diff --git a/src/collision/EPA/EPAAlgorithm.cpp b/src/collision/EPA/EPAAlgorithm.cpp index 88f8e601..72ae50c4 100644 --- a/src/collision/EPA/EPAAlgorithm.cpp +++ b/src/collision/EPA/EPAAlgorithm.cpp @@ -24,6 +24,8 @@ // Libraries #include "EPAAlgorithm.h" +#include "../GJK/GJKAlgorithm.h" +#include "TrianglesStore.h" // We want to use the ReactPhysics3D namespace using namespace reactphysics3d; @@ -38,6 +40,39 @@ EPAAlgorithm::~EPAAlgorithm() { } +// Decide if the origin is in the tetrahedron +// Return 0 if the origin is in the tetrahedron and return the number (1,2,3 or 4) of +// the vertex that is wrong if the origin is not in the tetrahedron +int EPAAlgorithm::isOriginInTetrahedron(const Vector3D& p1, const Vector3D& p2, const Vector3D& p3, const Vector3D& p4) const { + + // Check vertex 1 + Vector3D normal1 = (p2-p1).cross(p3-p1); + if (normal1.dot(p1) > 0.0 == normal1.dot(p4) > 0.0) { + return 4; + } + + // Check vertex 2 + Vector3D normal2 = (p4-p2).cross(p3-p2); + if (normal2.dot(p2) > 0.0 == normal2.dot(p1) > 0.0) { + return 1; + } + + // Check vertex 3 + Vector3D normal3 = (p4-p3).cross(p1-p3); + if (normal3.dot(p3) > 0.0 == normal3.dot(p2) > 0.0) { + return 2; + } + + // Check vertex 4 + Vector3D normal4 = (p2-p4).cross(p1-p4); + if (normal4.dot(p4) > 0.0 == normal4.dot(p3) > 0.0) { + return 3; + } + + // The origin is in the tetrahedron, we return 0 + return 0; +} + // Compute the penetration depth with the EPA algorithms // This method computes the penetration depth and contact points between two // enlarged objects (with margin) where the original objects (without margin) @@ -50,7 +85,9 @@ bool EPAAlgorithm::computePenetrationDepthAndContactPoints(Simplex simplex, cons Vector3D suppPointsA[MAX_SUPPORT_POINTS]; // Support points of object A in local coordinates Vector3D suppPointsB[MAX_SUPPORT_POINTS]; // Support points of object B in local coordinates Vector3D points[MAX_SUPPORT_POINTS]; // Current points - + TrianglesStore triangleStore; // Store the triangles + TriangleEPA* triangleHeap[MAX_FACETS]; // Heap that contains the face candidate of the EPA algorithm + // TODO : Check that we call all the supportPoint() function with a margin // Get the simplex computed previously by the GJK algorithm @@ -62,7 +99,12 @@ bool EPAAlgorithm::computePenetrationDepthAndContactPoints(Simplex simplex, cons // Number of triangles in the polytope unsigned int nbTriangles = 0; - // Select an action according to the number of points in the simplex computed with GJK algorithm + // Clear the storing of triangles + triangleStore.clear(); + + // Select an action according to the number of points in the simplex + // computed with GJK algorithm in order to obtain an initial polytope for + // The EPA algorithm. switch(nbVertices) { case 1: // Only one point in the simplex (which should be the origin). We have a touching contact @@ -70,7 +112,270 @@ bool EPAAlgorithm::computePenetrationDepthAndContactPoints(Simplex simplex, cons return false; case 2: { - + // The simplex returned by GJK is a line segment d containing the origin. + // We add two additional support points to construct a hexahedron (two tetrahedron + // glued together with triangle faces. The idea is to compute three different vectors + // v1, v2 and v3 that are orthogonal to the segment d. The three vectors are relatively + // rotated of 120 degree around the d segment. The the three new points to + // construct the polytope are the three support points in those three directions + // v1, v2 and v3. + + // Direction of the segment + Vector3D d = (points[1] - points[0]).getUnit(); + + // Choose the coordinate axis from the minimal absolute component of the vector d + int minAxis = d.getAbsoluteVector().getMinAxis(); + + // Compute sin(60) + const double sin60 = sqrt(3.0) * 0.5; + + // Create a rotation quaternion to rotate the vector v1 to get the vectors + // v2 and v3 + Quaternion rotationQuat(d.getX() * sin60, d.getY() * sin60, d.getZ() * sin60, 0.5); + + // Construct the corresponding rotation matrix + Matrix3x3 rotationMat = rotationQuat.getMatrix(); + + // Compute the vector v1, v2, v3 + Vector3D v1 = d.cross(Vector3D(minAxis == 0, minAxis == 1, minAxis == 2)); + Vector3D v2 = rotationMat * v1; + Vector3D v3 = rotationMat * v2; + + // Compute the support point in the direction of v1 + suppPointsA[2] = boundingVolume1->getSupportPoint(v1, OBJECT_MARGIN); + suppPointsB[2] = boundingVolume2->getSupportPoint(v1.getOpposite(), OBJECT_MARGIN); + points[2] = suppPointsA[2] - suppPointsB[2]; + + // Compute the support point in the direction of v2 + suppPointsA[3] = boundingVolume1->getSupportPoint(v2, OBJECT_MARGIN); + suppPointsB[3] = boundingVolume2->getSupportPoint(v2.getOpposite(), OBJECT_MARGIN); + points[3] = suppPointsA[3] - suppPointsB[3]; + + // Compute the support point in the direction of v3 + suppPointsA[4] = boundingVolume1->getSupportPoint(v3, OBJECT_MARGIN); + suppPointsB[4] = boundingVolume2->getSupportPoint(v3.getOpposite(), OBJECT_MARGIN); + points[4] = suppPointsA[4] - suppPointsB[4]; + + // Now we have an hexahedron (two tetrahedron glued together). We can simply keep the + // tetrahedron that contains the origin in order that the initial polytope of the + // EPA algorithm is a tetrahedron, which is simpler to deal with. + + // If the origin is in the tetrahedron of points 0, 2, 3, 4 + if (isOriginInTetrahedron(points[0], points[2], points[3], points[4]) == 0) { + // We use the point 4 instead of point 1 for the initial tetrahedron + suppPointsA[1] = suppPointsA[4]; + suppPointsB[1] = suppPointsB[4]; + points[1] = points[4]; + } + else if (isOriginInTetrahedron(points[1], points[2], points[3], points[4]) == 0) { // If the origin is in the tetrahedron of points 1, 2, 3, 4 + // We use the point 4 instead of point 0 for the initial tetrahedron + suppPointsA[0] = suppPointsA[0]; + suppPointsB[0] = suppPointsB[0]; + points[0] = points[0]; + } + else { + // The origin is not in the initial polytope + return false; + } + + // The polytope contains now 4 vertices + nbVertices = 4; } + case 4: { + // The simplex computed by the GJK algorithm is a tetrahedron. Here we check + // if this tetrahedron contains the origin. If it is the case, we keep it and + // otherwise we remove the wrong vertex of the tetrahedron and go in the case + // where the GJK algorithm compute a simplex of three vertices. + + // Check if the tetrahedron contains the origin (or wich is the wrong vertex otherwise) + int badVertex = isOriginInTetrahedron(points[0], points[1], points[2], points[3]); + + // If the origin is in the tetrahedron + if (badVertex == 0) { + // The tetrahedron is a correct initial polytope for the EPA algorithm. + // Therefore, we construct the tetrahedron. + + // Comstruct the 4 triangle faces of the tetrahedron + TriangleEPA* face0 = triangleStore.newTriangle(points, 0, 1, 2); + TriangleEPA* face1 = triangleStore.newTriangle(points, 0, 3, 1); + TriangleEPA* face2 = triangleStore.newTriangle(points, 0, 2, 3); + TriangleEPA* face3 = triangleStore.newTriangle(points, 1, 3, 2); + + // If the constructed tetrahedron is not correct + if (!(face0 && face1 && face2 && face3 && face0->getDistSquare() > 0.0 && + face1->getDistSquare() > 0.0 && face2->getDistSquare() > 0.0 && face3->getDistSquare() > 0.0)) { + return false; + } + + // Associate the edges of neighbouring triangle faces + EdgeEPA(face0, 0).link(EdgeEPA(face1, 2)); + EdgeEPA(face0, 1).link(EdgeEPA(face3, 2)); + EdgeEPA(face0, 2).link(EdgeEPA(face2, 0)); + EdgeEPA(face1, 0).link(EdgeEPA(face2, 2)); + EdgeEPA(face1, 1).link(EdgeEPA(face3, 0)); + EdgeEPA(face2, 1).link(EdgeEPA(face3, 1)); + + // Add the triangle faces in the candidate heap + addFaceCandidate(face0, triangleHeap, nbTriangles, DBL_MAX); + addFaceCandidate(face1, triangleHeap, nbTriangles, DBL_MAX); + addFaceCandidate(face2, triangleHeap, nbTriangles, DBL_MAX); + addFaceCandidate(face3, triangleHeap, nbTriangles, DBL_MAX); + + break; + } + + // If the tetrahedron contains a wrong vertex (the origin is not inside the tetrahedron) + if (badVertex < 4) { + // Replace the wrong vertex with the point 5 (if it exists) + suppPointsA[badVertex-1] = suppPointsA[4]; + suppPointsB[badVertex-1] = suppPointsB[4]; + points[badVertex-1] = points[4]; + } + + // We have removed the wrong vertex + nbVertices = 3; + } + case 3: { + // The GJK algorithm returned a triangle that contains the origin. + // We need two new vertices to obtain a hexahedron. The two new vertices + // are the support points in the "n" and "-n" direction where "n" is the + // normal of the triangle. + + // Compute the normal of the triangle + Vector3D v1 = points[1] - points[0]; + Vector3D v2 = points[2] - points[0]; + Vector3D n = v1.cross(v2); + + // Compute the two new vertices to obtain a hexahedron + suppPointsA[3] = boundingVolume1->getSupportPoint(n, OBJECT_MARGIN); + suppPointsB[3] = boundingVolume2->getSupportPoint(n.getOpposite(), OBJECT_MARGIN); + points[3] = suppPointsA[3] - suppPointsB[3]; + suppPointsA[4] = boundingVolume1->getSupportPoint(n.getOpposite(), OBJECT_MARGIN); + suppPointsB[4] = boundingVolume2->getSupportPoint(n, OBJECT_MARGIN); + points[4] = suppPointsA[4] - suppPointsB[4]; + + // Construct the triangle faces + TriangleEPA* face0 = triangleStore.newTriangle(points, 0, 1, 3); + TriangleEPA* face1 = triangleStore.newTriangle(points, 1, 2, 3); + TriangleEPA* face2 = triangleStore.newTriangle(points, 2, 0, 3); + TriangleEPA* face3 = triangleStore.newTriangle(points, 0, 2, 4); + TriangleEPA* face4 = triangleStore.newTriangle(points, 2, 1, 4); + TriangleEPA* face5 = triangleStore.newTriangle(points, 1, 0, 4); + + // If the polytope hasn't been correctly constructed + if (!(face0 && face1 && face2 && face3 && face4 && face5 && + face0->getDistSquare() > 0.0 && face1->getDistSquare() > 0.0 && + face2->getDistSquare() > 0.0 && face3->getDistSquare() > 0.0 && + face4->getDistSquare() > 0.0 && face5->getDistSquare() > 0.0)) { + return false; + } + + // Associate the edges of neighbouring faces + EdgeEPA(face0, 1).link(EdgeEPA(face1, 2)); + EdgeEPA(face1, 1).link(EdgeEPA(face2, 2)); + EdgeEPA(face2, 1).link(EdgeEPA(face0, 2)); + EdgeEPA(face0, 0).link(EdgeEPA(face5, 0)); + EdgeEPA(face1, 0).link(EdgeEPA(face4, 0)); + EdgeEPA(face2, 0).link(EdgeEPA(face3, 0)); + EdgeEPA(face3, 1).link(EdgeEPA(face4, 2)); + EdgeEPA(face4, 1).link(EdgeEPA(face5, 2)); + EdgeEPA(face5, 1).link(EdgeEPA(face3, 2)); + + // Add the candidate faces in the heap + addFaceCandidate(face0, triangleHeap, nbTriangles, DBL_MAX); + addFaceCandidate(face1, triangleHeap, nbTriangles, DBL_MAX); + addFaceCandidate(face2, triangleHeap, nbTriangles, DBL_MAX); + addFaceCandidate(face3, triangleHeap, nbTriangles, DBL_MAX); + addFaceCandidate(face4, triangleHeap, nbTriangles, DBL_MAX); + addFaceCandidate(face5, triangleHeap, nbTriangles, DBL_MAX); + + nbVertices = 5; + } + break; } + + // At this point, we have a polytope that contains the origin. Therefore, we + // can run the EPA algorithm. + + if (nbTriangles == 0) { + return false; + } + + TriangleEPA* triangle = 0; + double upperBoundSquarePenDepth = DBL_MAX; + + do { + triangle = triangleHeap[0]; + + // Get the next candidate face (the face closest to the origin) + std::pop_heap(&triangleHeap[0], &triangleHeap[nbTriangles], triangleComparison); + nbTriangles--; + + // If the candidate face in the heap is not obsolete + if (!triangle->getIsObsolete()) { + // If we have reached the maximum number of support points + if (nbVertices == MAX_SUPPORT_POINTS) { + assert(false); + break; + } + + // Compute the support point of the Minkowski difference (A-B) in the closest point direction + suppPointsA[nbVertices] = boundingVolume1->getSupportPoint(triangle->getClosestPoint(), OBJECT_MARGIN); + suppPointsB[nbVertices] = boundingVolume2->getSupportPoint(triangle->getClosestPoint().getOpposite()); + points[nbVertices] = suppPointsA[nbVertices] - suppPointsB[nbVertices]; + + int indexNewVertex = nbVertices; + nbVertices++; + + // Update the upper bound of the penetration depth + double wDotv = points[indexNewVertex].dot(triangle->getClosestPoint()); + assert(wDotv > 0.0); + double wDotVSquare = wDotv * wDotv / triangle->getDistSquare(); + if (wDotVSquare < upperBoundSquarePenDepth) { + upperBoundSquarePenDepth = wDotVSquare; + } + + // Compute the error + double error = wDotv - triangle->getDistSquare(); + if (error <= std::max(tolerance, REL_ERROR_SQUARE * wDotv) || + points[indexNewVertex] == points[(*triangle)[0]] || + points[indexNewVertex] == points[(*triangle)[1]] || + points[indexNewVertex] == points[(*triangle)[2]]) { + break; + } + + // Now, we compute the silhouette cast by the new vertex. + // The current triangle face will not be in the convex hull. + // We start the local recursive silhouette algorithm from + // the current triangle face. + int i = triangleStore.getNbTriangles(); + if (!triangle->computeSilhouette(points, indexNewVertex, triangleStore)) { + break; + } + + // Construct the new polytope by constructing triangle faces from the + // silhouette to the new vertex of the polytope in order that the new + // polytope is always convex + while(i != triangleStore.getNbTriangles()) { + TriangleEPA* newTriangle = &triangleStore[i]; + + addFaceCandidate(newTriangle, triangleHeap, nbTriangles, upperBoundSquarePenDepth); + i++; + } + } + + } while(nbTriangles > 0 && triangleHeap[0]->getDistSquare() <= upperBoundSquarePenDepth); + + // Compute the contact info + v = triangle->getClosestPoint(); + Vector3D pA = triangle->computeClosestPointOfObject(suppPointsA); + Vector3D pB = triangle->computeClosestPointOfObject(suppPointsB); + Vector3D diff = pB - pA; + Vector3D normal = diff.getUnit(); + double penetrationDepth = diff.length(); + assert(penetrationDepth > 0.0); + contactInfo = new ContactInfo(boundingVolume1->getBodyPointer(), boundingVolume2->getBodyPointer(), + normal, penetrationDepth, pA, pB); + + return true; } diff --git a/src/collision/EPA/EPAAlgorithm.h b/src/collision/EPA/EPAAlgorithm.h index 7d1afd72..28e90eed 100644 --- a/src/collision/EPA/EPAAlgorithm.h +++ b/src/collision/EPA/EPAAlgorithm.h @@ -30,6 +30,8 @@ #include "../../body/NarrowBoundingVolume.h" #include "../ContactInfo.h" #include "../../mathematics/mathematics.h" +#include "TriangleEPA.h" +#include // ReactPhysics3D namespace namespace reactphysics3d { @@ -38,6 +40,20 @@ namespace reactphysics3d { const unsigned int MAX_SUPPORT_POINTS = 100; // Maximum number of support points of the polytope const unsigned int MAX_FACETS = 200; // Maximum number of facets of the polytope + +// Class TriangleComparison that allow the comparison of two triangles in the heap +// The comparison between two triangles is made using their square distance to the closest +// point to the origin. The goal is that in the heap, the first triangle is the one with the +// smallest square distance. +class TriangleComparison { + public: + // Comparison operator + bool operator()(const TriangleEPA* face1, const TriangleEPA* face2) { + return (face1->getDistSquare() > face2->getDistSquare()); + } +}; + + /* ------------------------------------------------------------------- Class EPAAlgorithm : This class is the implementation of the Expanding Polytope Algorithm (EPA). @@ -54,10 +70,12 @@ const unsigned int MAX_FACETS = 200; // Maximum number of facets of t */ class EPAAlgorithm { private: - + TriangleComparison triangleComparison; // Triangle comparison operator - bool isOrigininInTetrahedron(const Vector3D& p1, const Vector3D& p2, - const Vector3D& p3, const Vector3D& p4) const; // Return true if the origin is in the tetrahedron + void addFaceCandidate(TriangleEPA* triangle, TriangleEPA** heap, + uint& nbTriangles, double upperBoundSquarePenDepth); // Add a triangle face in the candidate triangle heap + int isOriginInTetrahedron(const Vector3D& p1, const Vector3D& p2, + const Vector3D& p3, const Vector3D& p4) const; // Decide if the origin is in the tetrahedron public: EPAAlgorithm(); // Constructor @@ -68,6 +86,20 @@ class EPAAlgorithm { Vector3D& v, ContactInfo*& contactInfo); // Compute the penetration depth with EPA algorithm }; +// Add a triangle face in the candidate triangle heap in the EPA algorithm +inline void EPAAlgorithm::addFaceCandidate(TriangleEPA* triangle, TriangleEPA** heap, + uint& nbTriangles, double upperBoundSquarePenDepth) { + + // If the closest point of the affine hull of triangle points is internal to the triangle and + // if the distance of the closest point from the origin is at most the penetration depth upper bound + if (triangle->isClosestPointInternalToTriangle() && triangle->getDistSquare() <= upperBoundSquarePenDepth) { + // Add the triangle face to the list of candidates + heap[nbTriangles] = triangle; + nbTriangles++; + std::push_heap(&heap[0], &heap[nbTriangles], triangleComparison); + } +} + } // End of ReactPhysics3D namespace #endif diff --git a/src/collision/EPA/TriangleEPA.h b/src/collision/EPA/TriangleEPA.h index d0aaee67..49c227ad 100644 --- a/src/collision/EPA/TriangleEPA.h +++ b/src/collision/EPA/TriangleEPA.h @@ -118,8 +118,8 @@ inline bool TriangleEPA::isVisibleFromVertex(const Vector3D* vertices, uint inde // Compute the point of an object closest to the origin inline Vector3D TriangleEPA::computeClosestPointOfObject(const Vector3D* supportPointsOfObject) const { const Vector3D& p0 = supportPointsOfObject[indicesVertices[0]]; - return p0 + (lambda1 * (supportPointsOfObject[indicesVertices[1]] - p0) + - lambda2 * 1.0/det * (supportPointsOfObject[indicesVertices[2]] - p0)); + return p0 + 1.0/det * (lambda1 * (supportPointsOfObject[indicesVertices[1]] - p0) + + lambda2 * (supportPointsOfObject[indicesVertices[2]] - p0)); } // Access operator