string& testText, const char* filename, long lineNumber);
public :
// ---------- Methods ---------- //
/// Constructor
Test(std::ostream* stream = &std::cout);
/// Destructor
~Test();
/// Return the number of passed tests
long getNbPassedTests() const;
/// Return the number of failed tests
long getNbFailedTests() const;
/// Return the output stream
const std::ostream* getOutputStream() const;
/// Set the output stream
void setOutputStream(std::ostream *stream);
/// Run the unit test
virtual void run() = 0;
/// Called when a test passed
void succeed();
/// Reset the unit test
virtual void reset();
/// Display the report of the unit test and return the number of failed tests
long report() const;
};
// Called when a test passed
inline void Test::succeed() {
mNbPassedTests++;
}
// Reset the unit test
inline void Test::reset() {
mNbPassedTests = 0;
mNbFailedTests = 0;
}
// Return the number of passed tests
inline long Test::getNbPassedTests() const {
return mNbPassedTests;
}
// Return the number of failed tests
inline long Test::getNbFailedTests() const {
return mNbFailedTests;
}
// Return the output stream
inline const std::ostream* Test::getOutputStream() const {
return mOutputStream;
}
// Set the output stream
inline void Test::setOutputStream(std::ostream* stream) {
mOutputStream = stream;
}
}
#endif

145
test/TestSuite.cpp Normal file
View File

@ -0,0 +1,145 @@
/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Librairies
#include "TestSuite.h"
using namespace reactphysics3d;
// Constructor
TestSuite::TestSuite(const std::string& name, std::ostream* outputStream)
: mName(name), mOutputStream(outputStream) {
}
// Return the number of passed tests
long TestSuite::getNbPassedTests() const {
long nbPassedTests = 0;
for (size_t i=0; i<mTests.size(); i++) {
assert(mTests[i]);
nbPassedTests += mTests[i]->getNbPassedTests();
}
return nbPassedTests;
}
// Return the number of failed tests
long TestSuite::getNbFailedTests() const {
long nbFailedTests = 0;
for (size_t i=0; i<mTests.size(); i++) {
assert(mTests[i]);
nbFailedTests += mTests[i]->getNbFailedTests();
}
return nbFailedTests;
}
// Add a unit test in the test suite
void TestSuite::addTest(Test* test) {
if (test == NULL) {
throw std::invalid_argument("Error : You cannot add a NULL test in the test suite.");
}
else if (mOutputStream != NULL && test->getOutputStream() == NULL) {
test->setOutputStream(mOutputStream);
}
// Add the test to the suite
mTests.push_back(test);
// Reset the added test
test->reset();
}
// Add a test suite to the current test suite
void TestSuite::addTestSuite(const TestSuite& testSuite) {
// Add each test of the test suite to the current one
for (size_t i =0; i < testSuite.mTests.size(); i++) {
assert(testSuite.mTests[i] != NULL);
addTest(testSuite.mTests[i]);
}
}
// Launch the tests of the test suite
void TestSuite::run() {
// Reset all the tests
reset();
// Run all the tests
for (size_t i=0; i < mTests.size(); i++) {
assert(mTests[i] != NULL);
mTests[i]->run();
}
}
// Reset the test suite
void TestSuite::reset() {
for(size_t i=0; i < mTests.size(); ++i) {
assert(mTests[i]);
mTests[i]->reset();
}
}
// Display the tests report and return the number of failed tests
long TestSuite::report() const {
if (mOutputStream != NULL) {
long nbFailedTests = 0;
*mOutputStream << "Test Suite \"" << mName << "\"\n=====";
size_t i;
for (i=0; i < mName.size(); i++) {
*mOutputStream << "=";
}
*mOutputStream << "=" << std::endl;
for (i=0; i < mTests.size(); i++) {
assert(mTests[i] != NULL);
nbFailedTests += mTests[i]->report();
}
*mOutputStream << "=====";
for (i=0; i < mName.size(); i++) {
*mOutputStream << "=";
}
*mOutputStream << "=" << std::endl;
// Return the number of failed tests
return nbFailedTests;
}
else {
return getNbFailedTests();
}
}
// Delete all the tests
void TestSuite::clear() {
for (size_t i=0; i<mTests.size(); i++) {
delete mTests[i];
mTests[i] = NULL;
}
}

125
test/TestSuite.h Normal file
View File

@ -0,0 +1,125 @@
/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef TEST_SUITE_H
#define TEST_SUITE_H
// Libraries
#include "Test.h"
#include <vector>
/// Reactphysics3D namespace
namespace reactphysics3d {
// Class TestSuite
/**
* This class represents a test suite that can
* contains multiple unit tests. You can also add a test suite inside
* another test suite (all the tests of the first test suite will be added
* to the second one).
*/
class TestSuite {
private :
// ---------- Attributes ---------- //
/// Name of the test suite
std::string mName;
/// Output stream
std::ostream* mOutputStream;
/// All the tests of the test suite
std::vector<Test*> mTests;
// ---------- Methods ---------- //
/// Reset the test suite
void reset();
/// Private copy-constructor
TestSuite(const TestSuite& testSuite);
/// Private assigmnent operator
TestSuite& operator=(const TestSuite testSuite);
public :
// ---------- Methods ---------- //
/// Constructor
TestSuite(const std::string& name, std::ostream* outputStream = &std::cout);
/// Return the name of the test suite
std::string getName() const;
/// Return the number of passed tests
long getNbPassedTests() const;
/// Return the number of failed tests
long getNbFailedTests() const;
/// Return the output stream
const std::ostream* getOutputStream() const;
/// Set the output stream
void setOutputStream(std::ostream* outputStream);
/// Add a unit test in the test suite
void addTest(Test* test);
/// Add a test suite to the current test suite
void addTestSuite(const TestSuite& testSuite);
/// Launch the tests of the test suite
void run();
/// Display the tests report and return the number of failed tests
long report() const;
// Delete all the tests
void clear();
};
// Return the name of the test suite
inline std::string TestSuite::getName() const {
return mName;
}
// Return the output stream
inline const std::ostream* TestSuite::getOutputStream() const {
return mOutputStream;
}
// Set the output stream
inline void TestSuite::setOutputStream(std::ostream* outputStream) {
mOutputStream = outputStream;
}
}
#endif

58
test/main.cpp Normal file
View File

@ -0,0 +1,58 @@
/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "TestSuite.h"
#include "tests/mathematics/TestVector3.h"
#include "tests/mathematics/TestTransform.h"
#include "tests/mathematics/TestQuaternion.h"
#include "tests/mathematics/TestMatrix3x3.h"
using namespace reactphysics3d;
int main() {
TestSuite testSuite("ReactPhysics3D Tests");
// ---------- Mathematics tests ---------- //
testSuite.addTest(new TestVector3);
testSuite.addTest(new TestTransform);
testSuite.addTest(new TestQuaternion);
testSuite.addTest(new TestMatrix3x3);
// ----------------------------- --------- //
// Run the tests
testSuite.run();
// Display the report
long nbFailedTests = testSuite.report();
// Clear the tests from the test suite
testSuite.clear();
return nbFailedTests;
}

View File

@ -0,0 +1,280 @@
/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef TEST_MATRIX3X3_H
#define TEST_MATRIX3X3_H
#endif
// Libraries
#include "../../Test.h"
#include "../../../src/mathematics/Matrix3x3.h"
using namespace reactphysics3d;
/// Reactphysics3D namespace
namespace reactphysics3d {
// Class TestMatrix3x3
/**
* Unit test for the Matrix3x3 class
*/
class TestMatrix3x3 : public Test {
private :
// ---------- Atributes ---------- //
/// Identity transform
Matrix3x3 mIdentity;
/// First example matrix
Matrix3x3 mMatrix1;
public :
// ---------- Methods ---------- //
/// Constructor
TestMatrix3x3() : mIdentity(Matrix3x3::identity()),
mMatrix1(2, 24, 4, 5, -6, 234, -15, 11, 66) {
}
/// Run the tests
void run() {
testConstructors();
testGetSet();
testIdentity();
testOthersMethods();
testOperators();
}
/// Test the constructors
void testConstructors() {
Matrix3x3 test1(5.0);
Matrix3x3 test2(2, 3, 4, 5, 6, 7, 8, 9, 10);
Matrix3x3 test3(mMatrix1);
test(test1[0][0] == 5);
test(test1[0][1] == 5);
test(test1[0][2] == 5);
test(test1[1][0] == 5);
test(test1[1][1] == 5);
test(test1[1][2] == 5);
test(test1[2][0] == 5);
test(test1[2][1] == 5);
test(test1[2][2] == 5);
test(test2[0][0] == 2);
test(test2[0][1] == 3);
test(test2[0][2] == 4);
test(test2[1][0] == 5);
test(test2[1][1] == 6);
test(test2[1][2] == 7);
test(test2[2][0] == 8);
test(test2[2][1] == 9);
test(test2[2][2] == 10);
test(test3 == mMatrix1);
}
/// Test the getter and setter methods
void testGetSet() {
// Test method to set all the values
Matrix3x3 test2;
test2.setAllValues(2, 24, 4, 5, -6, 234, -15, 11, 66);
test(test2 == mMatrix1);
// Test method to set to zero
test2.setToZero();
test(test2 == Matrix3x3(0, 0, 0, 0, 0, 0, 0, 0, 0));
// Test method that returns a column
Vector3 column1 = mMatrix1.getColumn(0);
Vector3 column2 = mMatrix1.getColumn(1);
Vector3 column3 = mMatrix1.getColumn(2);
test(column1 == Vector3(2, 5, -15));
test(column2 == Vector3(24, -6, 11));
test(column3 == Vector3(4, 234, 66));
// Test method that returns a row
Vector3 row1 = mMatrix1.getRow(0);
Vector3 row2 = mMatrix1.getRow(1);
Vector3 row3 = mMatrix1.getRow(2);
test(row1 == Vector3(2, 24, 4));
test(row2 == Vector3(5, -6, 234));
test(row3 == Vector3(-15, 11, 66));
}
/// Test the identity methods
void testIdentity() {
Matrix3x3 identity = Matrix3x3::identity();
Matrix3x3 test1;
test1.setToIdentity();
test(identity[0][0] == 1);
test(identity[0][1] == 0);
test(identity[0][2] == 0);
test(identity[1][0] == 0);
test(identity[1][1] == 1);
test(identity[1][2] == 0);
test(identity[2][0] == 0);
test(identity[2][1] == 0);
test(identity[2][2] == 1);
test(test1 == Matrix3x3::identity());
}
/// Test others methods
void testOthersMethods() {
// Test transpose
Matrix3x3 transpose = mMatrix1.getTranspose();
test(transpose == Matrix3x3(2, 5, -15, 24, -6, 11, 4, 234, 66));
// Test trace
test(mMatrix1.getTrace() == 62);
test(Matrix3x3::identity().getTrace() == 3);
// Test determinant
Matrix3x3 matrix(-24, 64, 253, -35, 52, 72, 21, -35, -363);
test(mMatrix1.getDeterminant() == -98240);
test(matrix.getDeterminant() == -290159);
test(mIdentity.getDeterminant() == 1);
// Test inverse
Matrix3x3 inverseMatrix = matrix.getInverse();
test(approxEqual(inverseMatrix[0][0], decimal(0.056369), decimal(10e-6)));
test(approxEqual(inverseMatrix[0][1], decimal(-0.049549), decimal(10e-6)));
test(approxEqual(inverseMatrix[0][2], decimal(0.029460), decimal(10e-6)));
test(approxEqual(inverseMatrix[1][0], decimal(0.038575), decimal(10e-6)));
test(approxEqual(inverseMatrix[1][1], decimal(-0.011714), decimal(10e-6)));
test(approxEqual(inverseMatrix[1][2], decimal(0.024562), decimal(10e-6)));
test(approxEqual(inverseMatrix[2][0], decimal(-0.000458), decimal(10e-6)));
test(approxEqual(inverseMatrix[2][1], decimal(-0.001737), decimal(10e-6)));
test(approxEqual(inverseMatrix[2][2], decimal(-0.003419), decimal(10e-6)));
Matrix3x3 inverseMatrix1 = mMatrix1.getInverse();
test(approxEqual(inverseMatrix1[0][0], decimal(0.030232), decimal(10e-6)));
test(approxEqual(inverseMatrix1[0][1], decimal(0.015676), decimal(10e-6)));
test(approxEqual(inverseMatrix1[0][2], decimal(-0.057410), decimal(10e-6)));
test(approxEqual(inverseMatrix1[1][0], decimal(0.039088), decimal(10e-6)));
test(approxEqual(inverseMatrix1[1][1], decimal(-0.001954), decimal(10e-6)));
test(approxEqual(inverseMatrix1[1][2], decimal(0.004560), decimal(10e-6)));
test(approxEqual(inverseMatrix1[2][0], decimal(0.000356), decimal(10e-6)));
test(approxEqual(inverseMatrix1[2][1], decimal(0.003888), decimal(10e-6)));
test(approxEqual(inverseMatrix1[2][2], decimal(0.001344), decimal(10e-6)));
// Test absolute matrix
Matrix3x3 matrix2(-2, -3, -4, -5, -6, -7, -8, -9, -10);
test(matrix.getAbsoluteMatrix() == Matrix3x3(24, 64, 253, 35, 52, 72, 21, 35, 363));
Matrix3x3 absoluteMatrix = matrix2.getAbsoluteMatrix();
test(absoluteMatrix == Matrix3x3(2, 3, 4, 5, 6, 7, 8, 9, 10));
}
/// Test the operators
void testOperators() {
// Test addition
Matrix3x3 matrix1(2, 3, 4, 5, 6, 7, 8, 9, 10);
Matrix3x3 matrix2(-2, 3, -5, 10, 4, 7, 2, 5, 8);
Matrix3x3 addition1 = matrix1 + matrix2;
Matrix3x3 addition2(matrix1);
addition2 += matrix2;
test(addition1 == Matrix3x3(0, 6, -1, 15, 10, 14, 10, 14, 18));
test(addition2 == Matrix3x3(0, 6, -1, 15, 10, 14, 10, 14, 18));
// Test substraction
Matrix3x3 substraction1 = matrix1 - matrix2;
Matrix3x3 substraction2(matrix1);
substraction2 -= matrix2;
test(substraction1 == Matrix3x3(4, 0, 9, -5, 2, 0, 6, 4, 2));
test(substraction2 == Matrix3x3(4, 0, 9, -5, 2, 0, 6, 4, 2));
// Test negative operator
Matrix3x3 negative = -matrix1;
test(negative == Matrix3x3(-2, -3, -4, -5, -6, -7, -8, -9, -10));
// Test multiplication with a number
Matrix3x3 multiplication1 = 3 * matrix1;
Matrix3x3 multiplication2 = matrix1 * 3;
Matrix3x3 multiplication3(matrix1);
multiplication3 *= 3;
test(multiplication1 == Matrix3x3(6, 9, 12, 15, 18, 21, 24, 27, 30));
test(multiplication2 == Matrix3x3(6, 9, 12, 15, 18, 21, 24, 27, 30));
test(multiplication3 == Matrix3x3(6, 9, 12, 15, 18, 21, 24, 27, 30));
// Test multiplication with a matrix
Matrix3x3 multiplication4 = matrix1 * matrix2;
Matrix3x3 multiplication5 = matrix2 * matrix1;
test(multiplication4 == Matrix3x3(34, 38, 43, 64, 74, 73, 94, 110, 103));
test(multiplication5 == Matrix3x3(-29, -33, -37, 96, 117, 138, 93, 108, 123));
// Test multiplication with a vector
Vector3 vector1(3, -32, 59);
Vector3 vector2(-31, -422, 34);
Vector3 test1 = matrix1 * vector1;
Vector3 test2 = matrix2 * vector2;
test(test1 == Vector3(146, 236, 326));
test(test2 == Vector3(-1374, -1760, -1900));
// Test equality operators
test(Matrix3x3(34, 38, 43, 64, 74, 73, 94, 110, 103) ==
Matrix3x3(34, 38, 43, 64, 74, 73, 94, 110, 103));
test(Matrix3x3(34, 64, 43, 7, -1, 73, 94, 110, 103) !=
Matrix3x3(34, 38, 43, 64, 74, 73, 94, 110, 103));
// Test operator to read a value
test(mMatrix1[0][0] == 2);
test(mMatrix1[0][1] == 24);
test(mMatrix1[0][2] == 4);
test(mMatrix1[1][0] == 5);
test(mMatrix1[1][1] == -6);
test(mMatrix1[1][2] == 234);
test(mMatrix1[2][0] == -15);
test(mMatrix1[2][1] == 11);
test(mMatrix1[2][2] == 66);
// Test operator to set a value
Matrix3x3 test3;
test3[0][0] = 2;
test3[0][1] = 24;
test3[0][2] = 4;
test3[1][0] = 5;
test3[1][1] = -6;
test3[1][2] = 234;
test3[2][0] = -15;
test3[2][1] = 11;
test3[2][2] = 66;
test(test3 == mMatrix1);
}
};
}

View File

@ -0,0 +1,231 @@
/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef TEST_QUATERNION_H
#define TEST_QUATERNION_H
#endif
// Libraries
#include "../../Test.h"
#include "../../../src/mathematics/Quaternion.h"
using namespace reactphysics3d;
/// Reactphysics3D namespace
namespace reactphysics3d {
// Class TestQuaternion
/**
* Unit test for the Quaternion class
*/
class TestQuaternion : public Test {
private :
// ---------- Atributes ---------- //
/// Identity Quaternion
Quaternion mIdentity;
/// First test quaternion
Quaternion mQuaternion1;
public :
// ---------- Methods ---------- //
/// Constructor
TestQuaternion() : mIdentity(Quaternion::identity()) {
decimal sinA = sin(decimal(PI/8.0));
decimal cosA = cos(decimal(PI/8.0));
Vector3 vector(2, 3, 4);
vector.normalize();
mQuaternion1 = Quaternion(vector.x * sinA, vector.y * sinA, vector.z * sinA, cosA);
mQuaternion1.normalize();
}
/// Run the tests
void run() {
testConstructors();
testUnitLengthNormalize();
testOthersMethods();
testOperators();
}
/// Test the constructors
void testConstructors() {
Quaternion quaternion1(mQuaternion1);
test(mQuaternion1== quaternion1);
Quaternion quaternion2(4, 5, 6, 7);
test(quaternion2 == Quaternion(4, 5, 6, 7));
Quaternion quaternion3(8, Vector3(3, 5, 2));
test(quaternion3 == Quaternion(3, 5, 2, 8));
Quaternion quaternion4(mQuaternion1.getMatrix());
test(approxEqual(quaternion4.x, mQuaternion1.x));
test(approxEqual(quaternion4.y, mQuaternion1.y));
test(approxEqual(quaternion4.z, mQuaternion1.z));
test(approxEqual(quaternion4.w, mQuaternion1.w));
}
/// Test unit, length, normalize methods
void testUnitLengthNormalize() {
// Test method that returns the length
Quaternion quaternion(2, 3, -4, 5);
test(approxEqual(quaternion.length(), sqrt(decimal(54.0))));
// Test method that returns a unit quaternion
test(approxEqual(quaternion.getUnit().length(), 1.0));
// Test the normalization method
Quaternion quaternion2(4, 5, 6, 7);
quaternion2.normalize();
test(approxEqual(quaternion2.length(), 1.0));
}
/// Test others methods
void testOthersMethods() {
// Test the method to set the values
Quaternion quaternion;
quaternion.setAllValues(1, 2, 3, 4);
test(quaternion == Quaternion(1, 2, 3, 4));
// Test the method to set the quaternion to zero
quaternion.setToZero();
test(quaternion == Quaternion(0, 0, 0, 0));
// Test the method to get the vector (x, y, z)
Vector3 v = mQuaternion1.getVectorV();
test(v.x == mQuaternion1.x);
test(v.y == mQuaternion1.y);
test(v.z == mQuaternion1.z);
// Test the conjugate method
Quaternion conjugate = mQuaternion1.getConjugate();
test(conjugate.x == -mQuaternion1.x);
test(conjugate.y == -mQuaternion1.y);
test(conjugate.z == -mQuaternion1.z);
test(conjugate.w == mQuaternion1.w);
// Test the inverse method
Quaternion inverse = mQuaternion1.getInverse();
Quaternion product = mQuaternion1 * inverse;
test(approxEqual(product.x, mIdentity.x, decimal(10e-6)));
test(approxEqual(product.y, mIdentity.y, decimal(10e-6)));
test(approxEqual(product.z, mIdentity.z, decimal(10e-6)));
test(approxEqual(product.w, mIdentity.w, decimal(10e-6)));
// Test the dot product
Quaternion quaternion1(2, 3, 4, 5);
Quaternion quaternion2(6, 7, 8, 9);
decimal dotProduct = quaternion1.dot(quaternion2);
test(dotProduct == 110);
// Test the method that returns the rotation angle and axis
Vector3 axis;
decimal angle;
Vector3 originalAxis = Vector3(2, 3, 4).getUnit();
mQuaternion1.getRotationAngleAxis(angle, axis);
test(approxEqual(axis.x, originalAxis.x));
test(approxEqual(angle, decimal(PI/4.0), decimal(10e-6)));
// Test the method that returns the corresponding matrix
Matrix3x3 matrix = mQuaternion1.getMatrix();
Vector3 vector(56, -2, 82);
Vector3 vector1 = matrix * vector;
Vector3 vector2 = mQuaternion1 * vector;
test(approxEqual(vector1.x, vector2.x));
test(approxEqual(vector1.y, vector2.y));
test(approxEqual(vector1.z, vector2.z));
// Test slerp method
Quaternion quatStart = quaternion1.getUnit();
Quaternion quatEnd = quaternion2.getUnit();
Quaternion test1 = Quaternion::slerp(quatStart, quatEnd, 0.0);
Quaternion test2 = Quaternion::slerp(quatStart, quatEnd, 1.0);
test(test1 == quatStart);
test(test2 == quatEnd);
decimal sinA = sin(decimal(PI/4.0));
decimal cosA = cos(decimal(PI/4.0));
Quaternion quat(sinA, 0, 0, cosA);
Quaternion test3 = Quaternion::slerp(mIdentity, quat, decimal(0.5));
test(approxEqual(test3.x, sin(decimal(PI/8.0))));
test(approxEqual(test3.y, 0.0));
test(approxEqual(test3.z, 0.0));
test(approxEqual(test3.w, cos(decimal(PI/8.0)), decimal(10e-6)));
}
/// Test overloaded operators
void testOperators() {
// Test addition
Quaternion quat1(4, 5, 2, 10);
Quaternion quat2(-2, 7, 8, 3);
Quaternion test1 = quat1 + quat2;
test(test1 == Quaternion(2, 12, 10, 13));
// Test substraction
Quaternion test2 = quat1 - quat2;
test(test2 == Quaternion(6, -2, -6, 7));
// Test multiplication with a number
Quaternion test3 = quat1 * 3.0;
test(test3 == Quaternion(12, 15, 6, 30));
// Test multiplication between two quaternions
Quaternion test4 = quat1 * quat2;
Quaternion test5 = mQuaternion1 * mIdentity;
test(test4 == Quaternion(18, 49, 124, -13));
test(test5 == mQuaternion1);
// Test multiplication between a quaternion and a point
Vector3 point(5, -24, 563);
Vector3 vector1 = mIdentity * point;
Vector3 vector2 = mQuaternion1 * point;
Vector3 testVector2 = mQuaternion1.getMatrix() * point;
test(vector1 == point);
test(approxEqual(vector2.x, testVector2.x, decimal(10e-6)));
test(approxEqual(vector2.y, testVector2.y, decimal(10e-6)));
test(approxEqual(vector2.z, testVector2.z, decimal(10e-6)));
// Test assignment operator
Quaternion quaternion;
quaternion = mQuaternion1;
test(quaternion == mQuaternion1);
// Test equality operator
test(mQuaternion1 == mQuaternion1);
}
};
}

View File

@ -0,0 +1,218 @@
/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef TEST_TRANSFORM_H
#define TEST_TRANSFORM_H
#endif
// Libraries
#include "../../Test.h"
#include "../../../src/mathematics/Transform.h"
using namespace reactphysics3d;
/// Reactphysics3D namespace
namespace reactphysics3d {
// Class TestTransform
/**
* Unit test for the Transform class
*/
class TestTransform : public Test {
private :
// ---------- Atributes ---------- //
/// Identity transform
Transform mIdentityTransform;
/// First example transform
Transform mTransform1;
/// Second example transform
Transform mTransform2;
public :
// ---------- Methods ---------- //
/// Constructor
TestTransform() {
mIdentityTransform.setToIdentity();
decimal sinA = sin(PI/8.0f);
decimal cosA = cos(PI/8.0f);
mTransform1 = Transform(Vector3(4, 5, 6), Quaternion(sinA, sinA, sinA, cosA));
decimal sinB = sin(PI/3.0f);
decimal cosB = cos(PI/3.0f);
mTransform2 = Transform(Vector3(8, 45, -6), Quaternion(sinB, sinB, sinB, cosB));
}
/// Run the tests
void run() {
testConstructors();
testGetSet();
testInverse();
testGetSetOpenGLMatrix();
testInterpolateTransform();
testIdentity();
testOperators();
}
/// Test the constructors
void testConstructors() {
Transform transform1(Vector3(1, 2, 3), Quaternion(6, 7, 8, 9));
Transform transform2(Vector3(4, 5, 6), Matrix3x3(1, 0, 0, 0, 1, 0, 0, 0, 1));
Transform transform3(transform1);
test(transform1.getPosition() == Vector3(1, 2, 3));
test(transform1.getOrientation() == Quaternion(6, 7, 8, 9));
test(transform2.getPosition() == Vector3(4, 5, 6));
test(transform2.getOrientation() == Quaternion::identity());
test(transform3 == transform1);
}
/// Test getter and setter
void testGetSet() {
test(mIdentityTransform.getPosition() == Vector3(0, 0, 0));
test(mIdentityTransform.getOrientation() == Quaternion::identity());
Transform transform;
transform.setPosition(Vector3(5, 7, 8));
transform.setOrientation(Quaternion(1, 2, 3, 1));
test(transform.getPosition() == Vector3(5, 7, 8));
test(transform.getOrientation() == Quaternion(1, 2, 3, 1));
transform.setToIdentity();
test(transform.getPosition() == Vector3(0, 0, 0));
test(transform.getOrientation() == Quaternion::identity());
}
/// Test the inverse
void testInverse() {
Transform inverseTransform = mTransform1.inverse();
Vector3 vector(2, 3, 4);
Vector3 tempVector = mTransform1 * vector;
Vector3 tempVector2 = inverseTransform * tempVector;
test(approxEqual(tempVector2.x, vector.x, decimal(10e-6)));
test(approxEqual(tempVector2.y, vector.y, decimal(10e-6)));
test(approxEqual(tempVector2.z, vector.z, decimal(10e-6)));
}
/// Test methods to set and get transform matrix from and to OpenGL
void testGetSetOpenGLMatrix() {
Transform transform;
Vector3 position = mTransform1.getPosition();
Matrix3x3 orientation = mTransform1.getOrientation().getMatrix();
decimal openglMatrix[16] = {orientation[0][0], orientation[1][0],
orientation[2][0], 0,
orientation[0][1], orientation[1][1],
orientation[2][1], 0,
orientation[0][2], orientation[1][2],
orientation[2][2], 0,
position.x, position.y, position.z, 1};
transform.setFromOpenGL(openglMatrix);
decimal openglMatrix2[16];
transform.getOpenGLMatrix(openglMatrix2);
test(approxEqual(openglMatrix2[0], orientation[0][0]));
test(approxEqual(openglMatrix2[1], orientation[1][0]));
test(approxEqual(openglMatrix2[2], orientation[2][0]));
test(approxEqual(openglMatrix2[3], 0));
test(approxEqual(openglMatrix2[4], orientation[0][1]));
test(approxEqual(openglMatrix2[5], orientation[1][1]));
test(approxEqual(openglMatrix2[6], orientation[2][1]));
test(approxEqual(openglMatrix2[7], 0));
test(approxEqual(openglMatrix2[8], orientation[0][2]));
test(approxEqual(openglMatrix2[9], orientation[1][2]));
test(approxEqual(openglMatrix2[10], orientation[2][2]));
test(approxEqual(openglMatrix2[11], 0));
test(approxEqual(openglMatrix2[12], position.x));
test(approxEqual(openglMatrix2[13], position.y));
test(approxEqual(openglMatrix2[14], position.z));
test(approxEqual(openglMatrix2[15], 1));
}
/// Test the method to interpolate transforms
void testInterpolateTransform() {
Transform transformStart = Transform::interpolateTransforms(mTransform1, mTransform2,0);
Transform transformEnd = Transform::interpolateTransforms(mTransform1, mTransform2,1);
test(transformStart == mTransform1);
test(transformEnd == mTransform2);
decimal sinA = sin(PI/3.0f);
decimal cosA = cos(PI/3.0f);
decimal sinB = sin(PI/6.0f);
decimal cosB = cos(PI/6.0f);
Transform transform1(Vector3(4, 5, 6), Quaternion::identity());
Transform transform2(Vector3(8, 11, 16), Quaternion(sinA, sinA, sinA, cosA));
Transform transform = Transform::interpolateTransforms(transform1, transform2, 0.5);
Vector3 position = transform.getPosition();
Quaternion orientation = transform.getOrientation();
test(approxEqual(position.x, 6));
test(approxEqual(position.y, 8));
test(approxEqual(position.z, 11));
test(approxEqual(orientation.x, sinB));
test(approxEqual(orientation.y, sinB));
test(approxEqual(orientation.z, sinB));
test(approxEqual(orientation.w, cosB));
}
/// Test the identity methods
void testIdentity() {
Transform transform = Transform::identity();
test(transform.getPosition() == Vector3(0, 0, 0));
test(transform.getOrientation() == Quaternion::identity());
Transform transform2(Vector3(5, 6, 2), Quaternion(3, 5, 1, 6));
transform2.setToIdentity();
test(transform2.getPosition() == Vector3(0, 0, 0));
test(transform2.getOrientation() == Quaternion::identity());
}
/// Test the overloaded operators
void testOperators() {
// Equality, inequality operator
test(mTransform1 == mTransform1);
test(mTransform1 != mTransform2);
// Assignment operator
Transform transform;
transform = mTransform1;
test(transform == mTransform1);
// Multiplication
Vector3 vector(7, 53, 5);
Vector3 vector2 = mTransform2 * (mTransform1 * vector);
Vector3 vector3 = (mTransform2 * mTransform1) * vector;
test(approxEqual(vector2.x, vector3.x, decimal(10e-6)));
test(approxEqual(vector2.y, vector3.y, decimal(10e-6)));
test(approxEqual(vector2.z, vector3.z, decimal(10e-6)));
}
};
}

View File

@ -0,0 +1,234 @@
/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef TEST_VECTOR3_H
#define TEST_VECTOR3_H
#endif
// Libraries
#include "../../Test.h"
#include "../../../src/mathematics/Vector3.h"
using namespace reactphysics3d;
/// Reactphysics3D namespace
namespace reactphysics3d {
// Class TestVector3
/**
* Unit test for the Vector3 class
*/
class TestVector3 : public Test {
private :
// ---------- Atributes ---------- //
/// Zero vector
Vector3 mVectorZero;
// Vector (3, 4, 5)
Vector3 mVector345;
public :
// ---------- Methods ---------- //
/// Constructor
TestVector3() : mVectorZero(0, 0, 0), mVector345(3, 4, 5) {}
/// Run the tests
void run() {
testConstructors();
testLengthMethods();
testDotCrossProducts();
testOthersMethods();
testOperators();
}
/// Test the constructors, getter and setter
void testConstructors() {
// Test constructor
test(mVectorZero.x == 0.0);
test(mVectorZero.y == 0.0);
test(mVectorZero.z == 0.0);
test(mVector345.x == 3.0);
test(mVector345.y == 4.0);
test(mVector345.z == 5.0);
// Test copy-constructor
Vector3 newVector(mVector345);
test(newVector.x == 3.0);
test(newVector.y == 4.0);
test(newVector.z == 5.0);
// Test method to set values
Vector3 newVector2;
newVector2.setAllValues(decimal(6.1), decimal(7.2), decimal(8.6));
test(approxEqual(newVector2.x, decimal(6.1)));
test(approxEqual(newVector2.y, decimal(7.2)));
test(approxEqual(newVector2.z, decimal(8.6)));
// Test method to set to zero
newVector2.setToZero();
test(newVector2 == Vector3(0, 0, 0));
}
/// Test the length, unit vector and normalize methods
void testLengthMethods() {
// Test length methods
test(mVectorZero.length() == 0.0);
test(mVectorZero.lengthSquare() == 0.0);
test(Vector3(1, 0, 0).length() == 1.0);
test(Vector3(0, 1, 0).length() == 1.0);
test(Vector3(0, 0, 1).length() == 1.0);
test(mVector345.lengthSquare() == 50.0);
// Test unit vector methods
test(Vector3(1, 0, 0).isUnit());
test(Vector3(0, 1, 0).isUnit());
test(Vector3(0, 0, 1).isUnit());
test(!mVector345.isUnit());
test(Vector3(5, 0, 0).getUnit() == Vector3(1, 0, 0));
test(Vector3(0, 5, 0).getUnit() == Vector3(0, 1, 0));
test(Vector3(0, 0, 5).getUnit() == Vector3(0, 0, 1));
test(!mVector345.isZero());
test(mVectorZero.isZero());
// Test normalization method
Vector3 mVector100(1, 0, 0);
Vector3 mVector010(0, 1, 0);
Vector3 mVector001(0, 0, 1);
Vector3 mVector500(5, 0, 0);
Vector3 mVector050(0, 5, 0);
Vector3 mVector005(0, 0, 5);
mVector100.normalize();
mVector010.normalize();
mVector001.normalize();
mVector500.normalize();
mVector050.normalize();
mVector005.normalize();
test(mVector100 == Vector3(1, 0, 0));
test(mVector010 == Vector3(0, 1, 0));
test(mVector001 == Vector3(0, 0, 1));
test(mVector500 == Vector3(1, 0, 0));
test(mVector050 == Vector3(0, 1, 0));
test(mVector005 == Vector3(0, 0, 1));
}
/// Test the dot and cross products
void testDotCrossProducts() {
// Test the dot product
test(Vector3(5, 0, 0).dot(Vector3(0, 8, 0)) == 0);
test(Vector3(5, 8, 0).dot(Vector3(0, 0, 6)) == 0);
test(Vector3(12, 45, 83).dot(Vector3(0, 0, 0)) == 0);
test(Vector3(5, 7, 8).dot(Vector3(5, 7, 8)) == 138);
test(Vector3(3, 6, 78).dot(Vector3(-3, -6, -78)) == -6129);
test(Vector3(2, 3, 5).dot(Vector3(2, 3, 5)) == 38);
test(Vector3(4, 3, 2).dot(Vector3(8, 9, 10)) == 79);
// Test the cross product
test(Vector3(0, 0, 0).cross(Vector3(0, 0, 0)) == Vector3(0, 0, 0));
test(Vector3(6, 7, 2).cross(Vector3(6, 7, 2)) == Vector3(0, 0, 0));
test(Vector3(1, 0, 0).cross(Vector3(0, 1, 0)) == Vector3(0, 0, 1));
test(Vector3(0, 1, 0).cross(Vector3(0, 0, 1)) == Vector3(1, 0, 0));
test(Vector3(0, 0, 1).cross(Vector3(0, 1, 0)) == Vector3(-1, 0, 0));
test(Vector3(4, 7, 24).cross(Vector3(8, 13, 11)) == Vector3(-235, 148, -4));
test(Vector3(-4, 42, -2).cross(Vector3(35, 7, -21)) == Vector3(-868, -154, -1498));
}
/// Test others methods
void testOthersMethods() {
// Test the method that returns the absolute vector
test(Vector3(4, 5, 6).getAbsoluteVector() == Vector3(4, 5, 6));
test(Vector3(-7, -24, -12).getAbsoluteVector() == Vector3(7, 24, 12));
// Test the method that returns the minimal element
test(Vector3(6, 35, 82).getMinAxis() == 0);
test(Vector3(564, 45, 532).getMinAxis() == 1);
test(Vector3(98, 23, 3).getMinAxis() == 2);
test(Vector3(-53, -25, -63).getMinAxis() == 2);
// Test the method that returns the maximal element
test(Vector3(6, 35, 82).getMaxAxis() == 2);
test(Vector3(7, 533, 36).getMaxAxis() == 1);
test(Vector3(98, 23, 3).getMaxAxis() == 0);
test(Vector3(-53, -25, -63).getMaxAxis() == 1);
}
/// Test the operators
void testOperators() {
// Test the [] operator
test(mVector345[0] == 3);
test(mVector345[1] == 4);
test(mVector345[2] == 5);
// Assignment operator
Vector3 newVector(6, 4, 2);
newVector = Vector3(7, 8, 9);
test(newVector == Vector3(7, 8, 9));
// Equality, inequality operators
test(Vector3(5, 7, 3) == Vector3(5, 7, 3));
test(Vector3(63, 64, 24) != Vector3(63, 64, 5));
test(Vector3(63, 64, 24) != Vector3(12, 64, 24));
test(Vector3(63, 64, 24) != Vector3(63, 8, 24));
// Addition, substraction
Vector3 vector1(6, 33, 62);
Vector3 vector2(7, 68, 35);
test(Vector3(63, 24, 5) + Vector3(3, 4, 2) == Vector3(66, 28, 7));
test(Vector3(63, 24, 5) - Vector3(3, 4, 2) == Vector3(60, 20, 3));
vector1 += Vector3(5, 10, 12);
vector2 -= Vector3(10, 21, 5);
test(vector1 == Vector3(11, 43, 74));
test(vector2 == Vector3(-3, 47, 30));
// Multiplication, division
Vector3 vector3(6, 33, 62);
Vector3 vector4(15, 60, 33);
test(Vector3(63, 24, 5) * 3 == Vector3(189, 72, 15));
test(3 * Vector3(63, 24, 5) == Vector3(189, 72, 15));
test(Vector3(14, 8, 50) / 2 == Vector3(7, 4, 25));
vector3 *= 10;
vector4 /= 3;
test(vector3 == Vector3(60, 330, 620));
test(vector4 == Vector3(5, 20, 11));
// Negative operator
Vector3 vector5(-34, 5, 422);
Vector3 negative = -vector5;
test(negative == Vector3(34, -5, -422));
}
};
}