Change the way we solve the linear system

This commit is contained in:
Daniel Chappuis 2012-12-30 12:45:06 +01:00
parent a70e0655c5
commit e4d47ded09
2 changed files with 13 additions and 128 deletions

View File

@ -142,16 +142,6 @@ void ConstraintSolver::initializeBodies() {
Vconstraint[bodyNumber] = Vector3(0, 0, 0);
Wconstraint[bodyNumber] = Vector3(0, 0, 0);
// Compute the vector with forces and torques values
Vector3 externalForce = rigidBody->getExternalForce();
Vector3 externalTorque = rigidBody->getExternalTorque();
Fext[bodyIndexArray] = externalForce[0];
Fext[bodyIndexArray + 1] = externalForce[1];
Fext[bodyIndexArray + 2] = externalForce[2];
Fext[bodyIndexArray + 3] = externalTorque[0];
Fext[bodyIndexArray + 4] = externalTorque[1];
Fext[bodyIndexArray + 5] = externalTorque[2];
// Initialize the mass and inertia tensor matrices
Minv_sp_inertia[bodyNumber].setAllValues(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
Minv_sp_mass_diag[bodyNumber] = 0.0;
@ -259,120 +249,13 @@ void ConstraintSolver::initializeContactConstraints(decimal dt) {
// b = errorValues * oneOverDT;
contact.b_Penetration = contact.errorPenetration * oneOverDT;
// Substract 1.0/dt*J*V to the vector b
indexBody1 = constraint.indexBody1;
indexBody2 = constraint.indexBody2;
decimal multiplication = 0.0;
int body1ArrayIndex = 6 * indexBody1;
int body2ArrayIndex = 6 * indexBody2;
for (uint i=0; i<3; i++) {
multiplication += contact.J_spBody1Penetration[i] * V1[indexBody1][i];
multiplication += contact.J_spBody1Penetration[i + 3] * W1[indexBody1][i];
multiplication += contact.J_spBody2Penetration[i] * V1[indexBody2][i];
multiplication += contact.J_spBody2Penetration[i + 3] * W1[indexBody2][i];
}
contact.b_Penetration -= multiplication * oneOverDT ;
// Substract J*M^-1*F_ext to the vector b
decimal value1 = 0.0;
decimal value2 = 0.0;
decimal sum1, sum2;
value1 += contact.J_spBody1Penetration[0] * Minv_sp_mass_diag[indexBody1] * Fext[body1ArrayIndex] +
contact.J_spBody1Penetration[1] * Minv_sp_mass_diag[indexBody1] * Fext[body1ArrayIndex + 1] +
contact.J_spBody1Penetration[2] * Minv_sp_mass_diag[indexBody1] * Fext[body1ArrayIndex + 2];
value2 += contact.J_spBody2Penetration[0] * Minv_sp_mass_diag[indexBody2] * Fext[body2ArrayIndex] +
contact.J_spBody2Penetration[1] * Minv_sp_mass_diag[indexBody2] * Fext[body2ArrayIndex + 1] +
contact.J_spBody2Penetration[2] * Minv_sp_mass_diag[indexBody2] * Fext[body2ArrayIndex + 2];
for (uint i=0; i<3; i++) {
sum1 = 0.0;
sum2 = 0.0;
for (uint j=0; j<3; j++) {
sum1 += contact.J_spBody1Penetration[3 + j] * Minv_sp_inertia[indexBody1].getValue(j, i);
sum2 += contact.J_spBody2Penetration[3 + j] * Minv_sp_inertia[indexBody2].getValue(j, i);
}
value1 += sum1 * Fext[body1ArrayIndex + 3 + i];
value2 += sum2 * Fext[body2ArrayIndex + 3 + i];
}
contact.b_Penetration -= value1 + value2;
// ---------- Friction 1 ---------- //
// b = errorValues * oneOverDT;
contact.b_Friction1 = contact.errorFriction1 * oneOverDT;
// Substract 1.0/dt*J*V to the vector b
multiplication = 0.0;
for (uint i=0; i<3; i++) {
multiplication += contact.J_spBody1Friction1[i] * V1[indexBody1][i];
multiplication += contact.J_spBody1Friction1[i + 3] * W1[indexBody1][i];
multiplication += contact.J_spBody2Friction1[i] * V1[indexBody2][i];
multiplication += contact.J_spBody2Friction1[i + 3] * W1[indexBody2][i];
}
contact.b_Friction1 -= multiplication * oneOverDT ;
// Substract J*M^-1*F_ext to the vector b
value1 = 0.0;
value2 = 0.0;
value1 += contact.J_spBody1Friction1[0] * Minv_sp_mass_diag[indexBody1] * Fext[body1ArrayIndex] +
contact.J_spBody1Friction1[1] * Minv_sp_mass_diag[indexBody1] * Fext[body1ArrayIndex + 1] +
contact.J_spBody1Friction1[2] * Minv_sp_mass_diag[indexBody1] * Fext[body1ArrayIndex + 2];
value2 += contact.J_spBody2Friction1[0] * Minv_sp_mass_diag[indexBody2] * Fext[body2ArrayIndex] +
contact.J_spBody2Friction1[1] * Minv_sp_mass_diag[indexBody2] * Fext[body2ArrayIndex + 1] +
contact.J_spBody2Friction1[2] * Minv_sp_mass_diag[indexBody2] * Fext[body2ArrayIndex + 2];
for (uint i=0; i<3; i++) {
sum1 = 0.0;
sum2 = 0.0;
for (uint j=0; j<3; j++) {
sum1 += contact.J_spBody1Friction1[3 + j] * Minv_sp_inertia[indexBody1].getValue(j, i);
sum2 += contact.J_spBody2Friction1[3 + j] * Minv_sp_inertia[indexBody2].getValue(j, i);
}
value1 += sum1 * Fext[body1ArrayIndex + 3 + i];
value2 += sum2 * Fext[body2ArrayIndex + 3 + i];
}
contact.b_Friction1 -= value1 + value2;
// ---------- Friction 2 ---------- //
// b = errorValues * oneOverDT;
contact.b_Friction2 = contact.errorFriction2 * oneOverDT;
// Substract 1.0/dt*J*V to the vector b
multiplication = 0.0;
for (uint i=0; i<3; i++) {
multiplication += contact.J_spBody1Friction2[i] * V1[indexBody1][i];
multiplication += contact.J_spBody1Friction2[i + 3] * W1[indexBody1][i];
multiplication += contact.J_spBody2Friction2[i] * V1[indexBody2][i];
multiplication += contact.J_spBody2Friction2[i + 3] * W1[indexBody2][i];
}
contact.b_Friction2 -= multiplication * oneOverDT ;
// Substract J*M^-1*F_ext to the vector b
value1 = 0.0;
value2 = 0.0;
value1 += contact.J_spBody1Friction2[0] * Minv_sp_mass_diag[indexBody1] * Fext[body1ArrayIndex] +
contact.J_spBody1Friction2[1] * Minv_sp_mass_diag[indexBody1] * Fext[body1ArrayIndex + 1] +
contact.J_spBody1Friction2[2] * Minv_sp_mass_diag[indexBody1] * Fext[body1ArrayIndex + 2];
value2 += contact.J_spBody2Friction2[0] * Minv_sp_mass_diag[indexBody2] * Fext[body2ArrayIndex] +
contact.J_spBody2Friction2[1] * Minv_sp_mass_diag[indexBody2] * Fext[body2ArrayIndex + 1] +
contact.J_spBody2Friction2[2] * Minv_sp_mass_diag[indexBody2] * Fext[body2ArrayIndex + 2];
for (uint i=0; i<3; i++) {
sum1 = 0.0;
sum2 = 0.0;
for (uint j=0; j<3; j++) {
sum1 += contact.J_spBody1Friction2[3 + j] * Minv_sp_inertia[indexBody1].getValue(j, i);
sum2 += contact.J_spBody2Friction2[3 + j] * Minv_sp_inertia[indexBody2].getValue(j, i);
}
value1 += sum1 * Fext[body1ArrayIndex + 3 + i];
value2 += sum2 * Fext[body2ArrayIndex + 3 + i];
}
contact.b_Friction2 -= value1 + value2;
}
}
@ -546,7 +429,7 @@ void ConstraintSolver::computeVectorVconstraint(decimal dt) {
// Solve a LCP problem using the Projected-Gauss-Seidel algorithm
// This method outputs the result in the lambda vector
void ConstraintSolver::solveLCP() {
void ConstraintSolver::solveLCP(decimal dt) {
// for (uint i=0; i<nbConstraints; i++) {
// lambda[i] = lambdaInit[i];
@ -558,7 +441,7 @@ void ConstraintSolver::solveLCP() {
uint iter;
// Compute the vector a
computeVectorA();
computeVectorA(dt);
// For each iteration
for(iter=0; iter<mNbIterations; iter++) {
@ -638,14 +521,18 @@ void ConstraintSolver::solveLCP() {
// Compute the vector a used in the solve() method
// Note that a = B * lambda
void ConstraintSolver::computeVectorA() {
void ConstraintSolver::computeVectorA(decimal dt) {
uint i;
uint indexBody1Array, indexBody2Array;
decimal oneOverDt = 1.0 / dt;
// Init the vector a with zero values
for (i=0; i<nbBodies; i++) {
aLinear[i] = Vector3(0, 0, 0);
aAngular[i] = Vector3(0, 0, 0);
for (set<RigidBody*>::iterator it = mConstraintBodies.begin(); it != mConstraintBodies.end(); ++it) {
RigidBody* rigidBody = *it;
uint bodyNumber = mMapBodyToIndex[rigidBody];
aLinear[bodyNumber] = oneOverDt * V1[bodyNumber] + rigidBody->getMassInverse() * rigidBody->getExternalForce();
aAngular[bodyNumber] = oneOverDt * W1[bodyNumber] + rigidBody->getInertiaTensorInverseWorld() * rigidBody->getExternalTorque();
}
// For each constraint

View File

@ -180,8 +180,6 @@ class ConstraintSolver {
Vector3* Vconstraint; // Same kind of vector as V1 but contains the final constraint velocities
Vector3* Wconstraint;
decimal VconstraintError[6*NB_MAX_BODIES]; // Same kind of vector as V1 but contains the final constraint velocities
decimal Fext[6*NB_MAX_BODIES]; // Array that contains for each body the 6x1 vector that contains external forces and torques
// Each cell contains a 6x1 vector with external force and torque.
// Contact constraints
ContactConstraint* mContactConstraints;
@ -202,8 +200,8 @@ class ConstraintSolver {
void computeMatrixB_sp(); // Compute the matrix B_sp
void computeVectorVconstraint(decimal dt); // Compute the vector V2
void cacheLambda(); // Cache the lambda values in order to reuse them in the next step to initialize the lambda vector
void computeVectorA(); // Compute the vector a used in the solve() method
void solveLCP(); // Solve a LCP problem using Projected-Gauss-Seidel algorithm
void computeVectorA(decimal dt); // Compute the vector a used in the solve() method
void solveLCP(decimal dt); // Solve a LCP problem using Projected-Gauss-Seidel algorithm
public:
ConstraintSolver(DynamicsWorld* world); // Constructor
@ -283,7 +281,7 @@ inline void ConstraintSolver::solve(decimal dt) {
computeMatrixB_sp();
// Solve the LCP problem (computation of lambda)
solveLCP();
solveLCP(dt);
// Cache the lambda values in order to use them in the next step
cacheLambda();