Refactor contacts management

This commit is contained in:
Daniel Chappuis 2019-04-19 11:20:21 +02:00
parent d8e9f15339
commit bf3ca2c4d6
15 changed files with 879 additions and 36 deletions

View File

@ -81,6 +81,8 @@ SET (REACTPHYSICS3D_HEADERS
"src/body/CollisionBody.h"
"src/body/RigidBody.h"
"src/collision/ContactPointInfo.h"
"src/collision/ContactManifoldInfo.h"
"src/collision/ContactPair.h"
"src/collision/broadphase/DynamicAABBTree.h"
"src/collision/narrowphase/CollisionDispatch.h"
"src/collision/narrowphase/GJK/VoronoiSimplex.h"

View File

@ -1,4 +1,4 @@
/********************************************************************************
/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
@ -30,6 +30,8 @@
#include "body/Body.h"
#include "collision/shapes/BoxShape.h"
#include "collision/shapes/ConcaveShape.h"
#include "collision/ContactManifoldInfo.h"
#include "constraint/ContactPoint.h"
#include "body/RigidBody.h"
#include "configuration.h"
#include "collision/CollisionCallback.h"
@ -55,7 +57,17 @@ CollisionDetection::CollisionDetection(CollisionWorld* world, ProxyShapeComponen
mOverlappingPairs(mMemoryManager.getPoolAllocator()),
mBroadPhaseSystem(*this, mProxyShapesComponents, mTransformComponents, dynamicsComponents),
mNoCollisionPairs(mMemoryManager.getPoolAllocator()), mMapBroadPhaseIdToProxyShapeEntity(memoryManager.getPoolAllocator()),
mNarrowPhaseInput(mMemoryManager.getSingleFrameAllocator()) {
mNarrowPhaseInput(mMemoryManager.getSingleFrameAllocator()), mPotentialContactPoints(mMemoryManager.getPoolAllocator()),
// TODO : We should probably use single frame allocator for mPotentialContactPoints, mPotentialContactManifolds, mMapPairIdToOverlappingPairContacts
mPotentialContactManifolds(mMemoryManager.getPoolAllocator()), mContactPairs1(mMemoryManager.getPoolAllocator()),
mContactPairs2(mMemoryManager.getPoolAllocator()), mPreviousContactPairs(&mContactPairs1), mCurrentContactPairs(&mContactPairs2),
mMapPairIdToContactPairIndex1(mMemoryManager.getPoolAllocator()), mMapPairIdToContactPairIndex2(mMemoryManager.getPoolAllocator()),
mPreviousMapPairIdToContactPairIndex(&mMapPairIdToContactPairIndex1), mCurrentMapPairIdToContactPairIndex(&mMapPairIdToContactPairIndex2),
mContactManifolds1(mMemoryManager.getPoolAllocator()), mContactManifolds2(mMemoryManager.getPoolAllocator()),
mPreviousContactManifolds(&mContactManifolds1), mCurrentContactManifolds(&mContactManifolds2),
mContactPoints1(mMemoryManager.getPoolAllocator()),
mContactPoints2(mMemoryManager.getPoolAllocator()), mPreviousContactPoints(&mContactPoints1),
mCurrentContactPoints(&mContactPoints2) {
#ifdef IS_PROFILING_ACTIVE
@ -365,6 +377,9 @@ bool CollisionDetection::testNarrowPhaseCollision(NarrowPhaseInput& narrowPhaseI
// Process the potential contacts after narrow-phase collision detection
void CollisionDetection::processAllPotentialContacts(NarrowPhaseInput& narrowPhaseInput, bool updateLastFrameInfo) {
assert(mCurrentContactPairs->size() == 0);
assert(mCurrentMapPairIdToContactPairIndex->size() == 0);
// get the narrow-phase batches to test for collision
NarrowPhaseInfoBatch& sphereVsSphereBatch = narrowPhaseInput.getSphereVsSphereBatch();
NarrowPhaseInfoBatch& sphereVsCapsuleBatch = narrowPhaseInput.getSphereVsCapsuleBatch();
@ -389,6 +404,9 @@ void CollisionDetection::computeNarrowPhase() {
MemoryAllocator& allocator = mMemoryManager.getSingleFrameAllocator();
// Swap the previous and current contacts lists
swapPreviousAndCurrentContacts();
// Test the narrow-phase collision detection on the batches to be tested
testNarrowPhaseCollision(mNarrowPhaseInput, false, true, allocator);
@ -396,7 +414,13 @@ void CollisionDetection::computeNarrowPhase() {
processAllPotentialContacts(mNarrowPhaseInput, true);
// Reduce the number of contact points in the manifolds
reduceContactManifolds(mOverlappingPairs);
reducePotentialContactManifolds(mOverlappingPairs);
// Create the actual contact manifolds and contacts (from potential contacts)
createContacts();
// Initialize the current contacts with the contacts from the previous frame (for warmstarting)
initContactsWithPreviousOnes();
// Add all the contact manifolds (between colliding bodies) to the bodies
addAllContactManifoldsToBodies();
@ -406,6 +430,193 @@ void CollisionDetection::computeNarrowPhase() {
// Clear the list of narrow-phase infos
mNarrowPhaseInput.clear();
// TODO : Do not forget to clear all the contact pair, contact manifolds and contact points lists
}
// Swap the previous and current contacts lists
void CollisionDetection::swapPreviousAndCurrentContacts() {
if (mPreviousContactPairs == &mContactPairs1) {
mPreviousContactPairs = &mContactPairs2;
mPreviousContactManifolds = &mContactManifolds2;
mPreviousContactPoints = &mContactPoints2;
mPreviousMapPairIdToContactPairIndex = &mMapPairIdToContactPairIndex2;
mCurrentContactPairs = &mContactPairs1;
mCurrentContactManifolds = &mContactManifolds1;
mCurrentContactPoints = &mContactPoints1;
mCurrentMapPairIdToContactPairIndex = &mMapPairIdToContactPairIndex1;
}
else {
mPreviousContactPairs = &mContactPairs1;
mPreviousContactManifolds = &mContactManifolds1;
mPreviousContactPoints = &mContactPoints1;
mPreviousMapPairIdToContactPairIndex = &mMapPairIdToContactPairIndex1;
mCurrentContactPairs = &mContactPairs2;
mCurrentContactManifolds = &mContactManifolds2;
mCurrentContactPoints = &mContactPoints2;
mCurrentMapPairIdToContactPairIndex = &mMapPairIdToContactPairIndex2;
}
}
// Create the actual contact manifolds and contacts (from potential contacts)
void CollisionDetection::createContacts() {
RP3D_PROFILE("CollisionDetection::createContacts()", mProfiler);
assert(mCurrentContactManifolds->size() == 0);
assert(mCurrentContactPoints->size() == 0);
// For each contact pair
for (auto it = mCurrentMapPairIdToContactPairIndex->begin(); it != mCurrentMapPairIdToContactPairIndex->end(); ++it) {
const uint contactPairIndex = it->second;
assert(contactPairIndex < mCurrentContactPairs->size());
ContactPair& contactPair = (*mCurrentContactPairs)[contactPairIndex];
assert(contactPair.potentialContactManifoldsIndices.size() > 0);
// Start index and numnber of contact manifolds for this contact pair
contactPair.contactManifoldsIndex = mCurrentContactManifolds->size();
contactPair.nbContactManifolds = contactPair.potentialContactManifoldsIndices.size();
contactPair.contactPointsIndex = mCurrentContactPoints->size();
// For each potential contact manifold of the pair
for (uint m=0; m < contactPair.potentialContactManifoldsIndices.size(); m++) {
ContactManifoldInfo& potentialManifold = mPotentialContactManifolds[contactPair.potentialContactManifoldsIndices[m]];
// Start index and number of contact points for this manifold
const uint contactPointsIndex = mCurrentContactPoints->size();
const int8 nbContactPoints = potentialManifold.potentialContactPointsIndices.size();
// We create a new contact manifold
ContactManifold contactManifold(contactPointsIndex, nbContactPoints, mMemoryManager.getPoolAllocator(), mWorld->mConfig);
// Add the contact manifold
mCurrentContactManifolds->add(contactManifold);
// Increase the number of total contact point of the contact pair
contactPair.nbToTalContactPoints += potentialManifold.potentialContactPointsIndices.size();
assert(potentialManifold.potentialContactPointsIndices.size() > 0);
// For each contact point of the manifold
for (uint c=0; c < potentialManifold.potentialContactPointsIndices.size(); c++) {
ContactPointInfo& potentialContactPoint = mPotentialContactPoints[potentialManifold.potentialContactPointsIndices[c]];
// Create a new contact point
ContactPoint contactPoint(potentialContactPoint, mWorld->mConfig);
// Add the contact point
mCurrentContactPoints->add(contactPoint);
}
}
}
// Reset the potential contacts
mPotentialContactPoints.clear();
mPotentialContactManifolds.clear();
}
// Initialize the current contacts with the contacts from the previous frame (for warmstarting)
void CollisionDetection::initContactsWithPreviousOnes() {
// For each contact pair of the current frame
for (uint i=0; i < mCurrentContactPairs->size(); i++) {
ContactPair& currentContactPair = (*mCurrentContactPairs)[i];
// Find the corresponding contact pair in the previous frame (if any)
auto itPrevContactPair = mPreviousMapPairIdToContactPairIndex->find(currentContactPair.pairId);
// If we have found a corresponding contact pair in the previous frame
if (itPrevContactPair != mPreviousMapPairIdToContactPairIndex->end()) {
const uint previousContactPairIndex = itPrevContactPair->second;
ContactPair& previousContactPair = (*mPreviousContactPairs)[previousContactPairIndex];
// --------------------- Contact Manifolds --------------------- //
const uint contactManifoldsIndex = currentContactPair.contactManifoldsIndex;
const uint nbContactManifolds = currentContactPair.nbContactManifolds;
// For each current contact manifold of the contact pair
for (uint m=contactManifoldsIndex; m < contactManifoldsIndex + nbContactManifolds; m++) {
assert(m < mCurrentContactManifolds->size());
ContactManifold& currentContactManifold = (*mCurrentContactManifolds)[m];
assert(currentContactManifold.mNbContactPoints > 0);
ContactPoint& currentContactPoint = (*mCurrentContactPoints)[currentContactManifold.mContactPointsIndex];
const Vector3& currentContactPointNormal = currentContactPoint.getNormal();
// Find a similar contact manifold among the contact manifolds from the previous frame (for warmstarting)
const uint previousContactManifoldIndex = previousContactPair.contactManifoldsIndex;
const uint previousNbContactManifolds = previousContactPair.nbContactManifolds;
for (uint p=previousContactManifoldIndex; p < previousContactManifoldIndex + previousNbContactManifolds; p++) {
ContactManifold& previousContactManifold = (*mPreviousContactManifolds)[p];
assert(previousContactManifold.mNbContactPoints > 0);
ContactPoint& previousContactPoint = (*mPreviousContactPoints)[previousContactManifold.mContactPointsIndex];
// If the previous contact manifold has a similar contact normal with the current manifold
if (previousContactPoint.getNormal().dot(currentContactPointNormal) >= mWorld->mConfig.cosAngleSimilarContactManifold) {
// Transfer data from the previous contact manifold to the current one
currentContactManifold.mFrictionVector1 = previousContactManifold.mFrictionVector1;
currentContactManifold.mFrictionVector2 = previousContactManifold.mFrictionVector2;
currentContactManifold.mFrictionImpulse1 = previousContactManifold.mFrictionImpulse1;
currentContactManifold.mFrictionImpulse2 = previousContactManifold.mFrictionImpulse2;
currentContactManifold.mFrictionTwistImpulse = previousContactManifold.mFrictionTwistImpulse;
currentContactManifold.mRollingResistanceImpulse = previousContactManifold.mRollingResistanceImpulse;
break;
}
}
}
// --------------------- Contact Points --------------------- //
const uint contactPointsIndex = currentContactPair.contactPointsIndex;
const uint nbTotalContactPoints = currentContactPair.nbToTalContactPoints;
// For each current contact point of the contact pair
for (uint c=contactPointsIndex; c < contactPointsIndex + nbTotalContactPoints; c++) {
assert(c < mCurrentContactPoints->size());
ContactPoint& currentContactPoint = (*mCurrentContactPoints)[c];
// Find a similar contact point among the contact points from the previous frame (for warmstarting)
const uint previousContactPointsIndex = previousContactPair.contactPointsIndex;
const uint previousNbContactPoints = previousContactPair.nbToTalContactPoints;
for (uint p=previousContactPointsIndex; p < previousContactPointsIndex + previousNbContactPoints; p++) {
ContactPoint& previousContactPoint = (*mPreviousContactPoints)[p];
// If the previous contact point is very close to th current one
const decimal distSquare = (currentContactPoint.getLocalPointOnShape1() - previousContactPoint.getLocalPointOnShape1()).lengthSquare();
if (distSquare <= mWorld->mConfig.persistentContactDistanceThreshold * mWorld->mConfig.persistentContactDistanceThreshold) {
// Transfer data from the previous contact point to the current one
currentContactPoint.setPenetrationImpulse(previousContactPoint.getPenetrationImpulse());
currentContactPoint.setIsRestingContact(previousContactPoint.getIsRestingContact());
break;
}
}
}
}
}
mPreviousContactPoints->clear();
mPreviousContactManifolds->clear();
mPreviousContactPairs->clear();
mPreviousMapPairIdToContactPairIndex->clear();
}
// Remove a body from the collision detection
@ -506,7 +717,7 @@ void CollisionDetection::addContactManifoldToBody(OverlappingPair* pair) {
/// Convert the potential contact into actual contacts
void CollisionDetection::processPotentialContacts(NarrowPhaseInfoBatch& narrowPhaseInfoBatch, bool updateLastFrameInfo) {
RP3D_PROFILE("CollisionDetection::processAllPotentialContacts()", mProfiler);
RP3D_PROFILE("CollisionDetection::processPotentialContacts()", mProfiler);
// For each narrow phase info object
for(uint i=0; i < narrowPhaseInfoBatch.getNbObjects(); i++) {
@ -518,21 +729,116 @@ void CollisionDetection::processPotentialContacts(NarrowPhaseInfoBatch& narrowPh
narrowPhaseInfoBatch.lastFrameCollisionInfos[i]->isValid = true;
}
// ----- START OLD ----- //
if (narrowPhaseInfoBatch.isColliding[i]) {
assert(narrowPhaseInfoBatch.contactPoints[i].size() > 0);
// Transfer the contact points from the narrow phase info to the overlapping pair
// TOOD : COMMENT THIS
narrowPhaseInfoBatch.overlappingPairs[i]->addPotentialContactPoints(narrowPhaseInfoBatch, i);
// Remove the contacts points from the narrow phase info object.
narrowPhaseInfoBatch.resetContactPoints(i);
//narrowPhaseInfoBatch.resetContactPoints(i);
}
// ----- END OLD ----- //
// Add the potential contacts
for (uint j=0; j < narrowPhaseInfoBatch.contactPoints[i].size(); j++) {
if (narrowPhaseInfoBatch.isColliding[i]) {
const ContactPointInfo& contactPoint = *(narrowPhaseInfoBatch.contactPoints[i][j]);
// Add the contact point to the list of potential contact points
const uint contactPointIndex = static_cast<uint>(mPotentialContactPoints.size());
// TODO : We should probably use single frame allocator here for mPotentialContactPoints
mPotentialContactPoints.add(contactPoint);
bool similarManifoldFound = false;
// If there are already potential contact manifolds for this overlapping pair
OverlappingPair::OverlappingPairId pairId = narrowPhaseInfoBatch.overlappingPairs[i]->getId();
auto it = mCurrentMapPairIdToContactPairIndex->find(pairId);
ContactPair* pairContact = nullptr;
if (it != mCurrentMapPairIdToContactPairIndex->end()) {
const uint pairContactIndex = it->second;
pairContact = &((*mCurrentContactPairs)[pairContactIndex]);
assert(pairContact->potentialContactManifoldsIndices.size() > 0);
// For each contact manifold of the overlapping pair
for (uint m=0; m < pairContact->potentialContactManifoldsIndices.size(); m++) {
uint contactManifoldIndex = pairContact->potentialContactManifoldsIndices[m];
// Get the first contact point of the current manifold
assert(mPotentialContactManifolds[contactManifoldIndex].potentialContactPointsIndices.size() > 0);
const uint manifoldContactPointIndex = mPotentialContactManifolds[contactManifoldIndex].potentialContactPointsIndices[0];
const ContactPointInfo& manifoldContactPoint = mPotentialContactPoints[manifoldContactPointIndex];
// If we have found a corresponding manifold for the new contact point
// (a manifold with a similar contact normal direction)
if (manifoldContactPoint.normal.dot(contactPoint.normal) >= mWorld->mConfig.cosAngleSimilarContactManifold) {
// Add the contact point to the manifold
mPotentialContactManifolds[m].potentialContactPointsIndices.add(contactPointIndex);
similarManifoldFound = true;
break;
}
}
}
// If we have not found a manifold with a similar contact normal for the contact point
if (!similarManifoldFound) {
// Create a new contact manifold for the overlapping pair
// TODO : We should probably use single frame allocator here
ContactManifoldInfo contactManifoldInfo(pairId, mMemoryManager.getPoolAllocator());
// Add the contact point to the manifold
contactManifoldInfo.potentialContactPointsIndices.add(contactPointIndex);
// If the overlapping pair contact does not exists yet
if (pairContact == nullptr) {
// TODO : We should probably use a single frame allocator here
ContactPair overlappingPairContact(pairId, mMemoryManager.getPoolAllocator());
const uint newContactPairIndex = mCurrentContactPairs->size();
mCurrentContactPairs->add(overlappingPairContact);
pairContact = &((*mCurrentContactPairs)[newContactPairIndex]);
mCurrentMapPairIdToContactPairIndex->add(Pair<OverlappingPair::OverlappingPairId, uint>(pairId, newContactPairIndex));
}
assert(pairContact != nullptr);
// Add the potential contact manifold
uint contactManifoldIndex = static_cast<uint>(mPotentialContactManifolds.size());
mPotentialContactManifolds.add(contactManifoldInfo);
// Add the contact manifold to the overlapping pair contact
pairContact->potentialContactManifoldsIndices.add(contactManifoldIndex);
}
assert(pairContact->potentialContactManifoldsIndices.size() > 0);
}
}
narrowPhaseInfoBatch.resetContactPoints(i);
}
}
// Clear the obsolete manifolds and contact points and reduce the number of contacts points of the remaining manifolds
void CollisionDetection::reduceContactManifolds(const OverlappingPairMap& overlappingPairs) {
void CollisionDetection::reducePotentialContactManifolds(const OverlappingPairMap& overlappingPairs) {
RP3D_PROFILE("CollisionDetection::reducePotentialContactManifolds()", mProfiler);
// ----- OLD ----- //
// For each overlapping pairs in contact during the narrow-phase
for (auto it = overlappingPairs.begin(); it != overlappingPairs.end(); ++it) {
@ -546,6 +852,260 @@ void CollisionDetection::reduceContactManifolds(const OverlappingPairMap& overla
pair->reduceContactManifolds();
}
// ----- OLD ----- //
// Reduce the number of potential contact manifolds in a contact pair
for (uint i=0; i < mCurrentContactPairs->size(); i++) {
ContactPair& contactPair = (*mCurrentContactPairs)[i];
assert(contactPair.potentialContactManifoldsIndices.size() > 0);
// While there are too many manifolds
while(contactPair.potentialContactManifoldsIndices.size() > mWorld->mConfig.nbMaxContactManifolds) {
// Look for a manifold with the smallest contact penetration depth.
decimal minDepth = DECIMAL_LARGEST;
int minDepthManifoldIndex = -1;
for (uint i=0; i < contactPair.potentialContactManifoldsIndices.size(); i++) {
ContactManifoldInfo& manifold = mPotentialContactManifolds[contactPair.potentialContactManifoldsIndices[i]];
// Get the largest contact point penetration depth of the manifold
const decimal depth = computePotentialManifoldLargestContactDepth(manifold);
if (depth < minDepth) {
minDepth = depth;
minDepthManifoldIndex = static_cast<int>(i);
}
}
// Remove the non optimal manifold
assert(minDepthManifoldIndex >= 0);
contactPair.potentialContactManifoldsIndices.removeAt(minDepthManifoldIndex);
}
}
// Reduce the number of potential contact points in the manifolds
for (uint i=0; i < mCurrentContactPairs->size(); i++) {
const ContactPair& pairContact = (*mCurrentContactPairs)[i];
// For each potential contact manifold
for (uint i=0; i < pairContact.potentialContactManifoldsIndices.size(); i++) {
ContactManifoldInfo& manifold = mPotentialContactManifolds[pairContact.potentialContactManifoldsIndices[i]];
// If there are two many contact points in the manifold
if (manifold.potentialContactPointsIndices.size() > MAX_CONTACT_POINTS_IN_MANIFOLD) {
Transform shape1LocalToWorldTransoform = mOverlappingPairs[manifold.pairId]->getShape1()->getLocalToWorldTransform();
// Reduce the number of contact points in the manifold
reduceContactPoints(manifold, shape1LocalToWorldTransoform);
}
assert(manifold.potentialContactPointsIndices.size() <= MAX_CONTACT_POINTS_IN_MANIFOLD);
}
}
}
// Return the largest depth of all the contact points of a potential manifold
decimal CollisionDetection::computePotentialManifoldLargestContactDepth(const ContactManifoldInfo& manifold) const {
decimal largestDepth = 0.0f;
assert(manifold.potentialContactPointsIndices.size() > 0);
for (uint i=0; i < manifold.potentialContactPointsIndices.size(); i++) {
decimal depth = mPotentialContactPoints[manifold.potentialContactPointsIndices[i]].penetrationDepth;
if (depth > largestDepth) {
largestDepth = depth;
}
}
return largestDepth;
}
// Reduce the number of contact points of a potential contact manifold
// This is based on the technique described by Dirk Gregorius in his
// "Contacts Creation" GDC presentation. This method will reduce the number of
// contact points to a maximum of 4 points (but it can be less).
void CollisionDetection::reduceContactPoints(ContactManifoldInfo& manifold, const Transform& shape1ToWorldTransform) {
assert(manifold.potentialContactPointsIndices.size() > MAX_CONTACT_POINTS_IN_MANIFOLD);
// The following algorithm only works to reduce to a maximum of 4 contact points
assert(MAX_CONTACT_POINTS_IN_MANIFOLD == 4);
// List of the candidate contact points indices in the manifold. Every time that we have found a
// point we want to keep, we will remove it from this list
List<uint> candidatePointsIndices(manifold.potentialContactPointsIndices);
int8 nbReducedPoints = 0;
uint pointsToKeepIndices[MAX_CONTACT_POINTS_IN_MANIFOLD];
for (int8 i=0; i<MAX_CONTACT_POINTS_IN_MANIFOLD; i++) {
pointsToKeepIndices[i] = 0;
}
// Compute the initial contact point we need to keep.
// The first point we keep is always the point in a given
// constant direction (in order to always have same contact points
// between frames for better stability)
const Transform worldToShape1Transform = shape1ToWorldTransform.getInverse();
// Compute the contact normal of the manifold (we use the first contact point)
// in the local-space of the first collision shape
const Vector3 contactNormalShape1Space = worldToShape1Transform.getOrientation() * mPotentialContactPoints[candidatePointsIndices[0]].normal;
// Compute a search direction
const Vector3 searchDirection(1, 1, 1);
decimal maxDotProduct = DECIMAL_SMALLEST;
uint elementIndexToKeep = 0;
for (uint i=0; i < candidatePointsIndices.size(); i++) {
const ContactPointInfo& element = mPotentialContactPoints[candidatePointsIndices[i]];
decimal dotProduct = searchDirection.dot(element.localPoint1);
if (dotProduct > maxDotProduct) {
maxDotProduct = dotProduct;
elementIndexToKeep = i;
nbReducedPoints = 1;
}
}
pointsToKeepIndices[0] = candidatePointsIndices[elementIndexToKeep];
candidatePointsIndices.removeAt(elementIndexToKeep);
assert(nbReducedPoints == 1);
// Compute the second contact point we need to keep.
// The second point we keep is the one farthest away from the first point.
decimal maxDistance = decimal(0.0);
elementIndexToKeep = 0;
for (uint i=0; i < candidatePointsIndices.size(); i++) {
const ContactPointInfo& element = mPotentialContactPoints[candidatePointsIndices[i]];
const ContactPointInfo& pointToKeep0 = mPotentialContactPoints[pointsToKeepIndices[0]];
assert(candidatePointsIndices[i] != pointsToKeepIndices[0]);
const decimal distance = (pointToKeep0.localPoint1 - element.localPoint1).lengthSquare();
if (distance >= maxDistance) {
maxDistance = distance;
elementIndexToKeep = i;
nbReducedPoints = 2;
}
}
pointsToKeepIndices[1] = candidatePointsIndices[elementIndexToKeep];
candidatePointsIndices.removeAt(elementIndexToKeep);
assert(nbReducedPoints == 2);
// Compute the third contact point we need to keep.
// The third point is the one producing the triangle with the larger area
// with first and second point.
// We compute the most positive or most negative triangle area (depending on winding)
uint thirdPointMaxAreaIndex = 0;
uint thirdPointMinAreaIndex = 0;
decimal minArea = decimal(0.0);
decimal maxArea = decimal(0.0);
bool isPreviousAreaPositive = true;
for (uint i=0; i < candidatePointsIndices.size(); i++) {
const ContactPointInfo& element = mPotentialContactPoints[candidatePointsIndices[i]];
const ContactPointInfo& pointToKeep0 = mPotentialContactPoints[pointsToKeepIndices[0]];
const ContactPointInfo& pointToKeep1 = mPotentialContactPoints[pointsToKeepIndices[1]];
assert(candidatePointsIndices[i] != pointsToKeepIndices[0]);
assert(candidatePointsIndices[i] != pointsToKeepIndices[1]);
const Vector3 newToFirst = pointToKeep0.localPoint1 - element.localPoint1;
const Vector3 newToSecond = pointToKeep1.localPoint1 - element.localPoint1;
// Compute the triangle area
decimal area = newToFirst.cross(newToSecond).dot(contactNormalShape1Space);
if (area >= maxArea) {
maxArea = area;
thirdPointMaxAreaIndex = i;
}
if (area <= minArea) {
minArea = area;
thirdPointMinAreaIndex = i;
}
}
assert(minArea <= decimal(0.0));
assert(maxArea >= decimal(0.0));
if (maxArea > (-minArea)) {
isPreviousAreaPositive = true;
pointsToKeepIndices[2] = candidatePointsIndices[thirdPointMaxAreaIndex];
candidatePointsIndices.removeAt(thirdPointMaxAreaIndex);
}
else {
isPreviousAreaPositive = false;
pointsToKeepIndices[2] = candidatePointsIndices[thirdPointMinAreaIndex];
candidatePointsIndices.removeAt(thirdPointMinAreaIndex);
}
nbReducedPoints = 3;
// Compute the 4th point by choosing the triangle that add the most
// triangle area to the previous triangle and has opposite sign area (opposite winding)
decimal largestArea = decimal(0.0); // Largest area (positive or negative)
elementIndexToKeep = 0;
// For each remaining candidate points
for (uint i=0; i < candidatePointsIndices.size(); i++) {
const ContactPointInfo& element = mPotentialContactPoints[candidatePointsIndices[i]];
assert(candidatePointsIndices[i] != pointsToKeepIndices[0]);
assert(candidatePointsIndices[i] != pointsToKeepIndices[1]);
assert(candidatePointsIndices[i] != pointsToKeepIndices[2]);
// For each edge of the triangle made by the first three points
for (uint i=0; i<3; i++) {
uint edgeVertex1Index = i;
uint edgeVertex2Index = i < 2 ? i + 1 : 0;
const ContactPointInfo& pointToKeepEdgeV1 = mPotentialContactPoints[pointsToKeepIndices[edgeVertex1Index]];
const ContactPointInfo& pointToKeepEdgeV2 = mPotentialContactPoints[pointsToKeepIndices[edgeVertex2Index]];
const Vector3 newToFirst = pointToKeepEdgeV1.localPoint1 - element.localPoint1;
const Vector3 newToSecond = pointToKeepEdgeV2.localPoint1 - element.localPoint1;
// Compute the triangle area
const decimal area = newToFirst.cross(newToSecond).dot(contactNormalShape1Space);
// We are looking at the triangle with maximal area (positive or negative).
// If the previous area is positive, we are looking at negative area now.
// If the previous area is negative, we are looking at the positive area now.
if (isPreviousAreaPositive && area <= largestArea) {
largestArea = area;
elementIndexToKeep = i;
nbReducedPoints = 4;
}
else if (!isPreviousAreaPositive && area >= largestArea) {
largestArea = area;
elementIndexToKeep = i;
nbReducedPoints = 4;
}
}
}
pointsToKeepIndices[3] = candidatePointsIndices[elementIndexToKeep];
candidatePointsIndices.removeAt(elementIndexToKeep);
assert(nbReducedPoints == 4);
// Only keep the four selected contact points in the manifold
manifold.potentialContactPointsIndices.clear();
manifold.potentialContactPointsIndices.add(pointsToKeepIndices[0]);
manifold.potentialContactPointsIndices.add(pointsToKeepIndices[1]);
manifold.potentialContactPointsIndices.add(pointsToKeepIndices[2]);
manifold.potentialContactPointsIndices.add(pointsToKeepIndices[3]);
}
// Report contacts for all the colliding overlapping pairs
@ -814,7 +1374,7 @@ void CollisionDetection::testCollision(CollisionBody* body1, CollisionBody* body
processAllPotentialContacts(narrowPhaseInput, false);
// Reduce the number of contact points in the manifolds
reduceContactManifolds(overlappingPairs);
reducePotentialContactManifolds(overlappingPairs);
// For each overlapping pair
for (auto it = overlappingPairs.begin(); it != overlappingPairs.end(); ++it) {
@ -909,7 +1469,7 @@ void CollisionDetection::testCollision(CollisionBody* body, CollisionCallback* c
processAllPotentialContacts(narrowPhaseInput, false);
// Reduce the number of contact points in the manifolds
reduceContactManifolds(overlappingPairs);
reducePotentialContactManifolds(overlappingPairs);
// For each overlapping pair
for (auto it = overlappingPairs.begin(); it != overlappingPairs.end(); ++it) {
@ -988,7 +1548,7 @@ void CollisionDetection::testCollision(CollisionCallback* callback) {
processAllPotentialContacts(narrowPhaseInput, false);
// Reduce the number of contact points in the manifolds
reduceContactManifolds(overlappingPairs);
reducePotentialContactManifolds(overlappingPairs);
// For each overlapping pair
for (auto it = overlappingPairs.begin(); it != overlappingPairs.end(); ++it) {

View File

@ -30,6 +30,11 @@
#include "body/CollisionBody.h"
#include "systems/BroadPhaseSystem.h"
#include "collision/shapes/CollisionShape.h"
#include "collision/ContactPointInfo.h"
#include "constraint/ContactPoint.h"
#include "collision/ContactManifoldInfo.h"
#include "collision/ContactManifold.h"
#include "collision/ContactPair.h"
#include "engine/OverlappingPair.h"
#include "collision/narrowphase/NarrowPhaseInput.h"
#include "collision/narrowphase/CollisionDispatch.h"
@ -64,6 +69,11 @@ class CollisionDetection {
using OverlappingPairMap = Map<Pair<uint, uint>, OverlappingPair*>;
// -------------------- Constants -------------------- //
/// Maximum number of contact points in a reduced contact manifold
const int8 MAX_CONTACT_POINTS_IN_MANIFOLD = 4;
// -------------------- Attributes -------------------- //
/// Memory manager
@ -96,6 +106,62 @@ class CollisionDetection {
/// Narrow-phase collision detection input
NarrowPhaseInput mNarrowPhaseInput;
/// List of the potential contact points
List<ContactPointInfo> mPotentialContactPoints;
/// List of the potential contact manifolds
List<ContactManifoldInfo> mPotentialContactManifolds;
/// First list of narrow-phase pair contacts
List<ContactPair> mContactPairs1;
/// Second list of narrow-phase pair contacts
List<ContactPair> mContactPairs2;
/// Pointer to the list of contact pairs of the previous frame (either mContactPairs1 or mContactPairs2)
List<ContactPair>* mPreviousContactPairs;
/// Pointer to the list of contact pairs of the current frame (either mContactPairs1 or mContactPairs2)
List<ContactPair>* mCurrentContactPairs;
/// First map of overlapping pair id to the index of the corresponding pair contact
Map<OverlappingPair::OverlappingPairId, uint> mMapPairIdToContactPairIndex1;
/// Second map of overlapping pair id to the index of the corresponding pair contact
Map<OverlappingPair::OverlappingPairId, uint> mMapPairIdToContactPairIndex2;
/// Pointer to the map of overlappingPairId to the index of contact pair of the previous frame
/// (either mMapPairIdToContactPairIndex1 or mMapPairIdToContactPairIndex2)
Map<OverlappingPair::OverlappingPairId, uint>* mPreviousMapPairIdToContactPairIndex;
/// Pointer to the map of overlappingPairId to the index of contact pair of the current frame
/// (either mMapPairIdToContactPairIndex1 or mMapPairIdToContactPairIndex2)
Map<OverlappingPair::OverlappingPairId, uint>* mCurrentMapPairIdToContactPairIndex;
/// First list with the contact manifolds
List<ContactManifold> mContactManifolds1;
/// Second list with the contact manifolds
List<ContactManifold> mContactManifolds2;
/// Pointer to the list of contact manifolds from the previous frame (either mContactManifolds1 or mContactManifolds2)
List<ContactManifold>* mPreviousContactManifolds;
/// Pointer to the list of contact manifolds from the current frame (either mContactManifolds1 or mContactManifolds2)
List<ContactManifold>* mCurrentContactManifolds;
/// Second list of contact points (contact points from either the current frame of the previous frame)
List<ContactPoint> mContactPoints1;
/// Second list of contact points (contact points from either the current frame of the previous frame)
List<ContactPoint> mContactPoints2;
/// Pointer to the contact points of the previous frame (either mContactPoints1 or mContactPoints2)
List<ContactPoint>* mPreviousContactPoints;
/// Pointer to the contact points of the current frame (either mContactPoints1 or mContactPoints2)
List<ContactPoint>* mCurrentContactPoints;
#ifdef IS_PROFILING_ACTIVE
/// Pointer to the profiler
@ -135,6 +201,9 @@ class CollisionDetection {
/// Compute the middle-phase collision detection between two proxy shapes
void computeMiddlePhaseForProxyShapes(OverlappingPair* pair, NarrowPhaseInput& outNarrowPhaseInput);
/// Swap the previous and current contacts lists
void swapPreviousAndCurrentContacts();
/// Convert the potential contact into actual contacts
void processPotentialContacts(NarrowPhaseInfoBatch& narrowPhaseInfoBatch,
bool updateLastFrameInfo);
@ -142,12 +211,24 @@ class CollisionDetection {
/// Process the potential contacts after narrow-phase collision detection
void processAllPotentialContacts(NarrowPhaseInput& narrowPhaseInput, bool updateLastFrameInfo);
/// Clear the obsolete manifolds and contact points and reduce the number of contacts points of the remaining manifolds
void reduceContactManifolds(const OverlappingPairMap& overlappingPairs);
/// Reduce the potential contact manifolds and contact points of the overlapping pair contacts
void reducePotentialContactManifolds(const OverlappingPairMap& overlappingPairs);
/// Create the actual contact manifolds and contacts (from potential contacts)
void createContacts();
/// Initialize the current contacts with the contacts from the previous frame (for warmstarting)
void initContactsWithPreviousOnes();
/// Reduce the number of contact points of a potential contact manifold
void reduceContactPoints(ContactManifoldInfo& manifold, const Transform& shape1ToWorldTransform);
/// Report contacts for all the colliding overlapping pairs
void reportAllContacts();
/// Return the largest depth of all the contact points of a potential manifold
decimal computePotentialManifoldLargestContactDepth(const ContactManifoldInfo& manifold) const;
/// Process the potential contacts where one collion is a concave shape
void processSmoothMeshContacts(OverlappingPair* pair);

View File

@ -26,20 +26,35 @@
// Libraries
#include "ContactManifold.h"
#include "constraint/ContactPoint.h"
#include "collision/ContactManifoldInfo.h"
using namespace reactphysics3d;
// Constructor
// TODO : REMOVE THIS CONSTRUCTOR
ContactManifold::ContactManifold(ProxyShape* shape1, ProxyShape* shape2,
MemoryAllocator& memoryAllocator, const WorldSettings& worldSettings)
: mShape1(shape1), mShape2(shape2), mContactPoints(nullptr),
: mMemoryAllocator(memoryAllocator), mContactPointsIndex(0), mShape1(shape1), mShape2(shape2), mContactPoints(nullptr),
mNbContactPoints(0), mFrictionImpulse1(0.0), mFrictionImpulse2(0.0),
mFrictionTwistImpulse(0.0), mIsAlreadyInIsland(false),
mMemoryAllocator(memoryAllocator), mNext(nullptr), mPrevious(nullptr), mIsObsolete(false),
mNext(nullptr), mPrevious(nullptr), mIsObsolete(false),
mWorldSettings(worldSettings) {
}
// Constructor
// TODO : REMOVE worldSettings from this constructor
ContactManifold::ContactManifold(uint contactPointsIndex, int8 nbContactPoints, MemoryAllocator& allocator, const WorldSettings& worldSettings)
:mMemoryAllocator(allocator), mContactPointsIndex(0), mWorldSettings(worldSettings) {
mContactPoints = nullptr;
mNext = nullptr;
mPrevious = nullptr;
mContactPointsIndex = contactPointsIndex;
mNbContactPoints = nbContactPoints;
}
// Destructor
ContactManifold::~ContactManifold() {
@ -192,6 +207,7 @@ void ContactManifold::clearObsoleteContactPoints() {
// This is based on the technique described by Dirk Gregorius in his
// "Contacts Creation" GDC presentation. This method will reduce the number of
// contact points to a maximum of 4 points (but it can be less).
// TODO : REMOVE THIS METHOD
void ContactManifold::reduce(const Transform& shape1ToWorldTransform) {
assert(mContactPoints != nullptr);

View File

@ -100,6 +100,14 @@ class ContactManifold {
// -------------------- Attributes -------------------- //
// TODO : For each of the attributes, check if we need to keep it or not
/// Reference to the memory allocator
MemoryAllocator& mMemoryAllocator;
/// Index of the first contact point of the manifold in the list of contact points
uint mContactPointsIndex;
/// Pointer to the first proxy shape of the contact
ProxyShape* mShape1;
@ -133,9 +141,6 @@ class ContactManifold {
/// True if the contact manifold has already been added into an island
bool mIsAlreadyInIsland;
/// Reference to the memory allocator
MemoryAllocator& mMemoryAllocator;
/// Pointer to the next contact manifold in the linked-list
ContactManifold* mNext;
@ -224,14 +229,17 @@ class ContactManifold {
ContactManifold(ProxyShape* shape1, ProxyShape* shape2, MemoryAllocator& memoryAllocator,
const WorldSettings& worldSettings);
/// Constructor
ContactManifold(uint contactPointsIndex, int8 nbContactPoints, MemoryAllocator& allocator, const WorldSettings& worldSettings);
/// Destructor
~ContactManifold();
/// Deleted copy-constructor
ContactManifold(const ContactManifold& contactManifold) = delete;
/// Copy-constructor
ContactManifold(const ContactManifold& contactManifold) = default;
/// Deleted assignment operator
ContactManifold& operator=(const ContactManifold& contactManifold) = delete;
/// Assignment operator
ContactManifold& operator=(const ContactManifold& contactManifold) = default;
/// Return a pointer to the first proxy shape of the contact
ProxyShape* getShape1() const;
@ -264,6 +272,7 @@ class ContactManifold {
friend class CollisionBody;
friend class ContactManifoldSet;
friend class ContactSolver;
friend class CollisionDetection;
};
// Return a pointer to the first proxy shape of the contact

View File

@ -0,0 +1,67 @@
/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_CONTACT_MANIFOLD_INFO_H
#define REACTPHYSICS3D_CONTACT_MANIFOLD_INFO_H
// Libraries
#include "mathematics/mathematics.h"
#include "configuration.h"
#include "engine/OverlappingPair.h"
/// ReactPhysics3D namespace
namespace reactphysics3d {
// Structure ContactManifoldInfo
/**
* This structure contains informations about a collision contact
* manifold computed during the narrow-phase collision detection.
*/
struct ContactManifoldInfo {
public:
// -------------------- Attributes -------------------- //
/// Indices of the contact points in the mPotentialContactPoints array
List<uint> potentialContactPointsIndices;
/// Overlapping pair id
OverlappingPair::OverlappingPairId pairId;
// -------------------- Methods -------------------- //
/// Constructor
ContactManifoldInfo(OverlappingPair::OverlappingPairId pairId, MemoryAllocator& allocator)
: potentialContactPointsIndices(allocator), pairId(pairId) {
}
};
}
#endif

View File

@ -110,8 +110,12 @@ int ContactManifoldSet::getTotalNbContactPoints() const {
}
// Return the maximum number of contact manifolds allowed between to collision shapes
// TODO : Remove this method
int ContactManifoldSet::computeNbMaxContactManifolds(const CollisionShape* shape1, const CollisionShape* shape2) {
return mWorldSettings.nbMaxContactManifolds;
/*
// If both shapes are convex
if (shape1->isConvex() && shape2->isConvex()) {
return mWorldSettings.nbMaxContactManifoldsConvexShape;
@ -120,6 +124,7 @@ int ContactManifoldSet::computeNbMaxContactManifolds(const CollisionShape* shape
else {
return mWorldSettings.nbMaxContactManifoldsConcaveShape;
}
*/
}
// Remove a contact manifold that is the least optimal (smaller penetration depth)

View File

@ -33,7 +33,6 @@ namespace reactphysics3d {
// Declarations
class ContactManifold;
class ContactManifoldInfo;
class ProxyShape;
class MemoryAllocator;
struct WorldSettings;

View File

@ -0,0 +1,77 @@
/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_OVERLAPPING_PAIR_CONTACT_H
#define REACTPHYSICS3D_OVERLAPPING_PAIR_CONTACT_H
// Libraries
#include "mathematics/mathematics.h"
#include "configuration.h"
#include "engine/OverlappingPair.h"
/// ReactPhysics3D namespace
namespace reactphysics3d {
// Structure ContactPair
/**
* This structure represents a pair of shapes that are in contact during narrow-phase.
*/
struct ContactPair {
public:
// -------------------- Attributes -------------------- //
/// Overlapping pair Id
OverlappingPair::OverlappingPairId pairId;
/// Indices of the potential contact manifolds
List<uint> potentialContactManifoldsIndices;
/// Index of the first contact manifold in the array
uint contactManifoldsIndex;
/// Number of contact manifolds
int8 nbContactManifolds;
/// Index of the first contact point in the array of contact points
uint contactPointsIndex;
/// Total number of contact points in all the manifolds of the contact pair
uint nbToTalContactPoints;
// -------------------- Methods -------------------- //
/// Constructor
ContactPair(OverlappingPair::OverlappingPairId pairId, MemoryAllocator& allocator)
: pairId(pairId), potentialContactManifoldsIndices(allocator), contactManifoldsIndex(0), nbContactManifolds(0),
contactPointsIndex(0), nbToTalContactPoints(0) {
}
};
}
#endif

View File

@ -65,9 +65,11 @@ struct ContactPointInfo {
/// Contact point of body 2 in local space of body 2
Vector3 localPoint2;
// TODO : Remove this field
/// Pointer to the next contact point info
ContactPointInfo* next;
// TODO : Remove this field
/// True if the contact point has already been inserted into a manifold
bool isUsed;

View File

@ -154,13 +154,8 @@ struct WorldSettings {
/// might enter sleeping mode
decimal defaultSleepAngularVelocity = decimal(3.0) * (PI / decimal(180.0));
/// Maximum number of contact manifolds in an overlapping pair that involves two
/// convex collision shapes.
int nbMaxContactManifoldsConvexShape = 1;
/// Maximum number of contact manifolds in an overlapping pair that involves at
/// least one concave collision shape.
int nbMaxContactManifoldsConcaveShape = 3;
/// Maximum number of contact manifolds in an overlapping pair
uint nbMaxContactManifolds = 3;
/// This is used to test if two contact manifold are similar (same contact normal) in order to
/// merge them. If the cosine of the angle between the normals of the two manifold are larger
@ -184,8 +179,7 @@ struct WorldSettings {
ss << "defaultTimeBeforeSleep=" << defaultTimeBeforeSleep << std::endl;
ss << "defaultSleepLinearVelocity=" << defaultSleepLinearVelocity << std::endl;
ss << "defaultSleepAngularVelocity=" << defaultSleepAngularVelocity << std::endl;
ss << "nbMaxContactManifoldsConvexShape=" << nbMaxContactManifoldsConvexShape << std::endl;
ss << "nbMaxContactManifoldsConcaveShape=" << nbMaxContactManifoldsConcaveShape << std::endl;
ss << "nbMaxContactManifolds=" << nbMaxContactManifolds << std::endl;
ss << "cosAngleSimilarContactManifold=" << cosAngleSimilarContactManifold << std::endl;
return ss.str();

View File

@ -45,6 +45,21 @@ ContactPoint::ContactPoint(const ContactPointInfo* contactInfo, const WorldSetti
mIsObsolete = false;
}
// Constructor
ContactPoint::ContactPoint(const ContactPointInfo& contactInfo, const WorldSettings& worldSettings)
: mNormal(contactInfo.normal),
mPenetrationDepth(contactInfo.penetrationDepth),
mLocalPointOnShape1(contactInfo.localPoint1),
mLocalPointOnShape2(contactInfo.localPoint2),
mIsRestingContact(false), mIsObsolete(false),
mWorldSettings(worldSettings) {
assert(mPenetrationDepth > decimal(0.0));
assert(mNormal.lengthSquare() > decimal(0.8));
mIsObsolete = false;
}
// Update the contact point with a new one that is similar (very close)
/// The idea is to keep the cache impulse (for warm starting the contact solver)
void ContactPoint::update(const ContactPointInfo* contactInfo) {

View File

@ -112,17 +112,20 @@ class ContactPoint {
/// Constructor
ContactPoint(const ContactPointInfo* contactInfo, const WorldSettings& worldSettings);
/// Constructor
ContactPoint(const ContactPointInfo& contactInfo, const WorldSettings& worldSettings);
/// Destructor
~ContactPoint() = default;
/// Deleted copy-constructor
ContactPoint(const ContactPoint& contact) = delete;
/// Copy-constructor
ContactPoint(const ContactPoint& contact) = default;
/// Deleted assignment operator
ContactPoint& operator=(const ContactPoint& contact) = delete;
/// Assignment operator
ContactPoint& operator=(const ContactPoint& contact) = default;
/// Return the normal vector of the contact
Vector3 getNormal() const;
const Vector3& getNormal() const;
/// Return the contact point on the first proxy shape in the local-space of the proxy shape
const Vector3& getLocalPointOnShape1() const;
@ -152,13 +155,14 @@ class ContactPoint {
friend class ContactManifold;
friend class ContactManifoldSet;
friend class ContactSolver;
friend class CollisionDetection;
};
// Return the normal vector of the contact
/**
* @return The contact normal
*/
inline Vector3 ContactPoint::getNormal() const {
inline const Vector3& ContactPoint::getNormal() const {
return mNormal;
}

View File

@ -146,6 +146,9 @@ class OverlappingPair {
/// Deleted assignment operator
OverlappingPair& operator=(const OverlappingPair& pair) = delete;
/// Return the Id of the pair
OverlappingPairId getId() const;
/// Return the pointer to first proxy collision shape
ProxyShape* getShape1() const;
@ -202,6 +205,11 @@ class OverlappingPair {
friend class DynamicsWorld;
};
// Return the Id of the pair
inline OverlappingPair::OverlappingPairId OverlappingPair::getId() const {
return mPairID;
}
// Return the pointer to first body
inline ProxyShape* OverlappingPair::getShape1() const {
return mContactManifoldSet.getShape1();

View File

@ -50,6 +50,10 @@ class DefaultAllocator : public MemoryAllocator {
/// Allocate memory of a given size (in bytes) and return a pointer to the
/// allocated memory.
virtual void* allocate(size_t size) override {
// TODO : Make sure to reduce the calls to default allocator is not called within a frame. For instance by a call
// to a pool allocator with size too large
return malloc(size);
}