Remove Simplex class (replaced by VoronoiSimplex)
This commit is contained in:
parent
4bad013c91
commit
da9f6ae233
|
@ -75,8 +75,8 @@ SET (REACTPHYSICS3D_SOURCES
|
|||
"src/collision/narrowphase/EPA/TriangleEPA.cpp"
|
||||
"src/collision/narrowphase/EPA/TrianglesStore.h"
|
||||
"src/collision/narrowphase/EPA/TrianglesStore.cpp"
|
||||
"src/collision/narrowphase/GJK/Simplex.h"
|
||||
"src/collision/narrowphase/GJK/Simplex.cpp"
|
||||
"src/collision/narrowphase/GJK/VoronoiSimplex.h"
|
||||
"src/collision/narrowphase/GJK/VoronoiSimplex.cpp"
|
||||
"src/collision/narrowphase/GJK/GJKAlgorithm.h"
|
||||
"src/collision/narrowphase/GJK/GJKAlgorithm.cpp"
|
||||
"src/collision/narrowphase/NarrowPhaseAlgorithm.h"
|
||||
|
|
|
@ -25,7 +25,6 @@
|
|||
|
||||
// Libraries
|
||||
#include "GJKAlgorithm.h"
|
||||
#include "Simplex.h"
|
||||
#include "constraint/ContactPoint.h"
|
||||
#include "configuration.h"
|
||||
#include "engine/Profiler.h"
|
||||
|
|
|
@ -1,394 +0,0 @@
|
|||
/********************************************************************************
|
||||
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
|
||||
* Copyright (c) 2010-2016 Daniel Chappuis *
|
||||
*********************************************************************************
|
||||
* *
|
||||
* This software is provided 'as-is', without any express or implied warranty. *
|
||||
* In no event will the authors be held liable for any damages arising from the *
|
||||
* use of this software. *
|
||||
* *
|
||||
* Permission is granted to anyone to use this software for any purpose, *
|
||||
* including commercial applications, and to alter it and redistribute it *
|
||||
* freely, subject to the following restrictions: *
|
||||
* *
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||||
* that you wrote the original software. If you use this software in a *
|
||||
* product, an acknowledgment in the product documentation would be *
|
||||
* appreciated but is not required. *
|
||||
* *
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||||
* misrepresented as being the original software. *
|
||||
* *
|
||||
* 3. This notice may not be removed or altered from any source distribution. *
|
||||
* *
|
||||
********************************************************************************/
|
||||
|
||||
// Libraries
|
||||
#include "Simplex.h"
|
||||
#include <cfloat>
|
||||
|
||||
// We want to use the ReactPhysics3D namespace
|
||||
using namespace reactphysics3d;
|
||||
|
||||
// Constructor
|
||||
Simplex::Simplex() : mBitsCurrentSimplex(0x0), mAllBits(0x0) {
|
||||
|
||||
}
|
||||
|
||||
// Destructor
|
||||
Simplex::~Simplex() {
|
||||
|
||||
}
|
||||
|
||||
// Add a new support point of (A-B) into the simplex
|
||||
/// suppPointA : support point of object A in a direction -v
|
||||
/// suppPointB : support point of object B in a direction v
|
||||
/// point : support point of object (A-B) => point = suppPointA - suppPointB
|
||||
void Simplex::addPoint(const Vector3& point, const Vector3& suppPointA, const Vector3& suppPointB) {
|
||||
assert(!isFull());
|
||||
|
||||
mLastFound = 0;
|
||||
mLastFoundBit = 0x1;
|
||||
|
||||
// Look for the bit corresponding to one of the four point that is not in
|
||||
// the current simplex
|
||||
while (overlap(mBitsCurrentSimplex, mLastFoundBit)) {
|
||||
mLastFound++;
|
||||
mLastFoundBit <<= 1;
|
||||
}
|
||||
|
||||
assert(mLastFound < 4);
|
||||
|
||||
// Add the point into the simplex
|
||||
mPoints[mLastFound] = point;
|
||||
mPointsLengthSquare[mLastFound] = point.dot(point);
|
||||
mAllBits = mBitsCurrentSimplex | mLastFoundBit;
|
||||
|
||||
// Update the cached values
|
||||
updateCache();
|
||||
|
||||
// Compute the cached determinant values
|
||||
computeDeterminants();
|
||||
|
||||
// Add the support points of objects A and B
|
||||
mSuppPointsA[mLastFound] = suppPointA;
|
||||
mSuppPointsB[mLastFound] = suppPointB;
|
||||
}
|
||||
|
||||
// Return true if the point is in the simplex
|
||||
bool Simplex::isPointInSimplex(const Vector3& point) const {
|
||||
int i;
|
||||
Bits bit;
|
||||
|
||||
// For each four possible points in the simplex
|
||||
for (i=0, bit = 0x1; i<4; i++, bit <<= 1) {
|
||||
// Check if the current point is in the simplex
|
||||
if (overlap(mAllBits, bit) && point == mPoints[i]) return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// Update the cached values used during the GJK algorithm
|
||||
void Simplex::updateCache() {
|
||||
int i;
|
||||
Bits bit;
|
||||
|
||||
// For each of the four possible points of the simplex
|
||||
for (i=0, bit = 0x1; i<4; i++, bit <<= 1) {
|
||||
// If the current points is in the simplex
|
||||
if (overlap(mBitsCurrentSimplex, bit)) {
|
||||
|
||||
// Compute the distance between two points in the possible simplex set
|
||||
mDiffLength[i][mLastFound] = mPoints[i] - mPoints[mLastFound];
|
||||
mDiffLength[mLastFound][i] = -mDiffLength[i][mLastFound];
|
||||
|
||||
// Compute the squared length of the vector
|
||||
// distances from points in the possible simplex set
|
||||
mNormSquare[i][mLastFound] = mNormSquare[mLastFound][i] =
|
||||
mDiffLength[i][mLastFound].dot(mDiffLength[i][mLastFound]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Return the points of the simplex
|
||||
unsigned int Simplex::getSimplex(Vector3* suppPointsA, Vector3* suppPointsB,
|
||||
Vector3* points) const {
|
||||
unsigned int nbVertices = 0;
|
||||
int i;
|
||||
Bits bit;
|
||||
|
||||
// For each four point in the possible simplex
|
||||
for (i=0, bit=0x1; i<4; i++, bit <<=1) {
|
||||
|
||||
// If the current point is in the simplex
|
||||
if (overlap(mBitsCurrentSimplex, bit)) {
|
||||
|
||||
// Store the points
|
||||
suppPointsA[nbVertices] = this->mSuppPointsA[nbVertices];
|
||||
suppPointsB[nbVertices] = this->mSuppPointsB[nbVertices];
|
||||
points[nbVertices] = this->mPoints[nbVertices];
|
||||
|
||||
nbVertices++;
|
||||
}
|
||||
}
|
||||
|
||||
// Return the number of points in the simplex
|
||||
return nbVertices;
|
||||
}
|
||||
|
||||
// Compute the cached determinant values
|
||||
void Simplex::computeDeterminants() {
|
||||
mDet[mLastFoundBit][mLastFound] = 1.0;
|
||||
|
||||
// If the current simplex is not empty
|
||||
if (!isEmpty()) {
|
||||
int i;
|
||||
Bits bitI;
|
||||
|
||||
// For each possible four points in the simplex set
|
||||
for (i=0, bitI = 0x1; i<4; i++, bitI <<= 1) {
|
||||
|
||||
// If the current point is in the simplex
|
||||
if (overlap(mBitsCurrentSimplex, bitI)) {
|
||||
Bits bit2 = bitI | mLastFoundBit;
|
||||
|
||||
mDet[bit2][i] = mDiffLength[mLastFound][i].dot(mPoints[mLastFound]);
|
||||
mDet[bit2][mLastFound] = mDiffLength[i][mLastFound].dot(mPoints[i]);
|
||||
|
||||
|
||||
int j;
|
||||
Bits bitJ;
|
||||
|
||||
for (j=0, bitJ = 0x1; j<i; j++, bitJ <<= 1) {
|
||||
if (overlap(mBitsCurrentSimplex, bitJ)) {
|
||||
int k;
|
||||
Bits bit3 = bitJ | bit2;
|
||||
|
||||
k = mNormSquare[i][j] < mNormSquare[mLastFound][j] ? i : mLastFound;
|
||||
mDet[bit3][j] = mDet[bit2][i] * mDiffLength[k][j].dot(mPoints[i]) +
|
||||
mDet[bit2][mLastFound] *
|
||||
mDiffLength[k][j].dot(mPoints[mLastFound]);
|
||||
|
||||
k = mNormSquare[j][i] < mNormSquare[mLastFound][i] ? j : mLastFound;
|
||||
mDet[bit3][i] = mDet[bitJ | mLastFoundBit][j] *
|
||||
mDiffLength[k][i].dot(mPoints[j]) +
|
||||
mDet[bitJ | mLastFoundBit][mLastFound] *
|
||||
mDiffLength[k][i].dot(mPoints[mLastFound]);
|
||||
|
||||
k = mNormSquare[i][mLastFound] < mNormSquare[j][mLastFound] ? i : j;
|
||||
mDet[bit3][mLastFound] = mDet[bitJ | bitI][j] *
|
||||
mDiffLength[k][mLastFound].dot(mPoints[j]) +
|
||||
mDet[bitJ | bitI][i] *
|
||||
mDiffLength[k][mLastFound].dot(mPoints[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (mAllBits == 0xf) {
|
||||
int k;
|
||||
|
||||
k = mNormSquare[1][0] < mNormSquare[2][0] ?
|
||||
(mNormSquare[1][0] < mNormSquare[3][0] ? 1 : 3) :
|
||||
(mNormSquare[2][0] < mNormSquare[3][0] ? 2 : 3);
|
||||
mDet[0xf][0] = mDet[0xe][1] * mDiffLength[k][0].dot(mPoints[1]) +
|
||||
mDet[0xe][2] * mDiffLength[k][0].dot(mPoints[2]) +
|
||||
mDet[0xe][3] * mDiffLength[k][0].dot(mPoints[3]);
|
||||
|
||||
k = mNormSquare[0][1] < mNormSquare[2][1] ?
|
||||
(mNormSquare[0][1] < mNormSquare[3][1] ? 0 : 3) :
|
||||
(mNormSquare[2][1] < mNormSquare[3][1] ? 2 : 3);
|
||||
mDet[0xf][1] = mDet[0xd][0] * mDiffLength[k][1].dot(mPoints[0]) +
|
||||
mDet[0xd][2] * mDiffLength[k][1].dot(mPoints[2]) +
|
||||
mDet[0xd][3] * mDiffLength[k][1].dot(mPoints[3]);
|
||||
|
||||
k = mNormSquare[0][2] < mNormSquare[1][2] ?
|
||||
(mNormSquare[0][2] < mNormSquare[3][2] ? 0 : 3) :
|
||||
(mNormSquare[1][2] < mNormSquare[3][2] ? 1 : 3);
|
||||
mDet[0xf][2] = mDet[0xb][0] * mDiffLength[k][2].dot(mPoints[0]) +
|
||||
mDet[0xb][1] * mDiffLength[k][2].dot(mPoints[1]) +
|
||||
mDet[0xb][3] * mDiffLength[k][2].dot(mPoints[3]);
|
||||
|
||||
k = mNormSquare[0][3] < mNormSquare[1][3] ?
|
||||
(mNormSquare[0][3] < mNormSquare[2][3] ? 0 : 2) :
|
||||
(mNormSquare[1][3] < mNormSquare[2][3] ? 1 : 2);
|
||||
mDet[0xf][3] = mDet[0x7][0] * mDiffLength[k][3].dot(mPoints[0]) +
|
||||
mDet[0x7][1] * mDiffLength[k][3].dot(mPoints[1]) +
|
||||
mDet[0x7][2] * mDiffLength[k][3].dot(mPoints[2]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Return true if the subset is a proper subset.
|
||||
/// A proper subset X is a subset where for all point "y_i" in X, we have
|
||||
/// detX_i value bigger than zero
|
||||
bool Simplex::isProperSubset(Bits subset) const {
|
||||
int i;
|
||||
Bits bit;
|
||||
|
||||
// For each four point of the possible simplex set
|
||||
for (i=0, bit=0x1; i<4; i++, bit <<=1) {
|
||||
if (overlap(subset, bit) && mDet[subset][i] <= 0.0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Return true if the set is affinely dependent.
|
||||
/// A set if affinely dependent if a point of the set
|
||||
/// is an affine combination of other points in the set
|
||||
bool Simplex::isAffinelyDependent() const {
|
||||
decimal sum = 0.0;
|
||||
int i;
|
||||
Bits bit;
|
||||
|
||||
// For each four point of the possible simplex set
|
||||
for (i=0, bit=0x1; i<4; i++, bit <<= 1) {
|
||||
if (overlap(mAllBits, bit)) {
|
||||
sum += mDet[mAllBits][i];
|
||||
}
|
||||
}
|
||||
|
||||
return (sum <= 0.0);
|
||||
}
|
||||
|
||||
// Return true if the subset is a valid one for the closest point computation.
|
||||
/// A subset X is valid if :
|
||||
/// 1. delta(X)_i > 0 for each "i" in I_x and
|
||||
/// 2. delta(X U {y_j})_j <= 0 for each "j" not in I_x_
|
||||
bool Simplex::isValidSubset(Bits subset) const {
|
||||
int i;
|
||||
Bits bit;
|
||||
|
||||
// For each four point in the possible simplex set
|
||||
for (i=0, bit=0x1; i<4; i++, bit <<= 1) {
|
||||
if (overlap(mAllBits, bit)) {
|
||||
// If the current point is in the subset
|
||||
if (overlap(subset, bit)) {
|
||||
// If one delta(X)_i is smaller or equal to zero
|
||||
if (mDet[subset][i] <= 0.0) {
|
||||
// The subset is not valid
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// If the point is not in the subset and the value delta(X U {y_j})_j
|
||||
// is bigger than zero
|
||||
else if (mDet[subset | bit][i] > 0.0) {
|
||||
// The subset is not valid
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Compute the closest points "pA" and "pB" of object A and B.
|
||||
/// The points are computed as follows :
|
||||
/// pA = sum(lambda_i * a_i) where "a_i" are the support points of object A
|
||||
/// pB = sum(lambda_i * b_i) where "b_i" are the support points of object B
|
||||
/// with lambda_i = deltaX_i / deltaX
|
||||
void Simplex::computeClosestPointsOfAandB(Vector3& pA, Vector3& pB) const {
|
||||
decimal deltaX = 0.0;
|
||||
pA.setAllValues(0.0, 0.0, 0.0);
|
||||
pB.setAllValues(0.0, 0.0, 0.0);
|
||||
int i;
|
||||
Bits bit;
|
||||
|
||||
// For each four points in the possible simplex set
|
||||
for (i=0, bit=0x1; i<4; i++, bit <<= 1) {
|
||||
// If the current point is part of the simplex
|
||||
if (overlap(mBitsCurrentSimplex, bit)) {
|
||||
deltaX += mDet[mBitsCurrentSimplex][i];
|
||||
pA += mDet[mBitsCurrentSimplex][i] * mSuppPointsA[i];
|
||||
pB += mDet[mBitsCurrentSimplex][i] * mSuppPointsB[i];
|
||||
}
|
||||
}
|
||||
|
||||
assert(deltaX > 0.0);
|
||||
decimal factor = decimal(1.0) / deltaX;
|
||||
pA *= factor;
|
||||
pB *= factor;
|
||||
}
|
||||
|
||||
// Compute the closest point "v" to the origin of the current simplex.
|
||||
/// This method executes the Jonhnson's algorithm for computing the point
|
||||
/// "v" of simplex that is closest to the origin. The method returns true
|
||||
/// if a closest point has been found.
|
||||
bool Simplex::computeClosestPoint(Vector3& v) {
|
||||
Bits subset;
|
||||
|
||||
// For each possible simplex set
|
||||
for (subset=mBitsCurrentSimplex; subset != 0x0; subset--) {
|
||||
// If the simplex is a subset of the current simplex and is valid for the Johnson's
|
||||
// algorithm test
|
||||
if (isSubset(subset, mBitsCurrentSimplex) && isValidSubset(subset | mLastFoundBit)) {
|
||||
mBitsCurrentSimplex = subset | mLastFoundBit; // Add the last added point to the current simplex
|
||||
v = computeClosestPointForSubset(mBitsCurrentSimplex); // Compute the closest point in the simplex
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// If the simplex that contains only the last added point is valid for the Johnson's algorithm test
|
||||
if (isValidSubset(mLastFoundBit)) {
|
||||
mBitsCurrentSimplex = mLastFoundBit; // Set the current simplex to the set that contains only the last added point
|
||||
mMaxLengthSquare = mPointsLengthSquare[mLastFound]; // Update the maximum square length
|
||||
v = mPoints[mLastFound]; // The closest point of the simplex "v" is the last added point
|
||||
return true;
|
||||
}
|
||||
|
||||
// The algorithm failed to found a point
|
||||
return false;
|
||||
}
|
||||
|
||||
// Backup the closest point
|
||||
void Simplex::backupClosestPointInSimplex(Vector3& v) {
|
||||
decimal minDistSquare = DECIMAL_LARGEST;
|
||||
Bits bit;
|
||||
|
||||
for (bit = mAllBits; bit != 0x0; bit--) {
|
||||
if (isSubset(bit, mAllBits) && isProperSubset(bit)) {
|
||||
Vector3 u = computeClosestPointForSubset(bit);
|
||||
decimal distSquare = u.dot(u);
|
||||
if (distSquare < minDistSquare) {
|
||||
minDistSquare = distSquare;
|
||||
mBitsCurrentSimplex = bit;
|
||||
v = u;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Return the closest point "v" in the convex hull of the points in the subset
|
||||
// represented by the bits "subset"
|
||||
Vector3 Simplex::computeClosestPointForSubset(Bits subset) {
|
||||
Vector3 v(0.0, 0.0, 0.0); // Closet point v = sum(lambda_i * points[i])
|
||||
mMaxLengthSquare = 0.0;
|
||||
decimal deltaX = 0.0; // deltaX = sum of all det[subset][i]
|
||||
int i;
|
||||
Bits bit;
|
||||
|
||||
// For each four point in the possible simplex set
|
||||
for (i=0, bit=0x1; i<4; i++, bit <<= 1) {
|
||||
// If the current point is in the subset
|
||||
if (overlap(subset, bit)) {
|
||||
// deltaX = sum of all det[subset][i]
|
||||
deltaX += mDet[subset][i];
|
||||
|
||||
if (mMaxLengthSquare < mPointsLengthSquare[i]) {
|
||||
mMaxLengthSquare = mPointsLengthSquare[i];
|
||||
}
|
||||
|
||||
// Closest point v = sum(lambda_i * points[i])
|
||||
v += mDet[subset][i] * mPoints[i];
|
||||
}
|
||||
}
|
||||
|
||||
assert(deltaX > 0.0);
|
||||
|
||||
// Return the closet point "v" in the convex hull for the given subset
|
||||
return (decimal(1.0) / deltaX) * v;
|
||||
}
|
|
@ -1,189 +0,0 @@
|
|||
/********************************************************************************
|
||||
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
|
||||
* Copyright (c) 2010-2016 Daniel Chappuis *
|
||||
*********************************************************************************
|
||||
* *
|
||||
* This software is provided 'as-is', without any express or implied warranty. *
|
||||
* In no event will the authors be held liable for any damages arising from the *
|
||||
* use of this software. *
|
||||
* *
|
||||
* Permission is granted to anyone to use this software for any purpose, *
|
||||
* including commercial applications, and to alter it and redistribute it *
|
||||
* freely, subject to the following restrictions: *
|
||||
* *
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||||
* that you wrote the original software. If you use this software in a *
|
||||
* product, an acknowledgment in the product documentation would be *
|
||||
* appreciated but is not required. *
|
||||
* *
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||||
* misrepresented as being the original software. *
|
||||
* *
|
||||
* 3. This notice may not be removed or altered from any source distribution. *
|
||||
* *
|
||||
********************************************************************************/
|
||||
|
||||
#ifndef REACTPHYSICS3D_SIMPLEX_H
|
||||
#define REACTPHYSICS3D_SIMPLEX_H
|
||||
|
||||
// Libraries
|
||||
#include "mathematics/mathematics.h"
|
||||
#include <vector>
|
||||
|
||||
/// ReactPhysics3D namespace
|
||||
namespace reactphysics3d {
|
||||
|
||||
// Type definitions
|
||||
typedef unsigned int Bits;
|
||||
|
||||
// Class Simplex
|
||||
/**
|
||||
* This class represents a simplex which is a set of 3D points. This
|
||||
* class is used in the GJK algorithm. This implementation is based on
|
||||
* the implementation discussed in the book "Collision Detection in 3D
|
||||
* Environments". This class implements the Johnson's algorithm for
|
||||
* computing the point of a simplex that is closest to the origin and also
|
||||
* the smallest simplex needed to represent that closest point.
|
||||
*/
|
||||
class Simplex {
|
||||
|
||||
private:
|
||||
|
||||
// -------------------- Attributes -------------------- //
|
||||
|
||||
/// Current points
|
||||
Vector3 mPoints[4];
|
||||
|
||||
/// pointsLengthSquare[i] = (points[i].length)^2
|
||||
decimal mPointsLengthSquare[4];
|
||||
|
||||
/// Maximum length of pointsLengthSquare[i]
|
||||
decimal mMaxLengthSquare;
|
||||
|
||||
/// Support points of object A in local coordinates
|
||||
Vector3 mSuppPointsA[4];
|
||||
|
||||
/// Support points of object B in local coordinates
|
||||
Vector3 mSuppPointsB[4];
|
||||
|
||||
/// diff[i][j] contains points[i] - points[j]
|
||||
Vector3 mDiffLength[4][4];
|
||||
|
||||
/// Cached determinant values
|
||||
decimal mDet[16][4];
|
||||
|
||||
/// norm[i][j] = (diff[i][j].length())^2
|
||||
decimal mNormSquare[4][4];
|
||||
|
||||
/// 4 bits that identify the current points of the simplex
|
||||
/// For instance, 0101 means that points[1] and points[3] are in the simplex
|
||||
Bits mBitsCurrentSimplex;
|
||||
|
||||
/// Number between 1 and 4 that identify the last found support point
|
||||
Bits mLastFound;
|
||||
|
||||
/// Position of the last found support point (lastFoundBit = 0x1 << lastFound)
|
||||
Bits mLastFoundBit;
|
||||
|
||||
/// allBits = bitsCurrentSimplex | lastFoundBit;
|
||||
Bits mAllBits;
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Private copy-constructor
|
||||
Simplex(const Simplex& simplex);
|
||||
|
||||
/// Private assignment operator
|
||||
Simplex& operator=(const Simplex& simplex);
|
||||
|
||||
/// Return true if some bits of "a" overlap with bits of "b"
|
||||
bool overlap(Bits a, Bits b) const;
|
||||
|
||||
/// Return true if the bits of "b" is a subset of the bits of "a"
|
||||
bool isSubset(Bits a, Bits b) const;
|
||||
|
||||
/// Return true if the subset is a valid one for the closest point computation.
|
||||
bool isValidSubset(Bits subset) const;
|
||||
|
||||
/// Return true if the subset is a proper subset.
|
||||
bool isProperSubset(Bits subset) const;
|
||||
|
||||
/// Update the cached values used during the GJK algorithm
|
||||
void updateCache();
|
||||
|
||||
/// Compute the cached determinant values
|
||||
void computeDeterminants();
|
||||
|
||||
/// Return the closest point "v" in the convex hull of a subset of points
|
||||
Vector3 computeClosestPointForSubset(Bits subset);
|
||||
|
||||
public:
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Constructor
|
||||
Simplex();
|
||||
|
||||
/// Destructor
|
||||
~Simplex();
|
||||
|
||||
/// Return true if the simplex contains 4 points
|
||||
bool isFull() const;
|
||||
|
||||
/// Return true if the simplex is empty
|
||||
bool isEmpty() const;
|
||||
|
||||
/// Return the points of the simplex
|
||||
unsigned int getSimplex(Vector3* mSuppPointsA, Vector3* mSuppPointsB,
|
||||
Vector3* mPoints) const;
|
||||
|
||||
/// Return the maximum squared length of a point
|
||||
decimal getMaxLengthSquareOfAPoint() const;
|
||||
|
||||
/// Add a new support point of (A-B) into the simplex.
|
||||
void addPoint(const Vector3& point, const Vector3& suppPointA, const Vector3& suppPointB);
|
||||
|
||||
/// Return true if the point is in the simplex
|
||||
bool isPointInSimplex(const Vector3& point) const;
|
||||
|
||||
/// Return true if the set is affinely dependent
|
||||
bool isAffinelyDependent() const;
|
||||
|
||||
/// Backup the closest point
|
||||
void backupClosestPointInSimplex(Vector3& point);
|
||||
|
||||
/// Compute the closest points "pA" and "pB" of object A and B.
|
||||
void computeClosestPointsOfAandB(Vector3& pA, Vector3& pB) const;
|
||||
|
||||
/// Compute the closest point to the origin of the current simplex.
|
||||
bool computeClosestPoint(Vector3& v);
|
||||
};
|
||||
|
||||
// Return true if some bits of "a" overlap with bits of "b"
|
||||
inline bool Simplex::overlap(Bits a, Bits b) const {
|
||||
return ((a & b) != 0x0);
|
||||
}
|
||||
|
||||
// Return true if the bits of "b" is a subset of the bits of "a"
|
||||
inline bool Simplex::isSubset(Bits a, Bits b) const {
|
||||
return ((a & b) == a);
|
||||
}
|
||||
|
||||
// Return true if the simplex contains 4 points
|
||||
inline bool Simplex::isFull() const {
|
||||
return (mBitsCurrentSimplex == 0xf);
|
||||
}
|
||||
|
||||
// Return true if the simple is empty
|
||||
inline bool Simplex::isEmpty() const {
|
||||
return (mBitsCurrentSimplex == 0x0);
|
||||
}
|
||||
|
||||
// Return the maximum squared length of a point
|
||||
inline decimal Simplex::getMaxLengthSquareOfAPoint() const {
|
||||
return mMaxLengthSquare;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user