Finish the implementation of the Hinge joint and some others modifications

This commit is contained in:
Daniel Chappuis 2013-06-09 16:31:01 +02:00
parent 9c0844cf1b
commit c4d6206ee2
13 changed files with 1070 additions and 58 deletions

View File

@ -143,7 +143,7 @@ bool EPAAlgorithm::computePenetrationDepthAndContactPoints(const Simplex& simple
int minAxis = d.getAbsoluteVector().getMinAxis();
// Compute sin(60)
const decimal sin60 = sqrt(3.0) * 0.5;
const decimal sin60 = sqrt(3.0) * decimal(0.5);
// Create a rotation quaternion to rotate the vector v1 to get the vectors
// v2 and v3

View File

@ -81,6 +81,9 @@ const decimal MACHINE_EPSILON = std::numeric_limits<decimal>::epsilon();
/// Pi constant
const decimal PI = decimal(3.14159265);
/// 2*Pi constant
const decimal PI_TIMES_2 = decimal(6.28318530);
/// Default internal constant timestep in seconds
const decimal DEFAULT_TIMESTEP = decimal(1.0 / 60.0);

View File

@ -27,10 +27,12 @@
#include "BallAndSocketJoint.h"
#include "../engine/ConstraintSolver.h"
// TODO : Solve 2x2 or 3x3 linear systems without inverting the A matrix (direct resolution)
using namespace reactphysics3d;
// Static variables definition
const decimal BallAndSocketJoint::BETA = 0.2;
const decimal BallAndSocketJoint::BETA = decimal(0.2);
// Constructor
BallAndSocketJoint::BallAndSocketJoint(const BallAndSocketJointInfo& jointInfo)

View File

@ -0,0 +1,591 @@
/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "HingeJoint.h"
#include "../engine/ConstraintSolver.h"
#include <cmath>
// TODO : Solve 2x2 or 3x3 linear systems without inverting the A matrix (direct resolution)
using namespace reactphysics3d;
// Static variables definition
const decimal HingeJoint::BETA = decimal(0.2);
// Constructor
HingeJoint::HingeJoint(const HingeJointInfo& jointInfo)
: Constraint(jointInfo), mImpulseTranslation(0, 0, 0), mImpulseRotation(0, 0),
mImpulseLowerLimit(0), mImpulseUpperLimit(0), mImpulseMotor(0),
mIsLimitEnabled(jointInfo.isLimitEnabled), mIsMotorEnabled(jointInfo.isMotorEnabled),
mLowerLimit(jointInfo.minAngleLimit), mUpperLimit(jointInfo.maxAngleLimit),
mIsLowerLimitViolated(false), mIsUpperLimitViolated(false),
mMotorSpeed(jointInfo.motorSpeed), mMaxMotorForce(jointInfo.maxMotorForce) {
assert(mLowerLimit <= 0 && mLowerLimit >= -2.0 * PI);
assert(mUpperLimit >= 0 && mUpperLimit <= 2.0 * PI);
// Compute the local-space anchor point for each body
Transform transform1 = mBody1->getTransform();
Transform transform2 = mBody2->getTransform();
mLocalAnchorPointBody1 = transform1.getInverse() * jointInfo.anchorPointWorldSpace;
mLocalAnchorPointBody2 = transform2.getInverse() * jointInfo.anchorPointWorldSpace;
// Compute the local-space hinge axis
mHingeLocalAxisBody1 = transform1.getOrientation().getInverse() * jointInfo.rotationAxisWorld;
mHingeLocalAxisBody2 = transform2.getOrientation().getInverse() * jointInfo.rotationAxisWorld;
mHingeLocalAxisBody1.normalize();
mHingeLocalAxisBody2.normalize();
// Compute the inverse of the initial orientation difference between the two bodies
mInitOrientationDifferenceInv = transform2.getOrientation() *
transform1.getOrientation().getInverse();
mInitOrientationDifferenceInv.normalize();
mInitOrientationDifferenceInv.inverse();
}
// Destructor
HingeJoint::~HingeJoint() {
}
// Initialize before solving the constraint
void HingeJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) {
// Initialize the bodies index in the velocity array
mIndexBody1 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody1)->second;
mIndexBody2 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody2)->second;
// Get the bodies positions and orientations
const Vector3& x1 = mBody1->getTransform().getPosition();
const Vector3& x2 = mBody2->getTransform().getPosition();
const Quaternion& orientationBody1 = mBody1->getTransform().getOrientation();
const Quaternion& orientationBody2 = mBody2->getTransform().getOrientation();
// Get the inertia tensor of bodies
const Matrix3x3 I1 = mBody1->getInertiaTensorInverseWorld();
const Matrix3x3 I2 = mBody2->getInertiaTensorInverseWorld();
// Compute the vector from body center to the anchor point in world-space
mR1World = orientationBody1 * mLocalAnchorPointBody1;
mR2World = orientationBody2 * mLocalAnchorPointBody2;
// Compute the current angle around the hinge axis
decimal hingeAngle = computeCurrentHingeAngle(orientationBody1, orientationBody2);
// Check if the limit constraints are violated or not
decimal lowerLimitError = hingeAngle - mLowerLimit;
decimal upperLimitError = mUpperLimit - hingeAngle;
bool oldIsLowerLimitViolated = mIsLowerLimitViolated;
mIsLowerLimitViolated = lowerLimitError <= 0;
if (mIsLowerLimitViolated != oldIsLowerLimitViolated) {
mImpulseLowerLimit = 0.0;
}
bool oldIsUpperLimitViolated = mIsUpperLimitViolated;
mIsUpperLimitViolated = upperLimitError <= 0;
if (mIsUpperLimitViolated != oldIsUpperLimitViolated) {
mImpulseUpperLimit = 0.0;
}
decimal testAngle = computeCurrentHingeAngle(orientationBody1, orientationBody2);
// Compute vectors needed in the Jacobian
mA1 = orientationBody1 * mHingeLocalAxisBody1;
Vector3 a2 = orientationBody2 * mHingeLocalAxisBody2;
mA1.normalize();
a2.normalize();
const Vector3 b2 = a2.getOneUnitOrthogonalVector();
const Vector3 c2 = a2.cross(b2);
mB2CrossA1 = b2.cross(mA1);
mC2CrossA1 = c2.cross(mA1);
// Compute the corresponding skew-symmetric matrices
Matrix3x3 skewSymmetricMatrixU1= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR1World);
Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR2World);
// Compute the inverse mass matrix K=JM^-1J^t for the 3 translation constraints (3x3 matrix)
decimal inverseMassBodies = 0.0;
if (mBody1->getIsMotionEnabled()) {
inverseMassBodies += mBody1->getMassInverse();
}
if (mBody2->getIsMotionEnabled()) {
inverseMassBodies += mBody2->getMassInverse();
}
Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0,
0, inverseMassBodies, 0,
0, 0, inverseMassBodies);
if (mBody1->getIsMotionEnabled()) {
massMatrix += skewSymmetricMatrixU1 * I1 * skewSymmetricMatrixU1.getTranspose();
}
if (mBody2->getIsMotionEnabled()) {
massMatrix += skewSymmetricMatrixU2 * I2 * skewSymmetricMatrixU2.getTranspose();
}
mInverseMassMatrixTranslation.setToZero();
if (mBody1->getIsMotionEnabled() || mBody2->getIsMotionEnabled()) {
mInverseMassMatrixTranslation = massMatrix.getInverse();
}
// Compute the bias "b" of the translation constraints
mBTranslation.setToZero();
decimal biasFactor = (BETA / constraintSolverData.timeStep);
if (mPositionCorrectionTechnique == BAUMGARTE_JOINTS) {
mBTranslation = biasFactor * (x2 + mR2World - x1 - mR1World);
}
// Compute the inverse mass matrix K=JM^-1J^t for the 2 rotation constraints (2x2 matrix)
Vector3 I1B2CrossA1(0, 0, 0);
Vector3 I1C2CrossA1(0, 0, 0);
Vector3 I2B2CrossA1(0, 0, 0);
Vector3 I2C2CrossA1(0, 0, 0);
if (mBody1->getIsMotionEnabled()) {
I1B2CrossA1 = I1 * mB2CrossA1;
I1C2CrossA1 = I1 * mC2CrossA1;
}
if (mBody2->getIsMotionEnabled()) {
I2B2CrossA1 = I2 * mB2CrossA1;
I2C2CrossA1 = I2 * mC2CrossA1;
}
const decimal el11 = mB2CrossA1.dot(I1B2CrossA1) +
mB2CrossA1.dot(I2B2CrossA1);
const decimal el12 = mB2CrossA1.dot(I1C2CrossA1) +
mB2CrossA1.dot(I2C2CrossA1);
const decimal el21 = mC2CrossA1.dot(I1B2CrossA1) +
mC2CrossA1.dot(I2B2CrossA1);
const decimal el22 = mC2CrossA1.dot(I1C2CrossA1) +
mC2CrossA1.dot(I2C2CrossA1);
const Matrix2x2 matrixKRotation(el11, el12, el21, el22);
mInverseMassMatrixRotation.setToZero();
if (mBody1->getIsMotionEnabled() || mBody2->getIsMotionEnabled()) {
mInverseMassMatrixRotation = matrixKRotation.getInverse();
}
// Compute the bias "b" of the rotation constraints
mBRotation.setToZero();
if (mPositionCorrectionTechnique == BAUMGARTE_JOINTS) {
mBRotation = biasFactor * Vector2(mA1.dot(b2), mA1.dot(c2));
}
// If warm-starting is not enabled
if (!constraintSolverData.isWarmStartingActive) {
// Reset all the accumulated impulses
mImpulseTranslation.setToZero();
mImpulseRotation.setToZero();
mImpulseLowerLimit = 0.0;
mImpulseUpperLimit = 0.0;
mImpulseMotor = 0.0;
}
if (mIsLimitEnabled && (mIsLowerLimitViolated || mIsUpperLimitViolated)) {
// Compute the inverse of the mass matrix K=JM^-1J^t for the limits (1x1 matrix)
mInverseMassMatrixLimitMotor = 0.0;
if (mBody1->getIsMotionEnabled()) {
mInverseMassMatrixLimitMotor += mA1.dot(I1 * mA1);
}
if (mBody2->getIsMotionEnabled()) {
mInverseMassMatrixLimitMotor += mA1.dot(I2 * mA1);
}
mInverseMassMatrixLimitMotor = (mInverseMassMatrixLimitMotor > 0.0) ?
decimal(1.0) / mInverseMassMatrixLimitMotor : decimal(0.0);
// Compute the bias "b" of the lower limit constraint
mBLowerLimit = 0.0;
if (mPositionCorrectionTechnique == BAUMGARTE_JOINTS) {
mBLowerLimit = biasFactor * lowerLimitError;
}
// Compute the bias "b" of the upper limit constraint
mBUpperLimit = 0.0;
if (mPositionCorrectionTechnique == BAUMGARTE_JOINTS) {
mBUpperLimit = biasFactor * upperLimitError;
}
}
}
// Warm start the constraint (apply the previous impulse at the beginning of the step)
void HingeJoint::warmstart(const ConstraintSolverData& constraintSolverData) {
// Get the velocities
Vector3& v1 = constraintSolverData.linearVelocities[mIndexBody1];
Vector3& v2 = constraintSolverData.linearVelocities[mIndexBody2];
Vector3& w1 = constraintSolverData.angularVelocities[mIndexBody1];
Vector3& w2 = constraintSolverData.angularVelocities[mIndexBody2];
// Get the inverse mass and inverse inertia tensors of the bodies
const decimal inverseMassBody1 = mBody1->getMassInverse();
const decimal inverseMassBody2 = mBody2->getMassInverse();
const Matrix3x3 I1 = mBody1->getInertiaTensorInverseWorld();
const Matrix3x3 I2 = mBody2->getInertiaTensorInverseWorld();
// Compute the impulse P=J^T * lambda for the 3 translation constraints
Vector3 linearImpulseBody1 = -mImpulseTranslation;
Vector3 angularImpulseBody1 = mImpulseTranslation.cross(mR1World);
Vector3 linearImpulseBody2 = mImpulseTranslation;
Vector3 angularImpulseBody2 = -mImpulseTranslation.cross(mR2World);
// Compute the impulse P=J^T * lambda for the 2 rotation constraints
Vector3 rotationImpulse = -mB2CrossA1 * mImpulseRotation.x - mC2CrossA1 * mImpulseRotation.y;
angularImpulseBody1 += rotationImpulse;
angularImpulseBody2 += -rotationImpulse;
// Compute the impulse P=J^T * lambda for the lower and upper limits constraints
const Vector3 limitsImpulse = (mImpulseUpperLimit - mImpulseLowerLimit) * mA1;
angularImpulseBody1 += limitsImpulse;
angularImpulseBody2 += -limitsImpulse;
// Compute the impulse P=J^T * lambda for the motor constraint
const Vector3 motorImpulse = -mImpulseMotor * mA1;
angularImpulseBody1 += motorImpulse;
angularImpulseBody2 += -motorImpulse;
// Apply the impulse to the bodies of the joint
if (mBody1->getIsMotionEnabled()) {
v1 += inverseMassBody1 * linearImpulseBody1;
w1 += I1 * angularImpulseBody1;
}
if (mBody2->getIsMotionEnabled()) {
v2 += inverseMassBody2 * linearImpulseBody2;
w2 += I2 * angularImpulseBody2;
}
}
// Solve the velocity constraint
void HingeJoint::solveVelocityConstraint(const ConstraintSolverData& constraintSolverData) {
// Get the velocities
Vector3& v1 = constraintSolverData.linearVelocities[mIndexBody1];
Vector3& v2 = constraintSolverData.linearVelocities[mIndexBody2];
Vector3& w1 = constraintSolverData.angularVelocities[mIndexBody1];
Vector3& w2 = constraintSolverData.angularVelocities[mIndexBody2];
// Get the inverse mass and inverse inertia tensors of the bodies
decimal inverseMassBody1 = mBody1->getMassInverse();
decimal inverseMassBody2 = mBody2->getMassInverse();
Matrix3x3 I1 = mBody1->getInertiaTensorInverseWorld();
Matrix3x3 I2 = mBody2->getInertiaTensorInverseWorld();
// --------------- Translation Constraints --------------- //
// Compute J*v
const Vector3 JvTranslation = v2 + w2.cross(mR2World) - v1 - w1.cross(mR1World);
// Compute the Lagrange multiplier lambda
const Vector3 deltaLambdaTranslation = mInverseMassMatrixTranslation *
(-JvTranslation - mBTranslation);
mImpulseTranslation += deltaLambdaTranslation;
// Compute the impulse P=J^T * lambda
Vector3 linearImpulseBody1 = -deltaLambdaTranslation;
Vector3 angularImpulseBody1 = deltaLambdaTranslation.cross(mR1World);
Vector3 linearImpulseBody2 = deltaLambdaTranslation;
Vector3 angularImpulseBody2 = -deltaLambdaTranslation.cross(mR2World);
// Apply the impulse to the bodies of the joint
if (mBody1->getIsMotionEnabled()) {
v1 += inverseMassBody1 * linearImpulseBody1;
w1 += I1 * angularImpulseBody1;
}
if (mBody2->getIsMotionEnabled()) {
v2 += inverseMassBody2 * linearImpulseBody2;
w2 += I2 * angularImpulseBody2;
}
// --------------- Rotation Constraints --------------- //
// Compute J*v for the 2 rotation constraints
const Vector2 JvRotation(-mB2CrossA1.dot(w1) + mB2CrossA1.dot(w2),
-mC2CrossA1.dot(w1) + mC2CrossA1.dot(w2));
// Compute the Lagrange multiplier lambda for the 2 rotation constraints
Vector2 deltaLambdaRotation = mInverseMassMatrixRotation * (-JvRotation - mBRotation);
mImpulseRotation += deltaLambdaRotation;
// Compute the impulse P=J^T * lambda for the 2 rotation constraints
angularImpulseBody1 = -mB2CrossA1 * deltaLambdaRotation.x - mC2CrossA1 * deltaLambdaRotation.y;
angularImpulseBody2 = -angularImpulseBody1;
// Apply the impulse to the bodies of the joint
if (mBody1->getIsMotionEnabled()) {
w1 += I1 * angularImpulseBody1;
}
if (mBody2->getIsMotionEnabled()) {
w2 += I2 * angularImpulseBody2;
}
// --------------- Limits Constraints --------------- //
if (mIsLimitEnabled) {
// If the lower limit is violated
if (mIsLowerLimitViolated) {
// Compute J*v for the lower limit constraint
const decimal JvLowerLimit = (w2 - w1).dot(mA1);
// Compute the Lagrange multiplier lambda for the lower limit constraint
decimal deltaLambdaLower = mInverseMassMatrixLimitMotor * (-JvLowerLimit - mBLowerLimit);
decimal lambdaTemp = mImpulseLowerLimit;
mImpulseLowerLimit = std::max(mImpulseLowerLimit + deltaLambdaLower, decimal(0.0));
deltaLambdaLower = mImpulseLowerLimit - lambdaTemp;
// Compute the impulse P=J^T * lambda for the lower limit constraint
const Vector3 angularImpulseBody1 = -deltaLambdaLower * mA1;
const Vector3 angularImpulseBody2 = -angularImpulseBody1;
// Apply the impulse to the bodies of the joint
if (mBody1->getIsMotionEnabled()) {
w1 += I1 * angularImpulseBody1;
}
if (mBody2->getIsMotionEnabled()) {
w2 += I2 * angularImpulseBody2;
}
}
// If the upper limit is violated
if (mIsUpperLimitViolated) {
// Compute J*v for the upper limit constraint
const decimal JvUpperLimit = -(w2 - w1).dot(mA1);
// Compute the Lagrange multiplier lambda for the upper limit constraint
decimal deltaLambdaUpper = mInverseMassMatrixLimitMotor * (-JvUpperLimit -mBUpperLimit);
decimal lambdaTemp = mImpulseUpperLimit;
mImpulseUpperLimit = std::max(mImpulseUpperLimit + deltaLambdaUpper, decimal(0.0));
deltaLambdaUpper = mImpulseUpperLimit - lambdaTemp;
// Compute the impulse P=J^T * lambda for the upper limit constraint
const Vector3 angularImpulseBody1 = deltaLambdaUpper * mA1;
const Vector3 angularImpulseBody2 = -angularImpulseBody1;
// Apply the impulse to the bodies of the joint
if (mBody1->getIsMotionEnabled()) {
w1 += I1 * angularImpulseBody1;
}
if (mBody2->getIsMotionEnabled()) {
w2 += I2 * angularImpulseBody2;
}
}
}
// --------------- Motor --------------- //
if (mIsMotorEnabled) {
// Compute J*v for the motor
const decimal JvMotor = mA1.dot(w1 - w2);
// Compute the Lagrange multiplier lambda for the motor
const decimal maxMotorImpulse = mMaxMotorForce * constraintSolverData.timeStep;
decimal deltaLambdaMotor = mInverseMassMatrixLimitMotor * (-JvMotor - mMotorSpeed);
decimal lambdaTemp = mImpulseMotor;
mImpulseMotor = clamp(mImpulseMotor + deltaLambdaMotor, -maxMotorImpulse, maxMotorImpulse);
deltaLambdaMotor = mImpulseMotor - lambdaTemp;
// Compute the impulse P=J^T * lambda for the motor
const Vector3 angularImpulseBody1 = -deltaLambdaMotor * mA1;
const Vector3 angularImpulseBody2 = -angularImpulseBody1;
// Apply the impulse to the bodies of the joint
if (mBody1->getIsMotionEnabled()) {
w1 += I1 * angularImpulseBody1;
}
if (mBody2->getIsMotionEnabled()) {
w2 += I2 * angularImpulseBody2;
}
}
}
// Solve the position constraint
void HingeJoint::solvePositionConstraint(const ConstraintSolverData& constraintSolverData) {
}
// Enable/Disable the limits of the joint
void HingeJoint::enableLimit(bool isLimitEnabled) {
if (isLimitEnabled != mIsLimitEnabled) {
mIsLimitEnabled = isLimitEnabled;
// Reset the limits
resetLimits();
}
}
// Enable/Disable the motor of the joint
void HingeJoint::enableMotor(bool isMotorEnabled) {
mIsMotorEnabled = isMotorEnabled;
mImpulseMotor = 0.0;
// TODO : Wake up the bodies of the joint here when sleeping is implemented
}
// Set the minimum angle limit
void HingeJoint::setMinAngleLimit(decimal lowerLimit) {
assert(mLowerLimit <= 0 && mLowerLimit >= -2.0 * PI);
if (lowerLimit != mLowerLimit) {
mLowerLimit = lowerLimit;
// Reset the limits
resetLimits();
}
}
// Set the maximum angle limit
void HingeJoint::setMaxAngleLimit(decimal upperLimit) {
assert(upperLimit >= 0 && upperLimit <= 2.0 * PI);
if (upperLimit != mUpperLimit) {
mUpperLimit = upperLimit;
// Reset the limits
resetLimits();
}
}
// Reset the limits
void HingeJoint::resetLimits() {
// Reset the accumulated impulses for the limits
mImpulseLowerLimit = 0.0;
mImpulseUpperLimit = 0.0;
// TODO : Wake up the bodies of the joint here when sleeping is implemented
}
// Set the motor speed
void HingeJoint::setMotorSpeed(decimal motorSpeed) {
if (motorSpeed != mMotorSpeed) {
mMotorSpeed = motorSpeed;
// TODO : Wake up the bodies of the joint here when sleeping is implemented
}
}
// Set the maximum motor force
void HingeJoint::setMaxMotorForce(decimal maxMotorForce) {
if (maxMotorForce != mMaxMotorForce) {
assert(mMaxMotorForce >= 0.0);
mMaxMotorForce = maxMotorForce;
// TODO : Wake up the bodies of the joint here when sleeping is implemented
}
}
// Given an angle in radian, this method returns the corresponding angle in the range [-pi; pi]
decimal HingeJoint::computeNormalizedAngle(decimal angle) const {
// Convert it into the range [-2*pi; 2*pi]
angle = fmod(angle, PI_TIMES_2);
// Convert it into the range [-pi; pi]
if (angle < -PI) {
return angle + PI_TIMES_2;
}
else if (angle > PI) {
return angle - PI_TIMES_2;
}
else {
return angle;
}
}
// Given an "inputAngle" in the range [-pi, pi], this method returns an
// angle (modulo 2*pi) in the range [-2*pi; 2*pi] that is closest to one of the
// two angle limits in arguments.
decimal HingeJoint::computeCorrespondingAngleNearLimits(decimal inputAngle, decimal lowerLimitAngle,
decimal upperLimitAngle) const {
if (upperLimitAngle <= lowerLimitAngle) {
return inputAngle;
}
else if (inputAngle > upperLimitAngle) {
decimal diffToUpperLimit = fabs(computeNormalizedAngle(inputAngle - upperLimitAngle));
decimal diffToLowerLimit = fabs(computeNormalizedAngle(inputAngle - lowerLimitAngle));
return (diffToUpperLimit > diffToLowerLimit) ? (inputAngle - PI_TIMES_2) : inputAngle;
}
else if (inputAngle < lowerLimitAngle) {
decimal diffToUpperLimit = fabs(computeNormalizedAngle(upperLimitAngle - inputAngle));
decimal diffToLowerLimit = fabs(computeNormalizedAngle(lowerLimitAngle - inputAngle));
return (diffToUpperLimit > diffToLowerLimit) ? inputAngle : (inputAngle + PI_TIMES_2);
}
else {
return inputAngle;
}
}
// Compute the current angle around the hinge axis
decimal HingeJoint::computeCurrentHingeAngle(const Quaternion& orientationBody1,
const Quaternion& orientationBody2) {
decimal hingeAngle;
// Compute the current orientation difference between the two bodies
Quaternion currentOrientationDiff = orientationBody2 * orientationBody1.getInverse();
currentOrientationDiff.normalize();
// Compute the relative rotation considering the initial orientation difference
Quaternion relativeRotation = currentOrientationDiff * mInitOrientationDifferenceInv;
relativeRotation.normalize();
// A quaternion q = [cos(theta/2); sin(theta/2) * rotAxis] where rotAxis is a unit
// length vector. We can extract cos(theta/2) with q.w and we can extract |sin(theta/2)| with :
// |sin(theta/2)| = q.getVectorV().length() since rotAxis is unit length. Note that any
// rotation can be represented by a quaternion q and -q. Therefore, if the relative rotation
// axis is not pointing in the same direction as the hinge axis, we use the rotation -q which
// has the same |sin(theta/2)| value but the value cos(theta/2) is sign inverted. Some details
// about this trick is explained in the source code of OpenTissue (http://www.opentissue.org).
decimal cosHalfAngle = relativeRotation.w;
decimal sinHalfAngleAbs = relativeRotation.getVectorV().length();
// Compute the dot product of the relative rotation axis and the hinge axis
decimal dotProduct = relativeRotation.getVectorV().dot(mA1);
// If the relative rotation axis and the hinge axis are pointing the same direction
if (dotProduct >= decimal(0.0)) {
hingeAngle = decimal(2.0) * std::atan2(sinHalfAngleAbs, cosHalfAngle);
}
else {
hingeAngle = decimal(2.0) * std::atan2(sinHalfAngleAbs, -cosHalfAngle);
}
// Convert the angle from range [-2*pi; 2*pi] into the range [-pi; pi]
hingeAngle = computeNormalizedAngle(hingeAngle);
// Compute and return the corresponding angle near one the two limits
return computeCorrespondingAngleNearLimits(hingeAngle, mLowerLimit, mUpperLimit);
}

342
src/constraint/HingeJoint.h Normal file
View File

@ -0,0 +1,342 @@
/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_HINGE_JOINT_H
#define REACTPHYSICS3D_HINGE_JOINT_H
// Libraries
#include "Constraint.h"
#include "../mathematics/mathematics.h"
namespace reactphysics3d {
// Structure HingeJointInfo
/**
* This structure is used to gather the information needed to create a hinge joint.
* This structure will be used to create the actual hinge joint.
*/
struct HingeJointInfo : public ConstraintInfo {
public :
// -------------------- Attributes -------------------- //
/// Anchor point (in world-space coordinates)
Vector3 anchorPointWorldSpace;
/// Hinge rotation axis (in world-space coordinates)
Vector3 rotationAxisWorld;
/// True if the slider limits are enabled
bool isLimitEnabled;
/// True if the slider motor is enabled
bool isMotorEnabled;
/// Minimum allowed rotation angle (in radian) if limits are enabled.
/// The angle must be in the range [-2*pi, 0]
decimal minAngleLimit;
/// Maximum allowed rotation angle (in radian) if limits are enabled.
/// The angle must be in the range [0, 2*pi]
decimal maxAngleLimit;
/// Motor speed (in radian/second)
decimal motorSpeed;
/// Maximum motor force (in Newton) that can be applied to reach to desired motor speed
decimal maxMotorForce;
/// Constructor without limits and without motor
HingeJointInfo(RigidBody* rigidBody1, RigidBody* rigidBody2,
const Vector3& initAnchorPointWorldSpace,
const Vector3& initRotationAxisWorld)
: ConstraintInfo(rigidBody1, rigidBody2, HINGEJOINT),
anchorPointWorldSpace(initAnchorPointWorldSpace),
rotationAxisWorld(initRotationAxisWorld), isLimitEnabled(false),
isMotorEnabled(false), minAngleLimit(-1), maxAngleLimit(1), motorSpeed(0),
maxMotorForce(0) {}
/// Constructor with limits but without motor
HingeJointInfo(RigidBody* rigidBody1, RigidBody* rigidBody2,
const Vector3& initAnchorPointWorldSpace,
const Vector3& initRotationAxisWorld,
decimal initMinAngleLimit, decimal initMaxAngleLimit)
: ConstraintInfo(rigidBody1, rigidBody2, HINGEJOINT),
anchorPointWorldSpace(initAnchorPointWorldSpace),
rotationAxisWorld(initRotationAxisWorld), isLimitEnabled(true),
isMotorEnabled(false), minAngleLimit(initMinAngleLimit),
maxAngleLimit(initMaxAngleLimit), motorSpeed(0), maxMotorForce(0) {}
/// Constructor with limits and motor
HingeJointInfo(RigidBody* rigidBody1, RigidBody* rigidBody2,
const Vector3& initAnchorPointWorldSpace,
const Vector3& initRotationAxisWorld,
decimal initMinAngleLimit, decimal initMaxAngleLimit,
decimal initMotorSpeed, decimal initMaxMotorForce)
: ConstraintInfo(rigidBody1, rigidBody2, HINGEJOINT),
anchorPointWorldSpace(initAnchorPointWorldSpace),
rotationAxisWorld(initRotationAxisWorld), isLimitEnabled(true),
isMotorEnabled(false), minAngleLimit(initMinAngleLimit),
maxAngleLimit(initMaxAngleLimit), motorSpeed(initMotorSpeed),
maxMotorForce(initMaxMotorForce) {}
};
// Class HingeJoint
/**
* This class represents a hinge joint that allows arbitrary rotation
* between two bodies around a single axis.
*/
class HingeJoint : public Constraint {
private :
// -------------------- Constants -------------------- //
// Beta value for the bias factor of position correction
static const decimal BETA;
// -------------------- Attributes -------------------- //
/// Anchor point of body 1 (in local-space coordinates of body 1)
Vector3 mLocalAnchorPointBody1;
/// Anchor point of body 2 (in local-space coordinates of body 2)
Vector3 mLocalAnchorPointBody2;
/// Hinge rotation axis (in local-space coordinates of body 1)
Vector3 mHingeLocalAxisBody1;
/// Hinge rotation axis (in local-space coordiantes of body 2)
Vector3 mHingeLocalAxisBody2;
/// Hinge rotation axis (in world-space coordinates) computed from body 1
Vector3 mA1;
/// Vector from center of body 2 to anchor point in world-space
Vector3 mR1World;
/// Vector from center of body 2 to anchor point in world-space
Vector3 mR2World;
/// Cross product of vector b2 and a1
Vector3 mB2CrossA1;
/// Cross product of vector c2 and a1;
Vector3 mC2CrossA1;
/// Impulse for the 3 translation constraints
Vector3 mImpulseTranslation;
/// Impulse for the 2 rotation constraints
Vector2 mImpulseRotation;
/// Accumulated impulse for the lower limit constraint
decimal mImpulseLowerLimit;
/// Accumulated impulse for the upper limit constraint
decimal mImpulseUpperLimit;
/// Accumulated impulse for the motor constraint;
decimal mImpulseMotor;
/// Inverse mass matrix K=JM^-1J^t for the 3 translation constraints
Matrix3x3 mInverseMassMatrixTranslation;
/// Inverse mass matrix K=JM^-1J^t for the 2 rotation constraints
Matrix2x2 mInverseMassMatrixRotation;
/// Inverse of mass matrix K=JM^-1J^t for the limits and motor constraints (1x1 matrix)
decimal mInverseMassMatrixLimitMotor;
/// Inverse of mass matrix K=JM^-1J^t for the motor
decimal mInverseMassMatrixMotor;
/// Bias vector for the error correction for the translation constraints
Vector3 mBTranslation;
/// Bias vector for the error correction for the rotation constraints
Vector2 mBRotation;
/// Bias of the lower limit constraint
decimal mBLowerLimit;
/// Bias of the upper limit constraint
decimal mBUpperLimit;
/// Inverse of the initial orientation difference between the bodies
Quaternion mInitOrientationDifferenceInv;
/// True if the joint limits are enabled
bool mIsLimitEnabled;
/// True if the motor of the joint in enabled
bool mIsMotorEnabled;
/// Lower limit (minimum allowed rotation angle in radi)
decimal mLowerLimit;
/// Upper limit (maximum translation distance)
decimal mUpperLimit;
/// True if the lower limit is violated
bool mIsLowerLimitViolated;
/// True if the upper limit is violated
bool mIsUpperLimitViolated;
/// Motor speed
decimal mMotorSpeed;
/// Maximum motor force (in Newton) that can be applied to reach to desired motor speed
decimal mMaxMotorForce;
// -------------------- Methods -------------------- //
/// Reset the limits
void resetLimits();
/// Given an angle in radian, this method returns the corresponding angle in the range [-pi; pi]
decimal computeNormalizedAngle(decimal angle) const;
/// Given an "inputAngle" in the range [-pi, pi], this method returns an
/// angle (modulo 2*pi) in the range [-2*pi; 2*pi] that is closest to one of the
/// two angle limits in arguments.
decimal computeCorrespondingAngleNearLimits(decimal inputAngle, decimal lowerLimitAngle,
decimal upperLimitAngle) const;
/// Compute the current angle around the hinge axis
decimal computeCurrentHingeAngle(const Quaternion& orientationBody1,
const Quaternion& orientationBody2);
public :
// -------------------- Methods -------------------- //
/// Constructor
HingeJoint(const HingeJointInfo& jointInfo);
/// Destructor
virtual ~HingeJoint();
/// Return true if the limits or the joint are enabled
bool isLimitEnabled() const;
/// Return true if the motor of the joint is enabled
bool isMotorEnabled() const;
/// Enable/Disable the limits of the joint
void enableLimit(bool isLimitEnabled);
/// Enable/Disable the motor of the joint
void enableMotor(bool isMotorEnabled);
/// Return the minimum angle limit
decimal getMinAngleLimit() const;
/// Set the minimum angle limit
void setMinAngleLimit(decimal lowerLimit);
/// Return the maximum angle limit
decimal getMaxAngleLimit() const;
/// Set the maximum angle limit
void setMaxAngleLimit(decimal upperLimit);
/// Return the motor speed
decimal getMotorSpeed() const;
/// Set the motor speed
void setMotorSpeed(decimal motorSpeed);
/// Return the maximum motor force
decimal getMaxMotorForce() const;
/// Set the maximum motor force
void setMaxMotorForce(decimal maxMotorForce);
/// Return the intensity of the current force applied for the joint motor
decimal getMotorForce(decimal timeStep) const;
/// Return the number of bytes used by the joint
virtual size_t getSizeInBytes() const;
/// Initialize before solving the constraint
virtual void initBeforeSolve(const ConstraintSolverData& constraintSolverData);
/// Warm start the constraint (apply the previous impulse at the beginning of the step)
virtual void warmstart(const ConstraintSolverData& constraintSolverData);
/// Solve the velocity constraint
virtual void solveVelocityConstraint(const ConstraintSolverData& constraintSolverData);
/// Solve the position constraint
virtual void solvePositionConstraint(const ConstraintSolverData& constraintSolverData);
};
// Return true if the limits or the joint are enabled
inline bool HingeJoint::isLimitEnabled() const {
return mIsLimitEnabled;
}
// Return true if the motor of the joint is enabled
inline bool HingeJoint::isMotorEnabled() const {
return mIsMotorEnabled;
}
// Return the minimum angle limit
inline decimal HingeJoint::getMinAngleLimit() const {
return mLowerLimit;
}
// Return the maximum angle limit
inline decimal HingeJoint::getMaxAngleLimit() const {
return mUpperLimit;
}
// Return the motor speed
inline decimal HingeJoint::getMotorSpeed() const {
return mMotorSpeed;
}
// Return the maximum motor force
inline decimal HingeJoint::getMaxMotorForce() const {
return mMaxMotorForce;
}
// Return the intensity of the current force applied for the joint motor
inline decimal HingeJoint::getMotorForce(decimal timeStep) const {
return mImpulseMotor / timeStep;
}
// Return the number of bytes used by the joint
inline size_t HingeJoint::getSizeInBytes() const {
return sizeof(HingeJoint);
}
}
#endif

View File

@ -26,6 +26,8 @@
// Libraries
#include "SliderJoint.h"
// TODO : Solve 2x2 or 3x3 linear systems without inverting the A matrix (direct resolution)
using namespace reactphysics3d;
// Static variables definition
@ -36,7 +38,7 @@ SliderJoint::SliderJoint(const SliderJointInfo& jointInfo)
: Constraint(jointInfo), mImpulseTranslation(0, 0), mImpulseRotation(0, 0, 0),
mImpulseLowerLimit(0), mImpulseUpperLimit(0), mImpulseMotor(0),
mIsLimitEnabled(jointInfo.isLimitEnabled), mIsMotorEnabled(jointInfo.isMotorEnabled),
mLowerLimit(jointInfo.lowerLimit), mUpperLimit(jointInfo.upperLimit),
mLowerLimit(jointInfo.minTranslationLimit), mUpperLimit(jointInfo.maxTranslationLimit),
mIsLowerLimitViolated(false), mIsUpperLimitViolated(false),
mMotorSpeed(jointInfo.motorSpeed), mMaxMotorForce(jointInfo.maxMotorForce){
@ -50,10 +52,11 @@ SliderJoint::SliderJoint(const SliderJointInfo& jointInfo)
mLocalAnchorPointBody1 = transform1.getInverse() * jointInfo.anchorPointWorldSpace;
mLocalAnchorPointBody2 = transform2.getInverse() * jointInfo.anchorPointWorldSpace;
// Compute the initial orientation difference between the two bodies
mInitOrientationDifference = transform2.getOrientation() *
// Compute the inverse of the initial orientation difference between the two bodies
mInitOrientationDifferenceInv = transform2.getOrientation() *
transform1.getOrientation().getInverse();
mInitOrientationDifference.normalize();
mInitOrientationDifferenceInv.normalize();
mInitOrientationDifferenceInv.inverse();
// Compute the slider axis in local-space of body 1
mSliderAxisBody1 = mBody1->getTransform().getOrientation().getInverse() *
@ -87,7 +90,7 @@ void SliderJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDa
mR1 = orientationBody1 * mLocalAnchorPointBody1;
mR2 = orientationBody2 * mLocalAnchorPointBody2;
// Compute the vector u
// Compute the vector u (difference between anchor points)
const Vector3 u = x2 + mR2 - x1 - mR1;
// Compute the two orthogonal vectors to the slider axis in world-space
@ -178,14 +181,13 @@ void SliderJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverDa
if (mPositionCorrectionTechnique == BAUMGARTE_JOINTS) {
Quaternion currentOrientationDifference = orientationBody2 * orientationBody1.getInverse();
currentOrientationDifference.normalize();
const Quaternion qError = currentOrientationDifference *
mInitOrientationDifference.getInverse();
const Quaternion qError = currentOrientationDifference * mInitOrientationDifferenceInv;
mBRotation = biasFactor * decimal(2.0) * qError.getVectorV();
}
if (mIsLimitEnabled && (mIsLowerLimitViolated || mIsUpperLimitViolated)) {
// Compute the inverse of the mass matrix K=JM^-1J^t for the lower limit (1x1 matrix)
// Compute the inverse of the mass matrix K=JM^-1J^t for the limits (1x1 matrix)
mInverseMassMatrixLimit = 0.0;
if (mBody1->getIsMotionEnabled()) {
mInverseMassMatrixLimit += mBody1->getMassInverse() +
@ -424,7 +426,7 @@ void SliderJoint::solveVelocityConstraint(const ConstraintSolverData& constraint
// Compute the Lagrange multiplier lambda for the motor
const decimal maxMotorImpulse = mMaxMotorForce * constraintSolverData.timeStep;
decimal deltaLambdaMotor = mInverseMassMatrixMotor * (-JvMotor -mMotorSpeed);
decimal deltaLambdaMotor = mInverseMassMatrixMotor * (-JvMotor - mMotorSpeed);
decimal lambdaTemp = mImpulseMotor;
mImpulseMotor = clamp(mImpulseMotor + deltaLambdaMotor, -maxMotorImpulse, maxMotorImpulse);
deltaLambdaMotor = mImpulseMotor - lambdaTemp;
@ -469,8 +471,8 @@ void SliderJoint::enableMotor(bool isMotorEnabled) {
// TODO : Wake up the bodies of the joint here when sleeping is implemented
}
// Set the lower limit
void SliderJoint::setLowerLimit(decimal lowerLimit) {
// Set the minimum translation limit
void SliderJoint::setMinTranslationLimit(decimal lowerLimit) {
assert(lowerLimit <= mUpperLimit);
@ -483,8 +485,8 @@ void SliderJoint::setLowerLimit(decimal lowerLimit) {
}
}
// Set the upper limit
void SliderJoint::setUpperLimit(decimal upperLimit) {
// Set the maximum translation limit
void SliderJoint::setMaxTranslationLimit(decimal upperLimit) {
assert(mLowerLimit <= upperLimit);

View File

@ -55,11 +55,11 @@ struct SliderJointInfo : public ConstraintInfo {
/// True if the slider motor is enabled
bool isMotorEnabled;
/// Lower limit
decimal lowerLimit;
/// Mininum allowed translation if limits are enabled
decimal minTranslationLimit;
/// Upper limit
decimal upperLimit;
/// Maximum allowed translation if limits are enabled
decimal maxTranslationLimit;
/// Motor speed
decimal motorSpeed;
@ -74,31 +74,34 @@ struct SliderJointInfo : public ConstraintInfo {
: ConstraintInfo(rigidBody1, rigidBody2, SLIDERJOINT),
anchorPointWorldSpace(initAnchorPointWorldSpace),
sliderAxisWorldSpace(initSliderAxisWorldSpace),
isLimitEnabled(false), isMotorEnabled(false), lowerLimit(-1.0),
upperLimit(1.0), motorSpeed(0), maxMotorForce(0) {}
isLimitEnabled(false), isMotorEnabled(false), minTranslationLimit(-1.0),
maxTranslationLimit(1.0), motorSpeed(0), maxMotorForce(0) {}
/// Constructor with limits and no motor
SliderJointInfo(RigidBody* rigidBody1, RigidBody* rigidBody2,
const Vector3& initAnchorPointWorldSpace,
const Vector3& initSliderAxisWorldSpace,
decimal initLowerLimit, decimal initUpperLimit)
decimal initMinTranslationLimit, decimal initMaxTranslationLimit)
: ConstraintInfo(rigidBody1, rigidBody2, SLIDERJOINT),
anchorPointWorldSpace(initAnchorPointWorldSpace),
sliderAxisWorldSpace(initSliderAxisWorldSpace),
isLimitEnabled(true), isMotorEnabled(false), lowerLimit(initLowerLimit),
upperLimit(initUpperLimit), motorSpeed(0), maxMotorForce(0) {}
isLimitEnabled(true), isMotorEnabled(false),
minTranslationLimit(initMinTranslationLimit),
maxTranslationLimit(initMaxTranslationLimit), motorSpeed(0),
maxMotorForce(0) {}
/// Constructor with limits and motor
SliderJointInfo(RigidBody* rigidBody1, RigidBody* rigidBody2,
const Vector3& initAnchorPointWorldSpace,
const Vector3& initSliderAxisWorldSpace,
decimal initLowerLimit, decimal initUpperLimit,
decimal initMinTranslationLimit, decimal initMaxTranslationLimit,
decimal initMotorSpeed, decimal initMaxMotorForce)
: ConstraintInfo(rigidBody1, rigidBody2, SLIDERJOINT),
anchorPointWorldSpace(initAnchorPointWorldSpace),
sliderAxisWorldSpace(initSliderAxisWorldSpace),
isLimitEnabled(true), isMotorEnabled(true), lowerLimit(initLowerLimit),
upperLimit(initUpperLimit), motorSpeed(initMotorSpeed),
isLimitEnabled(true), isMotorEnabled(true),
minTranslationLimit(initMinTranslationLimit),
maxTranslationLimit(initMaxTranslationLimit), motorSpeed(initMotorSpeed),
maxMotorForce(initMaxMotorForce) {}
};
@ -126,8 +129,8 @@ class SliderJoint : public Constraint {
/// Slider axis (in local-space coordinates of body 1)
Vector3 mSliderAxisBody1;
/// Initial orientation difference between the two bodies
Quaternion mInitOrientationDifference;
/// Inverse of the initial orientation difference between the two bodies
Quaternion mInitOrientationDifferenceInv;
/// First vector orthogonal to the slider axis local-space of body 1
Vector3 mN1;
@ -183,19 +186,19 @@ class SliderJoint : public Constraint {
/// Inverse of mass matrix K=JM^-1J^t for the motor
decimal mInverseMassMatrixMotor;
/// Impulse for the 2 translation constraints
/// Accumulated impulse for the 2 translation constraints
Vector2 mImpulseTranslation;
/// Impulse for the 3 rotation constraints
/// Accumulated impulse for the 3 rotation constraints
Vector3 mImpulseRotation;
/// Impulse for the lower limit constraint
/// Accumulated impulse for the lower limit constraint
decimal mImpulseLowerLimit;
/// Impulse for the upper limit constraint
/// Accumulated impulse for the upper limit constraint
decimal mImpulseUpperLimit;
/// Impulse for the motor
/// Accumulated impulse for the motor
decimal mImpulseMotor;
/// True if the slider limits are enabled
@ -207,10 +210,10 @@ class SliderJoint : public Constraint {
/// Slider axis in world-space coordinates
Vector3 mSliderAxisWorld;
/// Lower limit
/// Lower limit (minimum translation distance)
decimal mLowerLimit;
/// Upper limit
/// Upper limit (maximum translation distance)
decimal mUpperLimit;
/// True if the lower limit is violated
@ -252,17 +255,17 @@ class SliderJoint : public Constraint {
/// Enable/Disable the motor of the joint
void enableMotor(bool isMotorEnabled);
/// Return the lower limit
decimal getLowerLimit() const;
/// Return the minimum translation limit
decimal getMinTranslationLimit() const;
/// Set the lower limit
void setLowerLimit(decimal lowerLimit);
/// Set the minimum translation limit
void setMinTranslationLimit(decimal lowerLimit);
/// Return the upper limit
decimal getUpperLimit() const;
/// Return the maximum translation limit
decimal getMaxTranslationLimit() const;
/// Set the upper limit
void setUpperLimit(decimal upperLimit);
/// Set the maximum translation limit
void setMaxTranslationLimit(decimal upperLimit);
/// Return the motor speed
decimal getMotorSpeed() const;
@ -305,13 +308,13 @@ inline bool SliderJoint::isMotorEnabled() const {
return mIsMotorEnabled;
}
// Return the lower limit
inline decimal SliderJoint::getLowerLimit() const {
// Return the minimum translation limit
inline decimal SliderJoint::getMinTranslationLimit() const {
return mLowerLimit;
}
// Return the upper limit
inline decimal SliderJoint::getUpperLimit() const {
// Return the maximum translation limit
inline decimal SliderJoint::getMaxTranslationLimit() const {
return mUpperLimit;
}

View File

@ -37,7 +37,7 @@ ConstraintSolver::ConstraintSolver(std::set<Constraint*>& joints,
: mJoints(joints), mLinearVelocities(linearVelocities),
mAngularVelocities(angularVelocities),
mMapBodyToConstrainedVelocityIndex(mapBodyToVelocityIndex),
mIsWarmStartingActive(false),
mIsWarmStartingActive(true),
mIsNonLinearGaussSeidelPositionCorrectionActive(false),
mConstraintSolverData(linearVelocities,
angularVelocities, mapBodyToVelocityIndex){
@ -77,6 +77,11 @@ void ConstraintSolver::initialize(decimal dt) {
// Initialize the constraint before solving it
joint->initBeforeSolve(mConstraintSolverData);
// Warm-start the constraint if warm-starting is enabled
if (mIsWarmStartingActive) {
joint->warmstart(mConstraintSolverData);
}
}
}

View File

@ -27,6 +27,7 @@
#include "DynamicsWorld.h"
#include "constraint/BallAndSocketJoint.h"
#include "constraint/SliderJoint.h"
#include "constraint/HingeJoint.h"
// Namespaces
using namespace reactphysics3d;
@ -212,7 +213,7 @@ void DynamicsWorld::integrateRigidBodiesVelocities() {
mConstrainedLinearVelocities = std::vector<Vector3>(mRigidBodies.size(), Vector3(0, 0, 0));
mConstrainedAngularVelocities = std::vector<Vector3>(mRigidBodies.size(), Vector3(0, 0, 0));
double dt = mTimer.getTimeStep();
decimal dt = static_cast<decimal>(mTimer.getTimeStep());
// Fill in the mapping of rigid body to their index in the constrained
// velocities arrays
@ -413,6 +414,15 @@ Constraint* DynamicsWorld::createJoint(const ConstraintInfo& jointInfo) {
break;
}
// Hinge joint
case HINGEJOINT:
{
void* allocatedMemory = mMemoryAllocator.allocate(sizeof(HingeJoint));
const HingeJointInfo& info = dynamic_cast<const HingeJointInfo&>(jointInfo);
newJoint = new (allocatedMemory) HingeJoint(info);
break;
}
default:
{
assert(false);

View File

@ -84,15 +84,24 @@ struct Quaternion {
/// Set the quaternion to zero
void setToZero();
/// Set to the identity quaternion
void setToIdentity();
/// Return the vector v=(x y z) of the quaternion
Vector3 getVectorV() const;
/// Return the length of the quaternion
decimal length() const;
/// Return the square of the length of the quaternion
decimal lengthSquare() const;
/// Normalize the quaternion
void normalize();
/// Inverse the quaternion
void inverse();
/// Return the unit quaternion
Quaternion getUnit() const;
@ -156,6 +165,14 @@ inline void Quaternion::setToZero() {
w = 0;
}
// Set to the identity quaternion
inline void Quaternion::setToIdentity() {
x = 0;
y = 0;
z = 0;
w = 1;
}
// Return the vector v=(x y z) of the quaternion
inline Vector3 Quaternion::getVectorV() const {
@ -168,6 +185,11 @@ inline decimal Quaternion::length() const {
return sqrt(x*x + y*y + z*z + w*w);
}
// Return the square of the length of the quaternion
inline decimal Quaternion::lengthSquare() const {
return x*x + y*y + z*z + w*w;
}
// Normalize the quaternion
inline void Quaternion::normalize() {
@ -182,6 +204,21 @@ inline void Quaternion::normalize() {
w /= l;
}
// Inverse the quaternion
inline void Quaternion::inverse() {
// Get the square length of the quaternion
decimal lengthSquareQuaternion = lengthSquare();
assert (lengthSquareQuaternion > MACHINE_EPSILON);
// Compute and return the inverse quaternion
x /= -lengthSquareQuaternion;
y /= -lengthSquareQuaternion;
z /= -lengthSquareQuaternion;
w /= lengthSquareQuaternion;
}
// Return the unit quaternion
inline Quaternion Quaternion::getUnit() const {
decimal lengthQuaternion = length();
@ -207,14 +244,13 @@ inline Quaternion Quaternion::getConjugate() const {
// Return the inverse of the quaternion (inline)
inline Quaternion Quaternion::getInverse() const {
decimal lengthQuaternion = length();
lengthQuaternion = lengthQuaternion * lengthQuaternion;
decimal lengthSquareQuaternion = lengthSquare();
assert (lengthQuaternion > MACHINE_EPSILON);
assert (lengthSquareQuaternion > MACHINE_EPSILON);
// Compute and return the inverse quaternion
return Quaternion(-x / lengthQuaternion, -y / lengthQuaternion,
-z / lengthQuaternion, w / lengthQuaternion);
return Quaternion(-x / lengthSquareQuaternion, -y / lengthSquareQuaternion,
-z / lengthSquareQuaternion, w / lengthSquareQuaternion);
}
// Scalar product between two quaternions

View File

@ -29,6 +29,7 @@
// Libraries
#include "../configuration.h"
#include "../decimal.h"
#include <algorithm>
/// ReactPhysics3D namespace
namespace reactphysics3d {
@ -43,6 +44,13 @@ inline bool approxEqual(decimal a, decimal b, decimal epsilon = MACHINE_EPSILON)
return (difference < epsilon && difference > -epsilon);
}
/// Function that returns the result of the "value" clamped by
/// two others values "lowerLimit" and "upperLimit"
inline decimal clamp(decimal value, decimal lowerLimit, decimal upperLimit) {
assert(lowerLimit <= upperLimit);
return std::min(std::max(value, lowerLimit), upperLimit);
}
}

View File

@ -49,6 +49,7 @@
#include "collision/shapes/AABB.h"
#include "constraint/BallAndSocketJoint.h"
#include "constraint/SliderJoint.h"
#include "constraint/HingeJoint.h"
/// Alias to the ReactPhysics3D namespace
namespace rp3d = reactphysics3d;

View File

@ -120,6 +120,12 @@ class TestQuaternion : public Test {
quaternion.setToZero();
test(quaternion == Quaternion(0, 0, 0, 0));
// Tes the methods to get or set to identity
Quaternion identity1(1, 2, 3, 4);
identity1.setToIdentity();
test(identity1 == Quaternion(0, 0, 0, 1));
test(Quaternion::identity() == Quaternion(0, 0, 0, 1));
// Test the method to get the vector (x, y, z)
Vector3 v = mQuaternion1.getVectorV();
test(v.x == mQuaternion1.x);
@ -133,9 +139,12 @@ class TestQuaternion : public Test {
test(conjugate.z == -mQuaternion1.z);
test(conjugate.w == mQuaternion1.w);
// Test the inverse method
Quaternion inverse = mQuaternion1.getInverse();
Quaternion product = mQuaternion1 * inverse;
// Test the inverse methods
Quaternion inverse1 = mQuaternion1.getInverse();
Quaternion inverse2(mQuaternion1);
inverse2.inverse();
test(inverse2 == inverse1);
Quaternion product = mQuaternion1 * inverse1;
test(approxEqual(product.x, mIdentity.x, decimal(10e-6)));
test(approxEqual(product.y, mIdentity.y, decimal(10e-6)));
test(approxEqual(product.z, mIdentity.z, decimal(10e-6)));