Clean the code
This commit is contained in:
parent
0695b30704
commit
e84f6468c8
|
@ -35,9 +35,9 @@ using namespace reactphysics3d;
|
|||
CollisionShape *collisionShape, bodyindex id)
|
||||
: CollisionBody(transform, collisionShape, id), mInertiaTensorLocal(inertiaTensorLocal),
|
||||
mMass(mass), mInertiaTensorLocalInverse(inertiaTensorLocal.getInverse()),
|
||||
mMassInverse(1.0/mass) {
|
||||
mMassInverse(decimal(1.0) / mass), mFrictionCoefficient(DEFAULT_FRICTION_COEFFICIENT) {
|
||||
|
||||
mRestitution = 1.0;
|
||||
mRestitution = decimal(1.0);
|
||||
|
||||
// Set the body pointer of the AABB and the collision shape
|
||||
mAabb->setBodyPointer(this);
|
||||
|
|
|
@ -77,6 +77,8 @@ class RigidBody : public CollisionBody {
|
|||
// Coefficient of restitution (between 0 and 1) where 1 is for a very bouncy body
|
||||
decimal mRestitution;
|
||||
|
||||
// Friction coefficient
|
||||
decimal mFrictionCoefficient;
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
|
@ -153,6 +155,12 @@ class RigidBody : public CollisionBody {
|
|||
|
||||
// Set the restitution coefficient
|
||||
void setRestitution(decimal restitution) throw(std::invalid_argument);
|
||||
|
||||
// Get the friction coefficient
|
||||
decimal getFrictionCoefficient() const;
|
||||
|
||||
// Set the friction coefficient
|
||||
void setFrictionCoefficient(decimal frictionCoefficient);
|
||||
};
|
||||
|
||||
// Method that return the mass of the body
|
||||
|
@ -277,6 +285,16 @@ inline void RigidBody::setRestitution(decimal restitution) throw(std::invalid_ar
|
|||
}
|
||||
}
|
||||
|
||||
// Get the friction coefficient
|
||||
inline decimal RigidBody::getFrictionCoefficient() const {
|
||||
return mFrictionCoefficient;
|
||||
}
|
||||
|
||||
// Set the friction coefficient
|
||||
inline void RigidBody::setFrictionCoefficient(decimal frictionCoefficient) {
|
||||
mFrictionCoefficient = frictionCoefficient;
|
||||
}
|
||||
|
||||
} // End of the ReactPhyscis3D namespace
|
||||
|
||||
#endif
|
||||
|
|
|
@ -37,7 +37,7 @@
|
|||
namespace reactphysics3d {
|
||||
|
||||
// Constants
|
||||
const decimal REL_ERROR = 1.0e-3;
|
||||
const decimal REL_ERROR = decimal(1.0e-3);
|
||||
const decimal REL_ERROR_SQUARE = REL_ERROR * REL_ERROR;
|
||||
|
||||
/* -------------------------------------------------------------------
|
||||
|
|
|
@ -57,7 +57,7 @@ BoxShape::~BoxShape() {
|
|||
|
||||
// Return the local inertia tensor of the collision shape
|
||||
void BoxShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const {
|
||||
decimal factor = (1.0 / 3.0) * mass;
|
||||
decimal factor = (decimal(1.0) / decimal(3.0)) * mass;
|
||||
decimal xSquare = mExtent.getX() * mExtent.getX();
|
||||
decimal ySquare = mExtent.getY() * mExtent.getY();
|
||||
decimal zSquare = mExtent.getZ() * mExtent.getZ();
|
||||
|
|
|
@ -45,7 +45,7 @@ using namespace reactphysics3d;
|
|||
|
||||
// Constructor
|
||||
ConeShape::ConeShape(decimal radius, decimal height)
|
||||
: CollisionShape(CONE), mRadius(radius), mHalfHeight(height/2.0) {
|
||||
: CollisionShape(CONE), mRadius(radius), mHalfHeight(height / decimal(2.0)) {
|
||||
assert(radius > 0.0);
|
||||
assert(mHalfHeight > 0.0);
|
||||
|
||||
|
|
|
@ -118,12 +118,12 @@ inline void ConeShape::setRadius(decimal radius) {
|
|||
|
||||
// Return the height
|
||||
inline decimal ConeShape::getHeight() const {
|
||||
return 2.0 * mHalfHeight;
|
||||
return decimal(2.0) * mHalfHeight;
|
||||
}
|
||||
|
||||
// Set the height
|
||||
inline void ConeShape::setHeight(decimal height) {
|
||||
mHalfHeight = height / 2.0;
|
||||
mHalfHeight = height * decimal(0.5);
|
||||
|
||||
// Update the sine of the semi-angle at the apex point
|
||||
mSinTheta = mRadius / (sqrt(mRadius * mRadius + height * height));
|
||||
|
@ -137,8 +137,10 @@ inline Vector3 ConeShape::getLocalExtents(decimal margin) const {
|
|||
// Return the local inertia tensor of the collision shape
|
||||
inline void ConeShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const {
|
||||
decimal rSquare = mRadius * mRadius;
|
||||
decimal diagXZ = 0.15 * mass * (rSquare + mHalfHeight);
|
||||
tensor.setAllValues(diagXZ, 0.0, 0.0, 0.0, 0.3 * mass * rSquare, 0.0, 0.0, 0.0, diagXZ);
|
||||
decimal diagXZ = decimal(0.15) * mass * (rSquare + mHalfHeight);
|
||||
tensor.setAllValues(diagXZ, 0.0, 0.0,
|
||||
0.0, decimal(0.3) * mass * rSquare,
|
||||
0.0, 0.0, 0.0, diagXZ);
|
||||
}
|
||||
|
||||
}; // End of the ReactPhysics3D namespace
|
||||
|
|
|
@ -116,7 +116,7 @@ inline decimal CylinderShape::getHeight() const {
|
|||
|
||||
// Set the height
|
||||
inline void CylinderShape::setHeight(decimal height) {
|
||||
this->mHalfHeight = height / 2.0;
|
||||
mHalfHeight = height * decimal(0.5);
|
||||
}
|
||||
|
||||
// Return the local extents in x,y and z direction
|
||||
|
@ -126,9 +126,11 @@ inline Vector3 CylinderShape::getLocalExtents(decimal margin) const {
|
|||
|
||||
// Return the local inertia tensor of the cylinder
|
||||
inline void CylinderShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const {
|
||||
decimal height = 2.0 * mHalfHeight;
|
||||
decimal diag = (1.0 / 12.0) * mass * (3 * mRadius * mRadius + height * height);
|
||||
tensor.setAllValues(diag, 0.0, 0.0, 0.0, 0.5 * mass * mRadius * mRadius, 0.0, 0.0, 0.0, diag);
|
||||
decimal height = decimal(2.0) * mHalfHeight;
|
||||
decimal diag = (decimal(1.0) / decimal(12.0)) * mass * (3 * mRadius * mRadius + height * height);
|
||||
tensor.setAllValues(diag, 0.0, 0.0, 0.0,
|
||||
decimal(0.5) * mass * mRadius * mRadius, 0.0,
|
||||
0.0, 0.0, diag);
|
||||
}
|
||||
|
||||
}; // End of the ReactPhysics3D namespace
|
||||
|
|
|
@ -121,8 +121,10 @@ inline Vector3 SphereShape::getLocalExtents(decimal margin) const {
|
|||
|
||||
// Return the local inertia tensor of the sphere
|
||||
inline void SphereShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const {
|
||||
decimal diag = 0.4 * mass * mRadius * mRadius;
|
||||
tensor.setAllValues(diag, 0.0, 0.0, 0.0, diag, 0.0, 0.0, 0.0, diag);
|
||||
decimal diag = decimal(0.4) * mass * mRadius * mRadius;
|
||||
tensor.setAllValues(diag, 0.0, 0.0,
|
||||
0.0, diag, 0.0,
|
||||
0.0, 0.0, diag);
|
||||
}
|
||||
|
||||
}; // End of the ReactPhysics3D namespace
|
||||
|
|
|
@ -53,43 +53,34 @@ typedef std::pair<bodyindex, bodyindex> bodyindexpair;
|
|||
|
||||
// ------------------- Constants ------------------- //
|
||||
|
||||
const reactphysics3d::decimal DECIMAL_SMALLEST = - std::numeric_limits<decimal>::max();
|
||||
const decimal DECIMAL_SMALLEST = - std::numeric_limits<decimal>::max();
|
||||
|
||||
// Maximum decimal value
|
||||
const reactphysics3d::decimal DECIMAL_LARGEST = std::numeric_limits<decimal>::max();
|
||||
const decimal DECIMAL_LARGEST = std::numeric_limits<decimal>::max();
|
||||
|
||||
// Machine epsilon
|
||||
const reactphysics3d::decimal MACHINE_EPSILON = std::numeric_limits<decimal>::epsilon();
|
||||
|
||||
// Infinity
|
||||
const reactphysics3d::decimal DECIMAL_INFINITY = std::numeric_limits<decimal>::infinity();
|
||||
const decimal MACHINE_EPSILON = std::numeric_limits<decimal>::epsilon();
|
||||
|
||||
// Pi constant
|
||||
const reactphysics3d::decimal PI = 3.14159265;
|
||||
const decimal PI = decimal(3.14159265);
|
||||
|
||||
// Default internal constant timestep in seconds
|
||||
const reactphysics3d::decimal DEFAULT_TIMESTEP = 1.0 / 60.0;
|
||||
const decimal DEFAULT_TIMESTEP = decimal(1.0 / 60.0);
|
||||
|
||||
// Default friction coefficient for a rigid body
|
||||
const decimal DEFAULT_FRICTION_COEFFICIENT = decimal(0.3);
|
||||
|
||||
// True if the deactivation (sleeping) of inactive bodies is enabled
|
||||
const bool DEACTIVATION_ENABLED = true;
|
||||
|
||||
// // Object margin for collision detection in cm (For GJK-EPA Algorithm)
|
||||
const reactphysics3d::decimal OBJECT_MARGIN = 0.04;
|
||||
|
||||
// Friction coefficient
|
||||
const reactphysics3d::decimal FRICTION_COEFFICIENT = 0.4;
|
||||
const decimal OBJECT_MARGIN = decimal(0.04);
|
||||
|
||||
// Distance threshold for two contact points for a valid persistent contact (in meters)
|
||||
const reactphysics3d::decimal PERSISTENT_CONTACT_DIST_THRESHOLD = 0.03;
|
||||
|
||||
// Maximum number of bodies
|
||||
const int NB_MAX_BODIES = 100000;
|
||||
|
||||
// Maximum number of constraints
|
||||
const int NB_MAX_CONSTRAINTS = 100000;
|
||||
const decimal PERSISTENT_CONTACT_DIST_THRESHOLD = decimal(0.03);
|
||||
|
||||
// Number of iterations when solving a LCP problem
|
||||
const uint DEFAULT_LCP_ITERATIONS = 15;
|
||||
const uint DEFAULT_CONSTRAINTS_SOLVER_NB_ITERATIONS = 15;
|
||||
|
||||
// Number of iterations when solving a LCP problem for error correction
|
||||
const uint DEFAULT_LCP_ITERATIONS_ERROR_CORRECTION = 5;
|
||||
|
@ -97,9 +88,6 @@ const uint DEFAULT_LCP_ITERATIONS_ERROR_CORRECTION = 5;
|
|||
// True if the error correction projection (first order world) is active in the constraint solver
|
||||
const bool ERROR_CORRECTION_PROJECTION_ENABLED = true;
|
||||
|
||||
// Contacts with penetration depth (in meters) larger that this use error correction with projection
|
||||
const reactphysics3d::decimal PENETRATION_DEPTH_THRESHOLD_ERROR_CORRECTION = 0.20;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -100,21 +100,6 @@ class Constraint {
|
|||
// Return the type of the constraint
|
||||
ConstraintType getType() const;
|
||||
|
||||
// Compute the jacobian matrix for all mathematical constraints
|
||||
virtual void computeJacobian(int noConstraint,
|
||||
decimal J_sp[NB_MAX_CONSTRAINTS][2*6]) const=0;
|
||||
|
||||
// Compute the lowerbounds values for all the mathematical constraints
|
||||
virtual void computeLowerBound(int noConstraint,
|
||||
decimal lowerBounds[NB_MAX_CONSTRAINTS]) const=0;
|
||||
|
||||
// Compute the upperbounds values for all the mathematical constraints
|
||||
virtual void computeUpperBound(int noConstraint,
|
||||
decimal upperBounds[NB_MAX_CONSTRAINTS]) const=0;
|
||||
|
||||
// Compute the error values for all the mathematical constraints
|
||||
virtual void computeErrorValue(int noConstraint, decimal errorValues[]) const=0;
|
||||
|
||||
// Return the number of mathematical constraints
|
||||
unsigned int getNbConstraints() const;
|
||||
|
||||
|
|
|
@ -37,259 +37,12 @@ Contact::Contact(RigidBody* const body1, RigidBody* const body2, const ContactIn
|
|||
mLocalPointOnBody2(contactInfo->localPoint2),
|
||||
mWorldPointOnBody1(body1->getTransform() * contactInfo->localPoint1),
|
||||
mWorldPointOnBody2(body2->getTransform() * contactInfo->localPoint2),
|
||||
mIsRestingContact(false) {
|
||||
mIsRestingContact(false), mFrictionVectors(2, Vector3(0, 0, 0)) {
|
||||
assert(mPenetrationDepth > 0.0);
|
||||
|
||||
// Compute the auxiliary lower and upper bounds
|
||||
// TODO : Now mC is only the mass of the first body but it is probably wrong
|
||||
// TODO : Now g is 9.81 but we should use the true gravity value of the physics world.
|
||||
mMu_mc_g = FRICTION_COEFFICIENT * body1->getMass() * 9.81;
|
||||
|
||||
// Compute the friction vectors that span the tangential friction plane
|
||||
computeFrictionVectors();
|
||||
}
|
||||
|
||||
// Destructor
|
||||
Contact::~Contact() {
|
||||
|
||||
}
|
||||
|
||||
void Contact::computeJacobianPenetration(decimal J_spBody1[6], decimal J_spBody2[6]) {
|
||||
|
||||
Vector3 body1Position = mBody1->getTransform().getPosition();
|
||||
Vector3 body2Position = mBody2->getTransform().getPosition();
|
||||
|
||||
Vector3 r1 = mWorldPointOnBody1 - body1Position;
|
||||
Vector3 r2 = mWorldPointOnBody2 - body2Position;
|
||||
Vector3 r1CrossN = r1.cross(mNormal);
|
||||
Vector3 r2CrossN = r2.cross(mNormal);
|
||||
|
||||
// Compute the jacobian matrix for the body 1 for the contact constraint
|
||||
J_spBody1[0] = -mNormal.getX();
|
||||
J_spBody1[1] = -mNormal.getY();
|
||||
J_spBody1[2] = -mNormal.getZ();
|
||||
J_spBody1[3] = -r1CrossN.getX();
|
||||
J_spBody1[4] = -r1CrossN.getY();
|
||||
J_spBody1[5] = -r1CrossN.getZ();
|
||||
|
||||
// Compute the jacobian matrix for the body 2 for the contact constraint
|
||||
J_spBody2[0] = mNormal.getX();
|
||||
J_spBody2[1] = mNormal.getY();
|
||||
J_spBody2[2] = mNormal.getZ();
|
||||
J_spBody2[3] = r2CrossN.getX();
|
||||
J_spBody2[4] = r2CrossN.getY();
|
||||
J_spBody2[5] = r2CrossN.getZ();
|
||||
}
|
||||
|
||||
void Contact::computeJacobianFriction1(decimal J_spBody1[6], decimal J_spBody2[6]) {
|
||||
|
||||
Vector3 body1Position = mBody1->getTransform().getPosition();
|
||||
Vector3 body2Position = mBody2->getTransform().getPosition();
|
||||
|
||||
Vector3 r1 = mWorldPointOnBody1 - body1Position;
|
||||
Vector3 r2 = mWorldPointOnBody2 - body2Position;
|
||||
|
||||
// Compute the jacobian matrix for the body 1 for the first friction constraint
|
||||
Vector3 r1CrossU1 = r1.cross(mFrictionVectors[0]);
|
||||
Vector3 r2CrossU1 = r2.cross(mFrictionVectors[0]);
|
||||
J_spBody1[0] = -mFrictionVectors[0].getX();
|
||||
J_spBody1[1] = -mFrictionVectors[0].getY();
|
||||
J_spBody1[2] = -mFrictionVectors[0].getZ();
|
||||
J_spBody1[3] = -r1CrossU1.getX();
|
||||
J_spBody1[4] = -r1CrossU1.getY();
|
||||
J_spBody1[5] = -r1CrossU1.getZ();
|
||||
|
||||
// Compute the jacobian matrix for the body 2 for the first friction constraint
|
||||
J_spBody2[0] = mFrictionVectors[0].getX();
|
||||
J_spBody2[1] = mFrictionVectors[0].getY();
|
||||
J_spBody2[2] = mFrictionVectors[0].getZ();
|
||||
J_spBody2[3] = r2CrossU1.getX();
|
||||
J_spBody2[4] = r2CrossU1.getY();
|
||||
J_spBody2[5] = r2CrossU1.getZ();
|
||||
}
|
||||
|
||||
void Contact::computeJacobianFriction2(decimal J_spBody1[6], decimal J_spBody2[6]) {
|
||||
|
||||
Vector3 body1Position = mBody1->getTransform().getPosition();
|
||||
Vector3 body2Position = mBody2->getTransform().getPosition();
|
||||
|
||||
Vector3 r1 = mWorldPointOnBody1 - body1Position;
|
||||
Vector3 r2 = mWorldPointOnBody2 - body2Position;
|
||||
|
||||
Vector3 r1CrossU2 = r1.cross(mFrictionVectors[1]);
|
||||
Vector3 r2CrossU2 = r2.cross(mFrictionVectors[1]);
|
||||
|
||||
// Compute the jacobian matrix for the body 1 for the second friction constraint
|
||||
J_spBody1[0] = -mFrictionVectors[1].getX();
|
||||
J_spBody1[1] = -mFrictionVectors[1].getY();
|
||||
J_spBody1[2] = -mFrictionVectors[1].getZ();
|
||||
J_spBody1[3] = -r1CrossU2.getX();
|
||||
J_spBody1[4] = -r1CrossU2.getY();
|
||||
J_spBody1[5] = -r1CrossU2.getZ();
|
||||
|
||||
// Compute the jacobian matrix for the body 2 for the second friction constraint
|
||||
J_spBody2[0] = mFrictionVectors[1].getX();
|
||||
J_spBody2[1] = mFrictionVectors[1].getY();
|
||||
J_spBody2[2] = mFrictionVectors[1].getZ();
|
||||
J_spBody2[3] = r2CrossU2.getX();
|
||||
J_spBody2[4] = r2CrossU2.getY();
|
||||
J_spBody2[5] = r2CrossU2.getZ();
|
||||
}
|
||||
|
||||
void Contact::computeLowerBoundPenetration(decimal& lowerBound) {
|
||||
lowerBound = 0.0;
|
||||
}
|
||||
|
||||
void Contact::computeLowerBoundFriction1(decimal& lowerBound) {
|
||||
lowerBound = -mMu_mc_g;
|
||||
}
|
||||
|
||||
void Contact::computeLowerBoundFriction2(decimal& lowerBound) {
|
||||
lowerBound = -mMu_mc_g;
|
||||
}
|
||||
|
||||
void Contact::computeUpperBoundPenetration(decimal& upperBound) {
|
||||
upperBound = DECIMAL_INFINITY;
|
||||
}
|
||||
|
||||
void Contact::computeUpperBoundFriction1(decimal& upperBound) {
|
||||
upperBound = mMu_mc_g;
|
||||
}
|
||||
|
||||
void Contact::computeUpperBoundFriction2(decimal& upperBound) {
|
||||
upperBound = mMu_mc_g;
|
||||
}
|
||||
|
||||
// This method computes the jacobian matrix for all mathematical constraints
|
||||
// The argument "J_sp" is the jacobian matrix of the constraint solver. This method
|
||||
// fill in this matrix with all the jacobian matrix of the mathematical constraint
|
||||
// of the contact. The argument "noConstraint", is the row were the method have
|
||||
// to start to fill in the J_sp matrix.
|
||||
void Contact::computeJacobian(int noConstraint, decimal J_sp[NB_MAX_CONSTRAINTS][2*6]) const {
|
||||
assert(mBody1);
|
||||
assert(mBody2);
|
||||
|
||||
Vector3 body1Position = mBody1->getTransform().getPosition();
|
||||
Vector3 body2Position = mBody2->getTransform().getPosition();
|
||||
int currentIndex = noConstraint; // Current constraint index
|
||||
|
||||
Vector3 r1 = mWorldPointOnBody1 - body1Position;
|
||||
Vector3 r2 = mWorldPointOnBody2 - body2Position;
|
||||
Vector3 r1CrossN = r1.cross(mNormal);
|
||||
Vector3 r2CrossN = r2.cross(mNormal);
|
||||
|
||||
// Compute the jacobian matrix for the body 1 for the contact constraint
|
||||
J_sp[currentIndex][0] = -mNormal.getX();
|
||||
J_sp[currentIndex][1] = -mNormal.getY();
|
||||
J_sp[currentIndex][2] = -mNormal.getZ();
|
||||
J_sp[currentIndex][3] = -r1CrossN.getX();
|
||||
J_sp[currentIndex][4] = -r1CrossN.getY();
|
||||
J_sp[currentIndex][5] = -r1CrossN.getZ();
|
||||
|
||||
// Compute the jacobian matrix for the body 2 for the contact constraint
|
||||
J_sp[currentIndex][6] = mNormal.getX();
|
||||
J_sp[currentIndex][7] = mNormal.getY();
|
||||
J_sp[currentIndex][8] = mNormal.getZ();
|
||||
J_sp[currentIndex][9] = r2CrossN.getX();
|
||||
J_sp[currentIndex][10] = r2CrossN.getY();
|
||||
J_sp[currentIndex][11] = r2CrossN.getZ();
|
||||
|
||||
currentIndex++;
|
||||
|
||||
// Compute the jacobian matrix for the body 1 for the first friction constraint
|
||||
Vector3 r1CrossU1 = r1.cross(mFrictionVectors[0]);
|
||||
Vector3 r2CrossU1 = r2.cross(mFrictionVectors[0]);
|
||||
Vector3 r1CrossU2 = r1.cross(mFrictionVectors[1]);
|
||||
Vector3 r2CrossU2 = r2.cross(mFrictionVectors[1]);
|
||||
J_sp[currentIndex][0] = -mFrictionVectors[0].getX();
|
||||
J_sp[currentIndex][1] = -mFrictionVectors[0].getY();
|
||||
J_sp[currentIndex][2] = -mFrictionVectors[0].getZ();
|
||||
J_sp[currentIndex][3] = -r1CrossU1.getX();
|
||||
J_sp[currentIndex][4] = -r1CrossU1.getY();
|
||||
J_sp[currentIndex][5] = -r1CrossU1.getZ();
|
||||
|
||||
// Compute the jacobian matrix for the body 2 for the first friction constraint
|
||||
J_sp[currentIndex][6] = mFrictionVectors[0].getX();
|
||||
J_sp[currentIndex][7] = mFrictionVectors[0].getY();
|
||||
J_sp[currentIndex][8] = mFrictionVectors[0].getZ();
|
||||
J_sp[currentIndex][9] = r2CrossU1.getX();
|
||||
J_sp[currentIndex][10] = r2CrossU1.getY();
|
||||
J_sp[currentIndex][11] = r2CrossU1.getZ();
|
||||
|
||||
currentIndex++;
|
||||
|
||||
// Compute the jacobian matrix for the body 1 for the second friction constraint
|
||||
J_sp[currentIndex][0] = -mFrictionVectors[1].getX();
|
||||
J_sp[currentIndex][1] = -mFrictionVectors[1].getY();
|
||||
J_sp[currentIndex][2] = -mFrictionVectors[1].getZ();
|
||||
J_sp[currentIndex][3] = -r1CrossU2.getX();
|
||||
J_sp[currentIndex][4] = -r1CrossU2.getY();
|
||||
J_sp[currentIndex][5] = -r1CrossU2.getZ();
|
||||
|
||||
// Compute the jacobian matrix for the body 2 for the second friction constraint
|
||||
J_sp[currentIndex][6] = mFrictionVectors[1].getX();
|
||||
J_sp[currentIndex][7] = mFrictionVectors[1].getY();
|
||||
J_sp[currentIndex][8] = mFrictionVectors[1].getZ();
|
||||
J_sp[currentIndex][9] = r2CrossU2.getX();
|
||||
J_sp[currentIndex][10] = r2CrossU2.getY();
|
||||
J_sp[currentIndex][11] = r2CrossU2.getZ();
|
||||
}
|
||||
|
||||
// Compute the lowerbounds values for all the mathematical constraints. The
|
||||
// argument "lowerBounds" is the lowerbounds values vector of the constraint solver and
|
||||
// this methods has to fill in this vector starting from the row "noConstraint"
|
||||
void Contact::computeLowerBound(int noConstraint, decimal lowerBounds[NB_MAX_CONSTRAINTS]) const {
|
||||
assert(noConstraint >= 0 && noConstraint + mNbConstraints <= NB_MAX_CONSTRAINTS);
|
||||
|
||||
lowerBounds[noConstraint] = 0.0; // Lower bound for the contact constraint
|
||||
lowerBounds[noConstraint + 1] = -mMu_mc_g; // Lower bound for the first friction constraint
|
||||
lowerBounds[noConstraint + 2] = -mMu_mc_g; // Lower bound for the second friction constraint
|
||||
}
|
||||
|
||||
// Compute the upperbounds values for all the mathematical constraints. The
|
||||
// argument "upperBounds" is the upperbounds values vector of the constraint solver and
|
||||
// this methods has to fill in this vector starting from the row "noConstraint"
|
||||
void Contact::computeUpperBound(int noConstraint, decimal upperBounds[NB_MAX_CONSTRAINTS]) const {
|
||||
assert(noConstraint >= 0 && noConstraint + mNbConstraints <= NB_MAX_CONSTRAINTS);
|
||||
|
||||
upperBounds[noConstraint] = DECIMAL_INFINITY; // Upper bound for the contact constraint
|
||||
upperBounds[noConstraint + 1] = mMu_mc_g; // Upper bound for the first friction constraint
|
||||
upperBounds[noConstraint + 2] = mMu_mc_g; // Upper bound for the second friction constraint
|
||||
}
|
||||
|
||||
void Contact::computeErrorPenetration(decimal& error) {
|
||||
// TODO : Do we need this casting anymore ?
|
||||
RigidBody* rigidBody1 = dynamic_cast<RigidBody*>(mBody1);
|
||||
RigidBody* rigidBody2 = dynamic_cast<RigidBody*>(mBody2);
|
||||
|
||||
// Compute the error value for the contact constraint
|
||||
Vector3 velocity1 = rigidBody1->getLinearVelocity();
|
||||
Vector3 velocity2 = rigidBody2->getLinearVelocity();
|
||||
decimal restitutionCoeff = rigidBody1->getRestitution() * rigidBody2->getRestitution();
|
||||
error = restitutionCoeff * (mNormal.dot(velocity1) - mNormal.dot(velocity2));
|
||||
}
|
||||
|
||||
// Compute the error values for all the mathematical constraints. The argument
|
||||
// "errorValues" is the error values vector of the constraint solver and this
|
||||
// method has to fill in this vector starting from the row "noConstraint"
|
||||
void Contact::computeErrorValue(int noConstraint, decimal errorValues[]) const {
|
||||
assert(mBody1);
|
||||
assert(mBody2);
|
||||
|
||||
// TODO : Do we need this casting anymore ?
|
||||
RigidBody* rigidBody1 = dynamic_cast<RigidBody*>(mBody1);
|
||||
RigidBody* rigidBody2 = dynamic_cast<RigidBody*>(mBody2);
|
||||
|
||||
assert(noConstraint >= 0 && noConstraint + mNbConstraints <= NB_MAX_CONSTRAINTS);
|
||||
|
||||
// Compute the error value for the contact constraint
|
||||
Vector3 velocity1 = rigidBody1->getLinearVelocity();
|
||||
Vector3 velocity2 = rigidBody2->getLinearVelocity();
|
||||
decimal restitutionCoeff = rigidBody1->getRestitution() * rigidBody2->getRestitution();
|
||||
decimal errorValue = restitutionCoeff * (mNormal.dot(velocity1) - mNormal.dot(velocity2));
|
||||
|
||||
// Assign the error value to the vector of error values
|
||||
errorValues[noConstraint] = errorValue; // Error value for contact constraint
|
||||
errorValues[noConstraint + 1] = 0.0; // Error value for friction constraint
|
||||
errorValues[noConstraint + 2] = 0.0; // Error value for friction constraint
|
||||
}
|
||||
|
|
|
@ -53,12 +53,9 @@ namespace reactphysics3d {
|
|||
|
||||
/* -------------------------------------------------------------------
|
||||
Class Contact :
|
||||
This class represents a collision contact between two bodies in
|
||||
the physics engine. The contact class inherits from the
|
||||
Constraint class. Each Contact represent a contact between two bodies
|
||||
and contains the two contact points on each body. The contact has 3
|
||||
mathematical constraints (1 for the contact constraint, and 2
|
||||
for the friction constraints).
|
||||
This class represents a collision contact point between two
|
||||
bodies in the physics engine. The contact class inherits from
|
||||
the Constraint class.
|
||||
-------------------------------------------------------------------
|
||||
*/
|
||||
class Contact : public Constraint {
|
||||
|
@ -90,8 +87,6 @@ class Contact : public Constraint {
|
|||
|
||||
// Two orthogonal vectors that span the tangential friction plane
|
||||
std::vector<Vector3> mFrictionVectors;
|
||||
|
||||
decimal mMu_mc_g;
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
|
@ -101,9 +96,6 @@ class Contact : public Constraint {
|
|||
// Private assignment operator
|
||||
Contact& operator=(const Contact& contact);
|
||||
|
||||
// Compute the two friction vectors that span the tangential friction plane
|
||||
void computeFrictionVectors();
|
||||
|
||||
public :
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
@ -156,37 +148,6 @@ class Contact : public Constraint {
|
|||
// Set the second friction vector
|
||||
void setFrictionVector2(const Vector3& frictionVector2);
|
||||
|
||||
// Compute the jacobian matrix for all mathematical constraints
|
||||
virtual void computeJacobian(int noConstraint,
|
||||
decimal J_SP[NB_MAX_CONSTRAINTS][2*6]) const;
|
||||
|
||||
// Compute the lowerbounds values for all the mathematical constraints
|
||||
virtual void computeLowerBound(int noConstraint,
|
||||
decimal lowerBounds[NB_MAX_CONSTRAINTS]) const;
|
||||
|
||||
// Compute the upperbounds values for all the mathematical constraints
|
||||
virtual void computeUpperBound(int noConstraint,
|
||||
decimal upperBounds[NB_MAX_CONSTRAINTS]) const;
|
||||
|
||||
// Compute the error values for all the mathematical constraints
|
||||
virtual void computeErrorValue(int noConstraint, decimal errorValues[]) const;
|
||||
|
||||
void computeErrorPenetration(decimal& error);
|
||||
|
||||
void computeJacobianPenetration(decimal J_spBody1[6], decimal J_spBody2[6]);
|
||||
|
||||
void computeJacobianFriction1(decimal J_spBody1[6], decimal J_spBody2[6]);
|
||||
|
||||
void computeJacobianFriction2(decimal J_spBody1[6], decimal J_spBody2[6]);
|
||||
|
||||
void computeLowerBoundPenetration(decimal& lowerBound);
|
||||
void computeLowerBoundFriction1(decimal& lowerBound);
|
||||
void computeLowerBoundFriction2(decimal& lowerBound);
|
||||
|
||||
void computeUpperBoundPenetration(decimal& upperBound);
|
||||
void computeUpperBoundFriction1(decimal& upperBound);
|
||||
void computeUpperBoundFriction2(decimal& upperBound);
|
||||
|
||||
// Return the penetration depth
|
||||
decimal getPenetrationDepth() const;
|
||||
|
||||
|
@ -196,16 +157,6 @@ class Contact : public Constraint {
|
|||
#endif
|
||||
};
|
||||
|
||||
// Compute the two unit orthogonal vectors "v1" and "v2" that span the tangential friction plane
|
||||
// The two vectors have to be such that : v1 x v2 = contactNormal
|
||||
inline void Contact::computeFrictionVectors() {
|
||||
// Delete the current friction vectors
|
||||
mFrictionVectors.clear();
|
||||
|
||||
mFrictionVectors.push_back(Vector3(0, 0, 0));
|
||||
mFrictionVectors.push_back(Vector3(0, 0, 0));
|
||||
}
|
||||
|
||||
// Return the normal vector of the contact
|
||||
inline Vector3 Contact::getNormal() const {
|
||||
return mNormal;
|
||||
|
@ -289,6 +240,6 @@ inline void Contact::draw() const {
|
|||
}
|
||||
#endif
|
||||
|
||||
} // End of the ReactPhysics3D namespace
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
837
src/engine/ContactSolver.cpp
Normal file
837
src/engine/ContactSolver.cpp
Normal file
|
@ -0,0 +1,837 @@
|
|||
/********************************************************************************
|
||||
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
|
||||
* Copyright (c) 2010-2012 Daniel Chappuis *
|
||||
*********************************************************************************
|
||||
* *
|
||||
* This software is provided 'as-is', without any express or implied warranty. *
|
||||
* In no event will the authors be held liable for any damages arising from the *
|
||||
* use of this software. *
|
||||
* *
|
||||
* Permission is granted to anyone to use this software for any purpose, *
|
||||
* including commercial applications, and to alter it and redistribute it *
|
||||
* freely, subject to the following restrictions: *
|
||||
* *
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||||
* that you wrote the original software. If you use this software in a *
|
||||
* product, an acknowledgment in the product documentation would be *
|
||||
* appreciated but is not required. *
|
||||
* *
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||||
* misrepresented as being the original software. *
|
||||
* *
|
||||
* 3. This notice may not be removed or altered from any source distribution. *
|
||||
* *
|
||||
********************************************************************************/
|
||||
|
||||
// Libraries
|
||||
#include "ContactSolver.h"
|
||||
#include "DynamicsWorld.h"
|
||||
#include "../body/RigidBody.h"
|
||||
|
||||
using namespace reactphysics3d;
|
||||
using namespace std;
|
||||
|
||||
// Constants initialization
|
||||
const decimal ContactSolver::BETA = decimal(0.2);
|
||||
const decimal ContactSolver::BETA_SPLIT_IMPULSE = decimal(0.2);
|
||||
const decimal ContactSolver::SLOP = decimal(0.01);
|
||||
|
||||
// Constructor
|
||||
ContactSolver::ContactSolver(DynamicsWorld& world)
|
||||
:mWorld(world), mNbIterations(DEFAULT_CONSTRAINTS_SOLVER_NB_ITERATIONS), mContactConstraints(0),
|
||||
mLinearVelocities(0), mAngularVelocities(0), mIsWarmStartingActive(true),
|
||||
mIsSplitImpulseActive(true), mIsSolveFrictionAtContactManifoldCenterActive(true) {
|
||||
|
||||
}
|
||||
|
||||
// Destructor
|
||||
ContactSolver::~ContactSolver() {
|
||||
|
||||
}
|
||||
|
||||
// Initialize the constraint solver
|
||||
void ContactSolver::initialize() {
|
||||
|
||||
// TODO : Use better memory allocation here
|
||||
mContactConstraints = new ContactManifoldSolver[mWorld.getNbContactManifolds()];
|
||||
|
||||
mNbContactConstraints = 0;
|
||||
|
||||
// For each contact manifold of the world
|
||||
vector<ContactManifold>::iterator it;
|
||||
for (it = mWorld.getContactManifoldsBeginIterator();
|
||||
it != mWorld.getContactManifoldsEndIterator(); ++it) {
|
||||
|
||||
ContactManifold& externalContactManifold = *it;
|
||||
|
||||
ContactManifoldSolver& internalContactManifold = mContactConstraints[mNbContactConstraints];
|
||||
|
||||
assert(externalContactManifold.nbContacts > 0);
|
||||
|
||||
// Get the two bodies of the contact
|
||||
RigidBody* body1 = externalContactManifold.contacts[0]->getBody1();
|
||||
RigidBody* body2 = externalContactManifold.contacts[0]->getBody2();
|
||||
|
||||
// Fill in the body number maping
|
||||
mMapBodyToIndex.insert(make_pair(body1, mMapBodyToIndex.size()));
|
||||
mMapBodyToIndex.insert(make_pair(body2, mMapBodyToIndex.size()));
|
||||
|
||||
// Add the two bodies of the constraint in the constraintBodies list
|
||||
mConstraintBodies.insert(body1);
|
||||
mConstraintBodies.insert(body2);
|
||||
|
||||
// Get the position of the two bodies
|
||||
Vector3 x1 = body1->getTransform().getPosition();
|
||||
Vector3 x2 = body2->getTransform().getPosition();
|
||||
|
||||
internalContactManifold.indexBody1 = mMapBodyToIndex[body1];
|
||||
internalContactManifold.indexBody2 = mMapBodyToIndex[body2];
|
||||
internalContactManifold.inverseInertiaTensorBody1 = body1->getInertiaTensorInverseWorld();
|
||||
internalContactManifold.inverseInertiaTensorBody2 = body2->getInertiaTensorInverseWorld();
|
||||
internalContactManifold.isBody1Moving = body1->getIsMotionEnabled();
|
||||
internalContactManifold.isBody2Moving = body2->getIsMotionEnabled();
|
||||
internalContactManifold.massInverseBody1 = body1->getMassInverse();
|
||||
internalContactManifold.massInverseBody2 = body2->getMassInverse();
|
||||
internalContactManifold.nbContacts = externalContactManifold.nbContacts;
|
||||
internalContactManifold.restitutionFactor = computeMixedRestitutionFactor(body1, body2);
|
||||
internalContactManifold.frictionCoefficient = computeMixedFrictionCoefficient(body1, body2);
|
||||
internalContactManifold.contactManifold = &(*it);
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
internalContactManifold.frictionPointBody1 = Vector3(0.0, 0.0, 0.0);
|
||||
internalContactManifold.frictionPointBody2 = Vector3(0.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
// For each contact point of the contact manifold
|
||||
for (uint c=0; c<externalContactManifold.nbContacts; c++) {
|
||||
|
||||
ContactPointSolver& contactPoint = internalContactManifold.contacts[c];
|
||||
|
||||
// Get a contact point
|
||||
Contact* externalContact = externalContactManifold.contacts[c];
|
||||
|
||||
// Get the contact point on the two bodies
|
||||
Vector3 p1 = externalContact->getWorldPointOnBody1();
|
||||
Vector3 p2 = externalContact->getWorldPointOnBody2();
|
||||
|
||||
contactPoint.contact = externalContact;
|
||||
contactPoint.normal = externalContact->getNormal();
|
||||
contactPoint.r1 = p1 - x1;
|
||||
contactPoint.r2 = p2 - x2;
|
||||
contactPoint.penetrationDepth = externalContact->getPenetrationDepth();
|
||||
contactPoint.isRestingContact = externalContact->getIsRestingContact();
|
||||
externalContact->setIsRestingContact(true);
|
||||
contactPoint.oldFrictionVector1 = externalContact->getFrictionVector1();
|
||||
contactPoint.oldFrictionVector2 = externalContact->getFrictionVector2();
|
||||
contactPoint.penetrationImpulse = 0.0;
|
||||
contactPoint.friction1Impulse = 0.0;
|
||||
contactPoint.friction2Impulse = 0.0;
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
internalContactManifold.frictionPointBody1 += p1;
|
||||
internalContactManifold.frictionPointBody2 += p2;
|
||||
}
|
||||
}
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
|
||||
internalContactManifold.frictionPointBody1 /= static_cast<decimal>(internalContactManifold.nbContacts);
|
||||
internalContactManifold.frictionPointBody2 /= static_cast<decimal>(internalContactManifold.nbContacts);
|
||||
internalContactManifold.r1Friction = internalContactManifold.frictionPointBody1 - x1;
|
||||
internalContactManifold.r2Friction = internalContactManifold.frictionPointBody2 - x2;
|
||||
internalContactManifold.oldFrictionVector1 = externalContactManifold.frictionVector1;
|
||||
internalContactManifold.oldFrictionVector2 = externalContactManifold.frictionVector2;
|
||||
|
||||
// If warm starting is active
|
||||
if (mIsWarmStartingActive) {
|
||||
|
||||
// Initialize the accumulated impulses with the previous step accumulated impulses
|
||||
internalContactManifold.friction1Impulse = externalContactManifold.friction1Impulse;
|
||||
internalContactManifold.friction2Impulse = externalContactManifold.friction2Impulse;
|
||||
internalContactManifold.frictionTwistImpulse = externalContactManifold.frictionTwistImpulse;
|
||||
}
|
||||
else {
|
||||
|
||||
// Initialize the accumulated impulses to zero
|
||||
internalContactManifold.friction1Impulse = 0.0;
|
||||
internalContactManifold.friction2Impulse = 0.0;
|
||||
internalContactManifold.frictionTwistImpulse = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
mNbContactConstraints++;
|
||||
}
|
||||
|
||||
// Compute the number of bodies that are part of some active constraint
|
||||
uint nbBodies = mConstraintBodies.size();
|
||||
|
||||
// Allocated memory for velocities
|
||||
// TODO : Use better memory allocation here
|
||||
mLinearVelocities = new Vector3[nbBodies];
|
||||
mAngularVelocities = new Vector3[nbBodies];
|
||||
mSplitLinearVelocities = new Vector3[nbBodies];
|
||||
mSplitAngularVelocities = new Vector3[nbBodies];
|
||||
|
||||
assert(mMapBodyToIndex.size() == nbBodies);
|
||||
}
|
||||
|
||||
// Initialize the constrained bodies
|
||||
void ContactSolver::initializeBodies() {
|
||||
|
||||
// For each current body that is implied in some constraint
|
||||
set<RigidBody*>::iterator it;
|
||||
for (it = mConstraintBodies.begin(); it != mConstraintBodies.end(); ++it) {
|
||||
RigidBody* rigidBody = *it;
|
||||
assert(rigidBody);
|
||||
|
||||
uint bodyNumber = mMapBodyToIndex[rigidBody];
|
||||
|
||||
mLinearVelocities[bodyNumber] = rigidBody->getLinearVelocity() + mTimeStep * rigidBody->getMassInverse() * rigidBody->getExternalForce();
|
||||
mAngularVelocities[bodyNumber] = rigidBody->getAngularVelocity() + mTimeStep * rigidBody->getInertiaTensorInverseWorld() * rigidBody->getExternalTorque();
|
||||
mSplitLinearVelocities[bodyNumber] = Vector3(0, 0, 0);
|
||||
mSplitAngularVelocities[bodyNumber] = Vector3(0, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize the contact constraints before solving the system
|
||||
void ContactSolver::initializeContactConstraints() {
|
||||
|
||||
// For each contact constraint
|
||||
for (uint c=0; c<mNbContactConstraints; c++) {
|
||||
|
||||
ContactManifoldSolver& contactManifold = mContactConstraints[c];
|
||||
|
||||
// Get the inertia tensors of both bodies
|
||||
Matrix3x3& I1 = contactManifold.inverseInertiaTensorBody1;
|
||||
Matrix3x3& I2 = contactManifold.inverseInertiaTensorBody2;
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
contactManifold.normal = Vector3(0.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
// Get the velocities of the bodies
|
||||
const Vector3& v1 = mLinearVelocities[contactManifold.indexBody1];
|
||||
const Vector3& w1 = mAngularVelocities[contactManifold.indexBody1];
|
||||
const Vector3& v2 = mLinearVelocities[contactManifold.indexBody2];
|
||||
const Vector3& w2 = mAngularVelocities[contactManifold.indexBody2];
|
||||
|
||||
// For each contact point constraint
|
||||
for (uint i=0; i<contactManifold.nbContacts; i++) {
|
||||
|
||||
ContactPointSolver& contactPoint = contactManifold.contacts[i];
|
||||
Contact* externalContact = contactPoint.contact;
|
||||
|
||||
// Compute the velocity difference
|
||||
Vector3 deltaV = v2 + w2.cross(contactPoint.r2) - v1 - w1.cross(contactPoint.r1);
|
||||
|
||||
contactPoint.r1CrossN = contactPoint.r1.cross(contactPoint.normal);
|
||||
contactPoint.r2CrossN = contactPoint.r2.cross(contactPoint.normal);
|
||||
|
||||
decimal massPenetration = 0.0;
|
||||
if (contactManifold.isBody1Moving) {
|
||||
massPenetration += contactManifold.massInverseBody1 +
|
||||
((I1 * contactPoint.r1CrossN).cross(contactPoint.r1)).dot(contactPoint.normal);
|
||||
}
|
||||
if (contactManifold.isBody2Moving) {
|
||||
massPenetration += contactManifold.massInverseBody2 +
|
||||
((I2 * contactPoint.r2CrossN).cross(contactPoint.r2)).dot(contactPoint.normal);
|
||||
}
|
||||
massPenetration > 0.0 ? contactPoint.inversePenetrationMass = decimal(1.0) / massPenetration : decimal(0.0);
|
||||
|
||||
if (!mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
|
||||
// Compute the friction vectors
|
||||
computeFrictionVectors(deltaV, contactPoint);
|
||||
|
||||
contactPoint.r1CrossT1 = contactPoint.r1.cross(contactPoint.frictionVector1);
|
||||
contactPoint.r1CrossT2 = contactPoint.r1.cross(contactPoint.frictionVector2);
|
||||
contactPoint.r2CrossT1 = contactPoint.r2.cross(contactPoint.frictionVector1);
|
||||
contactPoint.r2CrossT2 = contactPoint.r2.cross(contactPoint.frictionVector2);
|
||||
|
||||
// Compute the inverse mass matrix K for the friction constraints at each contact point
|
||||
decimal friction1Mass = 0.0;
|
||||
decimal friction2Mass = 0.0;
|
||||
if (contactManifold.isBody1Moving) {
|
||||
friction1Mass += contactManifold.massInverseBody1 + ((I1 * contactPoint.r1CrossT1).cross(contactPoint.r1)).dot(contactPoint.frictionVector1);
|
||||
friction2Mass += contactManifold.massInverseBody1 + ((I1 * contactPoint.r1CrossT2).cross(contactPoint.r1)).dot(contactPoint.frictionVector2);
|
||||
}
|
||||
if (contactManifold.isBody2Moving) {
|
||||
friction1Mass += contactManifold.massInverseBody2 + ((I2 * contactPoint.r2CrossT1).cross(contactPoint.r2)).dot(contactPoint.frictionVector1);
|
||||
friction2Mass += contactManifold.massInverseBody2 + ((I2 * contactPoint.r2CrossT2).cross(contactPoint.r2)).dot(contactPoint.frictionVector2);
|
||||
}
|
||||
friction1Mass > 0.0 ? contactPoint.inverseFriction1Mass = decimal(1.0) / friction1Mass : decimal(0.0);
|
||||
friction2Mass > 0.0 ? contactPoint.inverseFriction2Mass = decimal(1.0) / friction2Mass : decimal(0.0);
|
||||
}
|
||||
|
||||
// Compute the restitution velocity bias "b". We compute this here instead
|
||||
// of inside the solve() method because we need to use the velocity difference
|
||||
// at the beginning of the contact. Note that if it is a resting contact (normal velocity
|
||||
// under a given threshold), we don't add a restitution velocity bias
|
||||
contactPoint.restitutionBias = 0.0;
|
||||
decimal deltaVDotN = deltaV.dot(contactPoint.normal);
|
||||
// TODO : Use a constant here
|
||||
if (deltaVDotN < 1.0f) {
|
||||
contactPoint.restitutionBias = contactManifold.restitutionFactor * deltaVDotN;
|
||||
}
|
||||
|
||||
// Get the cached lambda values of the constraint
|
||||
if (mIsWarmStartingActive) {
|
||||
contactPoint.penetrationImpulse = externalContact->getCachedLambda(0);
|
||||
contactPoint.friction1Impulse = externalContact->getCachedLambda(1);
|
||||
contactPoint.friction2Impulse = externalContact->getCachedLambda(2);
|
||||
}
|
||||
|
||||
// Initialize the split impulses to zero
|
||||
contactPoint.penetrationSplitImpulse = 0.0;
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
contactManifold.normal += contactPoint.normal;
|
||||
}
|
||||
}
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
|
||||
contactManifold.normal.normalize();
|
||||
|
||||
Vector3 deltaVFrictionPoint = v2 + w2.cross(contactManifold.r2Friction) -
|
||||
v1 - w1.cross(contactManifold.r1Friction);
|
||||
|
||||
// Compute the friction vectors
|
||||
computeFrictionVectors(deltaVFrictionPoint, contactManifold);
|
||||
|
||||
// Compute the inverse mass matrix K for the friction constraints at the center of
|
||||
// the contact manifold
|
||||
contactManifold.r1CrossT1 = contactManifold.r1Friction.cross(contactManifold.frictionVector1);
|
||||
contactManifold.r1CrossT2 = contactManifold.r1Friction.cross(contactManifold.frictionVector2);
|
||||
contactManifold.r2CrossT1 = contactManifold.r2Friction.cross(contactManifold.frictionVector1);
|
||||
contactManifold.r2CrossT2 = contactManifold.r2Friction.cross(contactManifold.frictionVector2);
|
||||
decimal friction1Mass = 0.0;
|
||||
decimal friction2Mass = 0.0;
|
||||
if (contactManifold.isBody1Moving) {
|
||||
friction1Mass += contactManifold.massInverseBody1 + ((I1 * contactManifold.r1CrossT1).cross(contactManifold.r1Friction)).dot(contactManifold.frictionVector1);
|
||||
friction2Mass += contactManifold.massInverseBody1 + ((I1 * contactManifold.r1CrossT2).cross(contactManifold.r1Friction)).dot(contactManifold.frictionVector2);
|
||||
}
|
||||
if (contactManifold.isBody2Moving) {
|
||||
friction1Mass += contactManifold.massInverseBody2 + ((I2 * contactManifold.r2CrossT1).cross(contactManifold.r2Friction)).dot(contactManifold.frictionVector1);
|
||||
friction2Mass += contactManifold.massInverseBody2 + ((I2 * contactManifold.r2CrossT2).cross(contactManifold.r2Friction)).dot(contactManifold.frictionVector2);
|
||||
}
|
||||
friction1Mass > 0.0 ? contactManifold.inverseFriction1Mass = decimal(1.0) / friction1Mass : decimal(0.0);
|
||||
friction2Mass > 0.0 ? contactManifold.inverseFriction2Mass = decimal(1.0) / friction2Mass : decimal(0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Warm start the solver
|
||||
// For each constraint, we apply the previous impulse (from the previous step)
|
||||
// at the beginning. With this technique, we will converge faster towards
|
||||
// the solution of the linear system
|
||||
void ContactSolver::warmStart() {
|
||||
|
||||
// For each constraint
|
||||
for (uint c=0; c<mNbContactConstraints; c++) {
|
||||
|
||||
ContactManifoldSolver& contactManifold = mContactConstraints[c];
|
||||
|
||||
bool atLeastOneRestingContactPoint = false;
|
||||
|
||||
for (uint i=0; i<contactManifold.nbContacts; i++) {
|
||||
|
||||
ContactPointSolver& contactPoint = contactManifold.contacts[i];
|
||||
|
||||
// If it is not a new contact (this contact was already existing at last time step)
|
||||
if (contactPoint.isRestingContact) {
|
||||
|
||||
atLeastOneRestingContactPoint = true;
|
||||
|
||||
// --------- Penetration --------- //
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
const Impulse impulsePenetration = computePenetrationImpulse(contactPoint.penetrationImpulse,
|
||||
contactPoint);
|
||||
|
||||
// Apply the impulse to the bodies of the constraint
|
||||
applyImpulse(impulsePenetration, contactManifold);
|
||||
|
||||
// If we do not solve the friction constraints at the center of the contact manifold
|
||||
if (!mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
|
||||
// Project the old friction impulses (with old friction vectors) into the new friction
|
||||
// vectors to get the new friction impulses
|
||||
Vector3 oldFrictionImpulse = contactPoint.friction1Impulse * contactPoint.oldFrictionVector1 +
|
||||
contactPoint.friction2Impulse * contactPoint.oldFrictionVector2;
|
||||
contactPoint.friction1Impulse = oldFrictionImpulse.dot(contactPoint.frictionVector1);
|
||||
contactPoint.friction2Impulse = oldFrictionImpulse.dot(contactPoint.frictionVector2);
|
||||
|
||||
// --------- Friction 1 --------- //
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
const Impulse impulseFriction1 = computeFriction1Impulse(contactPoint.friction1Impulse,
|
||||
contactPoint);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction1, contactManifold);
|
||||
|
||||
// --------- Friction 2 --------- //
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
const Impulse impulseFriction2 = computeFriction2Impulse(contactPoint.friction2Impulse,
|
||||
contactPoint);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction2, contactManifold);
|
||||
}
|
||||
}
|
||||
else { // If it is a new contact point
|
||||
|
||||
// Initialize the accumulated impulses to zero
|
||||
contactPoint.penetrationImpulse = 0.0;
|
||||
contactPoint.friction1Impulse = 0.0;
|
||||
contactPoint.friction2Impulse = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold and there is
|
||||
// at least one resting contact point in the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive && atLeastOneRestingContactPoint) {
|
||||
|
||||
// Project the old friction impulses (with old friction vectors) into the new friction
|
||||
// vectors to get the new friction impulses
|
||||
Vector3 oldFrictionImpulse = contactManifold.friction1Impulse * contactManifold.oldFrictionVector1 +
|
||||
contactManifold.friction2Impulse * contactManifold.oldFrictionVector2;
|
||||
contactManifold.friction1Impulse = oldFrictionImpulse.dot(contactManifold.frictionVector1);
|
||||
contactManifold.friction2Impulse = oldFrictionImpulse.dot(contactManifold.frictionVector2);
|
||||
|
||||
// ------ First friction constraint at the center of the contact manifol ------ //
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
Vector3 linearImpulseBody1 = -contactManifold.frictionVector1 * contactManifold.friction1Impulse;
|
||||
Vector3 angularImpulseBody1 = -contactManifold.r1CrossT1 * contactManifold.friction1Impulse;
|
||||
Vector3 linearImpulseBody2 = contactManifold.frictionVector1 * contactManifold.friction1Impulse;
|
||||
Vector3 angularImpulseBody2 = contactManifold.r2CrossT1 * contactManifold.friction1Impulse;
|
||||
const Impulse impulseFriction1(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction1, contactManifold);
|
||||
|
||||
// ------ Second friction constraint at the center of the contact manifol ----- //
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
linearImpulseBody1 = -contactManifold.frictionVector2 * contactManifold.friction2Impulse;
|
||||
angularImpulseBody1 = -contactManifold.r1CrossT2 * contactManifold.friction2Impulse;
|
||||
linearImpulseBody2 = contactManifold.frictionVector2 * contactManifold.friction2Impulse;
|
||||
angularImpulseBody2 = contactManifold.r2CrossT2 * contactManifold.friction2Impulse;
|
||||
const Impulse impulseFriction2(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction2, contactManifold);
|
||||
|
||||
// ------ Twist friction constraint at the center of the contact manifol ------ //
|
||||
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
linearImpulseBody1 = Vector3(0.0, 0.0, 0.0);
|
||||
angularImpulseBody1 = -contactManifold.normal * contactManifold.frictionTwistImpulse;
|
||||
linearImpulseBody2 = Vector3(0.0, 0.0, 0.0);
|
||||
angularImpulseBody2 = contactManifold.normal * contactManifold.frictionTwistImpulse;
|
||||
const Impulse impulseTwistFriction(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseTwistFriction, contactManifold);
|
||||
}
|
||||
else { // If it is a new contact manifold
|
||||
|
||||
// Initialize the accumulated impulses to zero
|
||||
contactManifold.friction1Impulse = 0.0;
|
||||
contactManifold.friction2Impulse = 0.0;
|
||||
contactManifold.frictionTwistImpulse = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Solve the contact constraints by applying sequential impulses
|
||||
void ContactSolver::solveContactConstraints() {
|
||||
|
||||
decimal deltaLambda;
|
||||
decimal lambdaTemp;
|
||||
uint iter;
|
||||
|
||||
// For each iteration
|
||||
for(iter=0; iter<mNbIterations; iter++) {
|
||||
|
||||
// For each constraint
|
||||
for (uint c=0; c<mNbContactConstraints; c++) {
|
||||
|
||||
ContactManifoldSolver& contactManifold = mContactConstraints[c];
|
||||
|
||||
decimal sumPenetrationImpulse = 0.0;
|
||||
|
||||
const Vector3& v1 = mLinearVelocities[contactManifold.indexBody1];
|
||||
const Vector3& w1 = mAngularVelocities[contactManifold.indexBody1];
|
||||
const Vector3& v2 = mLinearVelocities[contactManifold.indexBody2];
|
||||
const Vector3& w2 = mAngularVelocities[contactManifold.indexBody2];
|
||||
|
||||
for (uint i=0; i<contactManifold.nbContacts; i++) {
|
||||
|
||||
ContactPointSolver& contactPoint = contactManifold.contacts[i];
|
||||
|
||||
// --------- Penetration --------- //
|
||||
|
||||
// Compute J*v
|
||||
Vector3 deltaV = v2 + w2.cross(contactPoint.r2) - v1 - w1.cross(contactPoint.r1);
|
||||
decimal deltaVDotN = deltaV.dot(contactPoint.normal);
|
||||
decimal Jv = deltaVDotN;
|
||||
|
||||
// Compute the bias "b" of the constraint
|
||||
decimal beta = mIsSplitImpulseActive ? BETA_SPLIT_IMPULSE : BETA;
|
||||
decimal biasPenetrationDepth = 0.0;
|
||||
if (contactPoint.penetrationDepth > SLOP) biasPenetrationDepth = -(beta/mTimeStep) *
|
||||
max(0.0f, float(contactPoint.penetrationDepth - SLOP));
|
||||
decimal b = biasPenetrationDepth + contactPoint.restitutionBias;
|
||||
|
||||
// Compute the Lagrange multiplier
|
||||
if (mIsSplitImpulseActive) {
|
||||
deltaLambda = - (Jv + contactPoint.restitutionBias) * contactPoint.inversePenetrationMass;
|
||||
}
|
||||
else {
|
||||
deltaLambda = - (Jv + b) * contactPoint.inversePenetrationMass;
|
||||
}
|
||||
lambdaTemp = contactPoint.penetrationImpulse;
|
||||
contactPoint.penetrationImpulse = std::max(contactPoint.penetrationImpulse + deltaLambda, 0.0f);
|
||||
deltaLambda = contactPoint.penetrationImpulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
const Impulse impulsePenetration = computePenetrationImpulse(deltaLambda, contactPoint);
|
||||
|
||||
// Apply the impulse to the bodies of the constraint
|
||||
applyImpulse(impulsePenetration, contactManifold);
|
||||
|
||||
sumPenetrationImpulse += contactPoint.penetrationImpulse;
|
||||
|
||||
// If the split impulse position correction is active
|
||||
if (mIsSplitImpulseActive) {
|
||||
|
||||
// Split impulse (position correction)
|
||||
const Vector3& v1Split = mSplitLinearVelocities[contactManifold.indexBody1];
|
||||
const Vector3& w1Split = mSplitAngularVelocities[contactManifold.indexBody1];
|
||||
const Vector3& v2Split = mSplitLinearVelocities[contactManifold.indexBody2];
|
||||
const Vector3& w2Split = mSplitAngularVelocities[contactManifold.indexBody2];
|
||||
Vector3 deltaVSplit = v2Split + w2Split.cross(contactPoint.r2) - v1Split - w1Split.cross(contactPoint.r1);
|
||||
decimal JvSplit = deltaVSplit.dot(contactPoint.normal);
|
||||
decimal deltaLambdaSplit = - (JvSplit + biasPenetrationDepth) * contactPoint.inversePenetrationMass;
|
||||
decimal lambdaTempSplit = contactPoint.penetrationSplitImpulse;
|
||||
contactPoint.penetrationSplitImpulse = std::max(contactPoint.penetrationSplitImpulse + deltaLambdaSplit, 0.0f);
|
||||
deltaLambda = contactPoint.penetrationSplitImpulse - lambdaTempSplit;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
const Impulse splitImpulsePenetration = computePenetrationImpulse(deltaLambdaSplit,
|
||||
contactPoint);
|
||||
|
||||
applySplitImpulse(splitImpulsePenetration, contactManifold);
|
||||
}
|
||||
|
||||
// If we do not solve the friction constraints at the center of the contact manifold
|
||||
if (!mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
|
||||
// --------- Friction 1 --------- //
|
||||
|
||||
// Compute J*v
|
||||
deltaV = v2 + w2.cross(contactPoint.r2) - v1 - w1.cross(contactPoint.r1);
|
||||
Jv = deltaV.dot(contactPoint.frictionVector1);
|
||||
|
||||
deltaLambda = -Jv;
|
||||
deltaLambda *= contactPoint.inverseFriction1Mass;
|
||||
decimal frictionLimit = contactManifold.frictionCoefficient * contactPoint.penetrationImpulse;
|
||||
lambdaTemp = contactPoint.friction1Impulse;
|
||||
contactPoint.friction1Impulse = std::max(-frictionLimit, std::min(contactPoint.friction1Impulse + deltaLambda, frictionLimit));
|
||||
deltaLambda = contactPoint.friction1Impulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
const Impulse impulseFriction1 = computeFriction1Impulse(deltaLambda, contactPoint);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction1, contactManifold);
|
||||
|
||||
// --------- Friction 2 --------- //
|
||||
|
||||
// Compute J*v
|
||||
deltaV = v2 + w2.cross(contactPoint.r2) - v1 - w1.cross(contactPoint.r1);
|
||||
Jv = deltaV.dot(contactPoint.frictionVector2);
|
||||
|
||||
deltaLambda = -Jv;
|
||||
deltaLambda *= contactPoint.inverseFriction2Mass;
|
||||
frictionLimit = contactManifold.frictionCoefficient * contactPoint.penetrationImpulse;
|
||||
lambdaTemp = contactPoint.friction2Impulse;
|
||||
contactPoint.friction2Impulse = std::max(-frictionLimit, std::min(contactPoint.friction2Impulse + deltaLambda, frictionLimit));
|
||||
deltaLambda = contactPoint.friction2Impulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
const Impulse impulseFriction2 = computeFriction2Impulse(deltaLambda, contactPoint);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction2, contactManifold);
|
||||
}
|
||||
}
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
|
||||
// ------ First friction constraint at the center of the contact manifol ------ //
|
||||
|
||||
// Compute J*v
|
||||
Vector3 deltaV = v2 + w2.cross(contactManifold.r2Friction) - v1 - w1.cross(contactManifold.r1Friction);
|
||||
decimal Jv = deltaV.dot(contactManifold.frictionVector1);
|
||||
|
||||
decimal deltaLambda = -Jv * contactManifold.inverseFriction1Mass;
|
||||
decimal frictionLimit = contactManifold.frictionCoefficient * sumPenetrationImpulse;
|
||||
lambdaTemp = contactManifold.friction1Impulse;
|
||||
contactManifold.friction1Impulse = std::max(-frictionLimit, std::min(contactManifold.friction1Impulse + deltaLambda, frictionLimit));
|
||||
deltaLambda = contactManifold.friction1Impulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
Vector3 linearImpulseBody1 = -contactManifold.frictionVector1 * deltaLambda;
|
||||
Vector3 angularImpulseBody1 = -contactManifold.r1CrossT1 * deltaLambda;
|
||||
Vector3 linearImpulseBody2 = contactManifold.frictionVector1 * deltaLambda;
|
||||
Vector3 angularImpulseBody2 = contactManifold.r2CrossT1 * deltaLambda;
|
||||
const Impulse impulseFriction1(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction1, contactManifold);
|
||||
|
||||
// ------ Second friction constraint at the center of the contact manifol ----- //
|
||||
|
||||
// Compute J*v
|
||||
deltaV = v2 + w2.cross(contactManifold.r2Friction) - v1 - w1.cross(contactManifold.r1Friction);
|
||||
Jv = deltaV.dot(contactManifold.frictionVector2);
|
||||
|
||||
deltaLambda = -Jv * contactManifold.inverseFriction2Mass;
|
||||
frictionLimit = contactManifold.frictionCoefficient * sumPenetrationImpulse;
|
||||
lambdaTemp = contactManifold.friction2Impulse;
|
||||
contactManifold.friction2Impulse = std::max(-frictionLimit, std::min(contactManifold.friction2Impulse + deltaLambda, frictionLimit));
|
||||
deltaLambda = contactManifold.friction2Impulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
linearImpulseBody1 = -contactManifold.frictionVector2 * deltaLambda;
|
||||
angularImpulseBody1 = -contactManifold.r1CrossT2 * deltaLambda;
|
||||
linearImpulseBody2 = contactManifold.frictionVector2 * deltaLambda;
|
||||
angularImpulseBody2 = contactManifold.r2CrossT2 * deltaLambda;
|
||||
const Impulse impulseFriction2(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction2, contactManifold);
|
||||
|
||||
// ------ Twist friction constraint at the center of the contact manifol ------ //
|
||||
|
||||
// TODO : Put this in the initialization method
|
||||
decimal K = contactManifold.normal.dot(contactManifold.inverseInertiaTensorBody1 * contactManifold.normal) +
|
||||
contactManifold.normal.dot(contactManifold.inverseInertiaTensorBody2 * contactManifold.normal);
|
||||
|
||||
// Compute J*v
|
||||
deltaV = w2 - w1;
|
||||
Jv = deltaV.dot(contactManifold.normal);
|
||||
|
||||
// TODO : Compute the inverse mass matrix here for twist friction
|
||||
deltaLambda = -Jv * (decimal(1.0) / K);
|
||||
frictionLimit = contactManifold.frictionCoefficient * sumPenetrationImpulse;
|
||||
lambdaTemp = contactManifold.frictionTwistImpulse;
|
||||
contactManifold.frictionTwistImpulse = std::max(-frictionLimit, std::min(contactManifold.frictionTwistImpulse + deltaLambda, frictionLimit));
|
||||
deltaLambda = contactManifold.frictionTwistImpulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
linearImpulseBody1 = Vector3(0.0, 0.0, 0.0);
|
||||
angularImpulseBody1 = -contactManifold.normal * deltaLambda;
|
||||
linearImpulseBody2 = Vector3(0.0, 0.0, 0.0);;
|
||||
angularImpulseBody2 = contactManifold.normal * deltaLambda;
|
||||
const Impulse impulseTwistFriction(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseTwistFriction, contactManifold);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Solve the constraints
|
||||
void ContactSolver::solve(decimal timeStep) {
|
||||
|
||||
mTimeStep = timeStep;
|
||||
|
||||
// Initialize the solver
|
||||
initialize();
|
||||
|
||||
initializeBodies();
|
||||
|
||||
// Fill-in all the matrices needed to solve the LCP problem
|
||||
initializeContactConstraints();
|
||||
|
||||
// Warm start the solver
|
||||
if (mIsWarmStartingActive) {
|
||||
warmStart();
|
||||
}
|
||||
|
||||
// Solve the contact constraints
|
||||
solveContactConstraints();
|
||||
|
||||
// Cache the lambda values in order to use them in the next step
|
||||
storeImpulses();
|
||||
}
|
||||
|
||||
// Store the computed impulses to use them to
|
||||
// warm start the solver at the next iteration
|
||||
void ContactSolver::storeImpulses() {
|
||||
|
||||
// For each constraint
|
||||
for (uint c=0; c<mNbContactConstraints; c++) {
|
||||
|
||||
ContactManifoldSolver& contactManifold = mContactConstraints[c];
|
||||
|
||||
for (uint i=0; i<contactManifold.nbContacts; i++) {
|
||||
|
||||
ContactPointSolver& contactPoint = contactManifold.contacts[i];
|
||||
|
||||
contactPoint.contact->setCachedLambda(0, contactPoint.penetrationImpulse);
|
||||
contactPoint.contact->setCachedLambda(1, contactPoint.friction1Impulse);
|
||||
contactPoint.contact->setCachedLambda(2, contactPoint.friction2Impulse);
|
||||
|
||||
contactPoint.contact->setFrictionVector1(contactPoint.frictionVector1);
|
||||
contactPoint.contact->setFrictionVector2(contactPoint.frictionVector2);
|
||||
}
|
||||
|
||||
contactManifold.contactManifold->friction1Impulse = contactManifold.friction1Impulse;
|
||||
contactManifold.contactManifold->friction2Impulse = contactManifold.friction2Impulse;
|
||||
contactManifold.contactManifold->frictionTwistImpulse = contactManifold.frictionTwistImpulse;
|
||||
contactManifold.contactManifold->frictionVector1 = contactManifold.frictionVector1;
|
||||
contactManifold.contactManifold->frictionVector2 = contactManifold.frictionVector2;
|
||||
}
|
||||
}
|
||||
|
||||
// Apply an impulse to the two bodies of a constraint
|
||||
void ContactSolver::applyImpulse(const Impulse& impulse, const ContactManifoldSolver& contactManifold) {
|
||||
|
||||
// Update the velocities of the bodies by applying the impulse P
|
||||
if (contactManifold.isBody1Moving) {
|
||||
mLinearVelocities[contactManifold.indexBody1] += contactManifold.massInverseBody1 *
|
||||
impulse.linearImpulseBody1;
|
||||
mAngularVelocities[contactManifold.indexBody1] += contactManifold.inverseInertiaTensorBody1 *
|
||||
impulse.angularImpulseBody1;
|
||||
}
|
||||
if (contactManifold.isBody2Moving) {
|
||||
mLinearVelocities[contactManifold.indexBody2] += contactManifold.massInverseBody2 *
|
||||
impulse.linearImpulseBody2;
|
||||
mAngularVelocities[contactManifold.indexBody2] += contactManifold.inverseInertiaTensorBody2 *
|
||||
impulse.angularImpulseBody2;
|
||||
}
|
||||
}
|
||||
|
||||
// Apply an impulse to the two bodies of a constraint
|
||||
void ContactSolver::applySplitImpulse(const Impulse& impulse,
|
||||
const ContactManifoldSolver& contactManifold) {
|
||||
|
||||
// Update the velocities of the bodies by applying the impulse P
|
||||
if (contactManifold.isBody1Moving) {
|
||||
mSplitLinearVelocities[contactManifold.indexBody1] += contactManifold.massInverseBody1 *
|
||||
impulse.linearImpulseBody1;
|
||||
mSplitAngularVelocities[contactManifold.indexBody1] += contactManifold.inverseInertiaTensorBody1 *
|
||||
impulse.angularImpulseBody1;
|
||||
}
|
||||
if (contactManifold.isBody2Moving) {
|
||||
mSplitLinearVelocities[contactManifold.indexBody2] += contactManifold.massInverseBody2 *
|
||||
impulse.linearImpulseBody2;
|
||||
mSplitAngularVelocities[contactManifold.indexBody2] += contactManifold.inverseInertiaTensorBody2 *
|
||||
impulse.angularImpulseBody2;
|
||||
}
|
||||
}
|
||||
|
||||
// Compute the two unit orthogonal vectors "t1" and "t2" that span the tangential friction plane
|
||||
// for a contact point constraint. The two vectors have to be such that : t1 x t2 = contactNormal.
|
||||
void ContactSolver::computeFrictionVectors(const Vector3& deltaVelocity,
|
||||
ContactPointSolver& contactPoint) const {
|
||||
|
||||
// Update the old friction vectors
|
||||
//contact.oldFrictionVector1 = contact.frictionVector1;
|
||||
//contact.oldFrictionVector2 = contact.frictionVector2;
|
||||
|
||||
assert(contactPoint.normal.length() > 0.0);
|
||||
|
||||
// Compute the velocity difference vector in the tangential plane
|
||||
Vector3 normalVelocity = deltaVelocity.dot(contactPoint.normal) * contactPoint.normal;
|
||||
Vector3 tangentVelocity = deltaVelocity - normalVelocity;
|
||||
|
||||
// If the velocty difference in the tangential plane is not zero
|
||||
decimal lengthTangenVelocity = tangentVelocity.length();
|
||||
if (lengthTangenVelocity > 0.0) {
|
||||
|
||||
// Compute the first friction vector in the direction of the tangent
|
||||
// velocity difference
|
||||
contactPoint.frictionVector1 = tangentVelocity / lengthTangenVelocity;
|
||||
}
|
||||
else {
|
||||
|
||||
// Get any orthogonal vector to the normal as the first friction vector
|
||||
contactPoint.frictionVector1 = contactPoint.normal.getOneUnitOrthogonalVector();
|
||||
}
|
||||
|
||||
// The second friction vector is computed by the cross product of the firs
|
||||
// friction vector and the contact normal
|
||||
contactPoint.frictionVector2 = contactPoint.normal.cross(contactPoint.frictionVector1).getUnit();
|
||||
}
|
||||
|
||||
// Compute the two unit orthogonal vectors "t1" and "t2" that span the tangential friction plane
|
||||
// for a contact constraint. The two vectors have to be such that : t1 x t2 = contactNormal.
|
||||
void ContactSolver::computeFrictionVectors(const Vector3& deltaVelocity,
|
||||
ContactManifoldSolver& contact) const {
|
||||
|
||||
assert(contact.normal.length() > 0.0);
|
||||
|
||||
// Compute the velocity difference vector in the tangential plane
|
||||
Vector3 normalVelocity = deltaVelocity.dot(contact.normal) * contact.normal;
|
||||
Vector3 tangentVelocity = deltaVelocity - normalVelocity;
|
||||
|
||||
// If the velocty difference in the tangential plane is not zero
|
||||
decimal lengthTangenVelocity = tangentVelocity.length();
|
||||
if (lengthTangenVelocity > 0.0) {
|
||||
|
||||
// Compute the first friction vector in the direction of the tangent
|
||||
// velocity difference
|
||||
contact.frictionVector1 = tangentVelocity / lengthTangenVelocity;
|
||||
}
|
||||
else {
|
||||
|
||||
// Get any orthogonal vector to the normal as the first friction vector
|
||||
contact.frictionVector1 = contact.normal.getOneUnitOrthogonalVector();
|
||||
}
|
||||
|
||||
// The second friction vector is computed by the cross product of the firs
|
||||
// friction vector and the contact normal
|
||||
contact.frictionVector2 = contact.normal.cross(contact.frictionVector1).getUnit();
|
||||
}
|
||||
|
||||
// Clean up the constraint solver
|
||||
void ContactSolver::cleanup() {
|
||||
mMapBodyToIndex.clear();
|
||||
mConstraintBodies.clear();
|
||||
|
||||
if (mContactConstraints != 0) {
|
||||
delete[] mContactConstraints;
|
||||
mContactConstraints = 0;
|
||||
}
|
||||
if (mLinearVelocities != 0) {
|
||||
delete[] mLinearVelocities;
|
||||
mLinearVelocities = 0;
|
||||
}
|
||||
if (mAngularVelocities != 0) {
|
||||
delete[] mAngularVelocities;
|
||||
mAngularVelocities = 0;
|
||||
}
|
||||
}
|
459
src/engine/ContactSolver.h
Normal file
459
src/engine/ContactSolver.h
Normal file
|
@ -0,0 +1,459 @@
|
|||
/********************************************************************************
|
||||
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
|
||||
* Copyright (c) 2010-2012 Daniel Chappuis *
|
||||
*********************************************************************************
|
||||
* *
|
||||
* This software is provided 'as-is', without any express or implied warranty. *
|
||||
* In no event will the authors be held liable for any damages arising from the *
|
||||
* use of this software. *
|
||||
* *
|
||||
* Permission is granted to anyone to use this software for any purpose, *
|
||||
* including commercial applications, and to alter it and redistribute it *
|
||||
* freely, subject to the following restrictions: *
|
||||
* *
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||||
* that you wrote the original software. If you use this software in a *
|
||||
* product, an acknowledgment in the product documentation would be *
|
||||
* appreciated but is not required. *
|
||||
* *
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||||
* misrepresented as being the original software. *
|
||||
* *
|
||||
* 3. This notice may not be removed or altered from any source distribution. *
|
||||
* *
|
||||
********************************************************************************/
|
||||
|
||||
#ifndef CONSTRAINT_SOLVER_H
|
||||
#define CONSTRAINT_SOLVER_H
|
||||
|
||||
// Libraries
|
||||
#include "../constraint/Contact.h"
|
||||
#include "ContactManifold.h"
|
||||
#include "../configuration.h"
|
||||
#include "../constraint/Constraint.h"
|
||||
#include <map>
|
||||
#include <set>
|
||||
|
||||
// ReactPhysics3D namespace
|
||||
namespace reactphysics3d {
|
||||
|
||||
// Declarations
|
||||
class DynamicsWorld;
|
||||
|
||||
// Structure Impulse
|
||||
struct Impulse {
|
||||
|
||||
public:
|
||||
const Vector3 linearImpulseBody1;
|
||||
const Vector3 linearImpulseBody2;
|
||||
const Vector3 angularImpulseBody1;
|
||||
const Vector3 angularImpulseBody2;
|
||||
|
||||
// Constructor
|
||||
Impulse(const Vector3& linearImpulseBody1, const Vector3& angularImpulseBody1,
|
||||
const Vector3& linearImpulseBody2, const Vector3& angularImpulseBody2)
|
||||
: linearImpulseBody1(linearImpulseBody1), angularImpulseBody1(angularImpulseBody1),
|
||||
linearImpulseBody2(linearImpulseBody2), angularImpulseBody2(angularImpulseBody2) {
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
/* -------------------------------------------------------------------
|
||||
Class ContactSolver :
|
||||
This class represents the contacts solver that is used is solve rigid bodies contacts.
|
||||
The constraint solver is based on the "Sequential Impulse" technique described by
|
||||
Erin Catto in his GDC slides (http://code.google.com/p/box2d/downloads/list).
|
||||
|
||||
A constraint between two bodies is represented by a function C(x) which is equal to zero
|
||||
when the constraint is satisfied. The condition C(x)=0 describes a valid position and the
|
||||
condition dC(x)/dt=0 describes a valid velocity. We have dC(x)/dt = Jv + b = 0 where J is
|
||||
the Jacobian matrix of the constraint, v is a vector that contains the velocity of both
|
||||
bodies and b is the constraint bias. We are looking for a force F_c that will act on the
|
||||
bodies to keep the constraint satisfied. Note that from the virtual work principle, we have
|
||||
F_c = J^t * lambda where J^t is the transpose of the Jacobian matrix and lambda is a
|
||||
Lagrange multiplier. Therefore, finding the force F_c is equivalent to finding the Lagrange
|
||||
multiplier lambda.
|
||||
|
||||
An impulse P = F * dt where F is a force and dt is the timestep. We can apply impulses a
|
||||
body to change its velocity. The idea of the Sequential Impulse technique is to apply
|
||||
impulses to bodies of each constraints in order to keep the constraint satisfied.
|
||||
|
||||
--- Step 1 ---
|
||||
|
||||
First, we integrate the applied force F_a acting of each rigid body (like gravity, ...) and
|
||||
we obtain some new velocities v2' that tends to violate the constraints.
|
||||
|
||||
v2' = v1 + dt * M^-1 * F_a
|
||||
|
||||
where M is a matrix that contains mass and inertia tensor information.
|
||||
|
||||
--- Step 2 ---
|
||||
|
||||
During the second step, we iterate over all the constraints for a certain number of
|
||||
iterations and for each constraint we compute the impulse to apply to the bodies needed
|
||||
so that the new velocity of the bodies satisfy Jv + b = 0. From the Newton law, we know that
|
||||
M * deltaV = P_c where M is the mass of the body, deltaV is the difference of velocity and
|
||||
P_c is the constraint impulse to apply to the body. Therefore, we have
|
||||
v2 = v2' + M^-1 * P_c. For each constraint, we can compute the Lagrange multiplier lambda
|
||||
using : lambda = -m_c (Jv2' + b) where m_c = 1 / (J * M^-1 * J^t). Now that we have the
|
||||
Lagrange multiplier lambda, we can compute the impulse P_c = J^t * lambda * dt to apply to
|
||||
the bodies to satisfy the constraint.
|
||||
|
||||
--- Step 3 ---
|
||||
|
||||
In the third step, we integrate the new position x2 of the bodies using the new velocities
|
||||
v2 computed in the second step with : x2 = x1 + dt * v2.
|
||||
|
||||
Note that in the following code (as it is also explained in the slides from Erin Catto),
|
||||
the value lambda is not only the lagrange multiplier but is the multiplication of the
|
||||
Lagrange multiplier with the timestep dt. Therefore, in the following code, when we use
|
||||
lambda, we mean (lambda * dt).
|
||||
|
||||
We are using the accumulated impulse technique that is also described in the slides from
|
||||
Erin Catto.
|
||||
|
||||
We are also using warm starting. The idea is to warm start the solver at the beginning of
|
||||
each step by applying the last impulstes for the constraints that we already existing at the
|
||||
previous step. This allows the iterative solver to converge faster towards the solution.
|
||||
|
||||
For contact constraints, we are also using split impulses so that the position correction
|
||||
that uses Baumgarte stabilization does not change the momentum of the bodies.
|
||||
|
||||
There are two ways to apply the friction constraints. Either the friction constraints are
|
||||
applied at each contact point or they are applied only at the center of the contact manifold
|
||||
between two bodies. If we solve the friction constraints at each contact point, we need
|
||||
two constraints (two tangential friction directions) and if we solve the friction constraints
|
||||
at the center of the contact manifold, we need two constraints for tangential friction but
|
||||
also another twist friction constraint to prevent spin of the body around the contact
|
||||
manifold center.
|
||||
|
||||
-------------------------------------------------------------------
|
||||
*/
|
||||
class ContactSolver {
|
||||
|
||||
private:
|
||||
|
||||
// Structure ContactPoint
|
||||
// Contact solver internal data structure that to store all the
|
||||
// information relative to a contact point
|
||||
struct ContactPointSolver {
|
||||
|
||||
decimal penetrationImpulse; // Accumulated normal impulse
|
||||
decimal friction1Impulse; // Accumulated impulse in the 1st friction direction
|
||||
decimal friction2Impulse; // Accumulated impulse in the 2nd friction direction
|
||||
decimal penetrationSplitImpulse; // Accumulated split impulse for penetration correction
|
||||
Vector3 normal; // Normal vector of the contact
|
||||
Vector3 frictionVector1; // First friction vector in the tangent plane
|
||||
Vector3 frictionVector2; // Second friction vector in the tangent plane
|
||||
Vector3 oldFrictionVector1; // Old first friction vector in the tangent plane
|
||||
Vector3 oldFrictionVector2; // Old second friction vector in the tangent plane
|
||||
Vector3 r1; // Vector from the body 1 center to the contact point
|
||||
Vector3 r2; // Vector from the body 2 center to the contact point
|
||||
Vector3 r1CrossT1; // Cross product of r1 with 1st friction vector
|
||||
Vector3 r1CrossT2; // Cross product of r1 with 2nd friction vector
|
||||
Vector3 r2CrossT1; // Cross product of r2 with 1st friction vector
|
||||
Vector3 r2CrossT2; // Cross product of r2 with 2nd friction vector
|
||||
Vector3 r1CrossN; // Cross product of r1 with the contact normal
|
||||
Vector3 r2CrossN; // Cross product of r2 with the contact normal
|
||||
decimal penetrationDepth; // Penetration depth
|
||||
decimal restitutionBias; // Velocity restitution bias
|
||||
decimal inversePenetrationMass; // Inverse of the matrix K for the penenetration
|
||||
decimal inverseFriction1Mass; // Inverse of the matrix K for the 1st friction
|
||||
decimal inverseFriction2Mass; // Inverse of the matrix K for the 2nd friction
|
||||
bool isRestingContact; // True if the contact was existing last time step
|
||||
Contact* contact; // Pointer to the external contact
|
||||
};
|
||||
|
||||
// Structure ContactManifold
|
||||
// Contact solver internal data structure to store all the
|
||||
// information relative to a contact manifold
|
||||
struct ContactManifoldSolver {
|
||||
|
||||
// TODO : Use a constant for the number of contact points
|
||||
|
||||
uint indexBody1; // Index of body 1 in the constraint solver
|
||||
uint indexBody2; // Index of body 2 in the constraint solver
|
||||
decimal massInverseBody1; // Inverse of the mass of body 1
|
||||
decimal massInverseBody2; // Inverse of the mass of body 2
|
||||
Matrix3x3 inverseInertiaTensorBody1; // Inverse inertia tensor of body 1
|
||||
Matrix3x3 inverseInertiaTensorBody2; // Inverse inertia tensor of body 2
|
||||
bool isBody1Moving; // True if the body 1 is allowed to move
|
||||
bool isBody2Moving; // True if the body 2 is allowed to move
|
||||
ContactPointSolver contacts[4]; // Contact point constraints
|
||||
uint nbContacts; // Number of contact points
|
||||
decimal restitutionFactor; // Mix of the restitution factor for two bodies
|
||||
decimal frictionCoefficient; // Mix friction coefficient for the two bodies
|
||||
ContactManifold* contactManifold; // Pointer to the external contact manifold
|
||||
|
||||
// Variables used when friction constraints are apply at the center of the manifold //
|
||||
|
||||
Vector3 normal; // Average normal vector of the contact manifold
|
||||
Vector3 frictionPointBody1; // Point on body 1 where to apply the friction constraints
|
||||
Vector3 frictionPointBody2; // Point on body 2 where to apply the friction constraints
|
||||
Vector3 r1Friction; // R1 vector for the friction constraints
|
||||
Vector3 r2Friction; // R2 vector for the friction constraints
|
||||
Vector3 r1CrossT1; // Cross product of r1 with 1st friction vector
|
||||
Vector3 r1CrossT2; // Cross product of r1 with 2nd friction vector
|
||||
Vector3 r2CrossT1; // Cross product of r2 with 1st friction vector
|
||||
Vector3 r2CrossT2; // Cross product of r2 with 2nd friction vector
|
||||
decimal inverseFriction1Mass; // Matrix K for the first friction constraint
|
||||
decimal inverseFriction2Mass; // Matrix K for the second friction constraint
|
||||
Vector3 frictionVector1; // First friction direction at contact manifold center
|
||||
Vector3 frictionVector2; // Second friction direction at contact manifold center
|
||||
Vector3 oldFrictionVector1; // Old 1st friction direction at contact manifold center
|
||||
Vector3 oldFrictionVector2; // Old 2nd friction direction at contact manifold center
|
||||
decimal friction1Impulse; // First friction direction impulse at manifold center
|
||||
decimal friction2Impulse; // Second friction direction impulse at manifold center
|
||||
decimal frictionTwistImpulse; // Twist friction impulse at contact manifold center
|
||||
};
|
||||
|
||||
// -------------------- Constants --------------------- //
|
||||
|
||||
// Beta value for the penetration depth position correction without split impulses
|
||||
static const decimal BETA;
|
||||
|
||||
// Beta value for the penetration depth position correction with split impulses
|
||||
static const decimal BETA_SPLIT_IMPULSE;
|
||||
|
||||
// Slop distance (allowed penetration distance between bodies)
|
||||
static const decimal SLOP;
|
||||
|
||||
// -------------------- Attributes -------------------- //
|
||||
|
||||
// Reference to the world
|
||||
DynamicsWorld& mWorld;
|
||||
|
||||
// Number of iterations of the constraints solver
|
||||
uint mNbIterations;
|
||||
|
||||
// Array of constrained linear velocities
|
||||
Vector3* mLinearVelocities;
|
||||
|
||||
// Array of constrained angular velocities
|
||||
Vector3* mAngularVelocities;
|
||||
|
||||
// Split linear velocities for the position contact solver (split impulse)
|
||||
Vector3* mSplitLinearVelocities;
|
||||
|
||||
// Split angular velocities for the position contact solver (split impulse)
|
||||
Vector3* mSplitAngularVelocities;
|
||||
|
||||
// Current time step
|
||||
decimal mTimeStep;
|
||||
|
||||
// Contact constraints
|
||||
ContactManifoldSolver* mContactConstraints;
|
||||
|
||||
// Number of contact constraints
|
||||
uint mNbContactConstraints;
|
||||
|
||||
// Constrained bodies
|
||||
std::set<RigidBody*> mConstraintBodies;
|
||||
|
||||
// Map body to index
|
||||
std::map<RigidBody*, uint> mMapBodyToIndex;
|
||||
|
||||
// True if the warm starting of the solver is active
|
||||
bool mIsWarmStartingActive;
|
||||
|
||||
// True if the split impulse position correction is active
|
||||
bool mIsSplitImpulseActive;
|
||||
|
||||
// True if we solve 3 friction constraints at the contact manifold center only
|
||||
// instead of 2 friction constraints at each contact point
|
||||
bool mIsSolveFrictionAtContactManifoldCenterActive;
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
// Initialize the constraint solver
|
||||
void initialize();
|
||||
|
||||
// Initialize the constrained bodies
|
||||
void initializeBodies();
|
||||
|
||||
// Initialize the contact constraints before solving the system
|
||||
void initializeContactConstraints();
|
||||
|
||||
// Store the computed impulses to use them to
|
||||
// warm start the solver at the next iteration
|
||||
void storeImpulses();
|
||||
|
||||
// Warm start the solver
|
||||
void warmStart();
|
||||
|
||||
// Solve the contact constraints by applying sequential impulses
|
||||
void solveContactConstraints();
|
||||
|
||||
// Apply an impulse to the two bodies of a constraint
|
||||
void applyImpulse(const Impulse& impulse, const ContactManifoldSolver& contactManifold);
|
||||
|
||||
// Apply an impulse to the two bodies of a constraint
|
||||
void applySplitImpulse(const Impulse& impulse, const ContactManifoldSolver& contactManifold);
|
||||
|
||||
// Compute the collision restitution factor from the restitution factor of each body
|
||||
decimal computeMixedRestitutionFactor(const RigidBody* body1, const RigidBody* body2) const;
|
||||
|
||||
// Compute the mixed friction coefficient from the friction coefficient of each body
|
||||
decimal computeMixedFrictionCoefficient(const RigidBody* body1, const RigidBody* body2)const;
|
||||
|
||||
// Compute the two unit orthogonal vectors "t1" and "t2" that span the tangential friction
|
||||
// plane for a contact point constraint. The two vectors have to be
|
||||
// such that : t1 x t2 = contactNormal.
|
||||
void computeFrictionVectors(const Vector3& deltaVelocity,
|
||||
ContactPointSolver &contactPoint) const;
|
||||
|
||||
// Compute the two unit orthogonal vectors "t1" and "t2" that span the tangential friction
|
||||
// plane for a contact constraint. The two vectors have to be
|
||||
// such that : t1 x t2 = contactNormal.
|
||||
void computeFrictionVectors(const Vector3& deltaVelocity,
|
||||
ContactManifoldSolver& contactPoint) const;
|
||||
|
||||
// Compute a penetration constraint impulse
|
||||
const Impulse computePenetrationImpulse(decimal deltaLambda,
|
||||
const ContactPointSolver& contactPoint) const;
|
||||
|
||||
// Compute the first friction constraint impulse
|
||||
const Impulse computeFriction1Impulse(decimal deltaLambda,
|
||||
const ContactPointSolver& contactPoint) const;
|
||||
|
||||
// Compute the second friction constraint impulse
|
||||
const Impulse computeFriction2Impulse(decimal deltaLambda,
|
||||
const ContactPointSolver& contactPoint) const;
|
||||
|
||||
public:
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
// Constructor
|
||||
ContactSolver(DynamicsWorld& mWorld);
|
||||
|
||||
// Destructor
|
||||
virtual ~ContactSolver();
|
||||
|
||||
// Solve the constraints
|
||||
void solve(decimal timeStep);
|
||||
|
||||
// Return true if the body is in at least one constraint
|
||||
bool isConstrainedBody(RigidBody* body) const;
|
||||
|
||||
// Return the constrained linear velocity of a body after solving the constraints
|
||||
Vector3 getConstrainedLinearVelocityOfBody(RigidBody *body);
|
||||
|
||||
// Return the split linear velocity
|
||||
Vector3 getSplitLinearVelocityOfBody(RigidBody* body);
|
||||
|
||||
// Return the constrained angular velocity of a body after solving the constraints
|
||||
Vector3 getConstrainedAngularVelocityOfBody(RigidBody* body);
|
||||
|
||||
// Return the split angular velocity
|
||||
Vector3 getSplitAngularVelocityOfBody(RigidBody* body);
|
||||
|
||||
// Clean up the constraint solver
|
||||
void cleanup();
|
||||
|
||||
// Set the number of iterations of the constraint solver
|
||||
void setNbIterationsSolver(uint nbIterations);
|
||||
|
||||
// Activate or Deactivate the split impulses for contacts
|
||||
void setIsSplitImpulseActive(bool isActive);
|
||||
|
||||
// Activate or deactivate the solving of friction constraints at the center of
|
||||
// the contact manifold instead of solving them at each contact point
|
||||
void setIsSolveFrictionAtContactManifoldCenterActive(bool isActive);
|
||||
};
|
||||
|
||||
// Return true if the body is in at least one constraint
|
||||
inline bool ContactSolver::isConstrainedBody(RigidBody* body) const {
|
||||
return mConstraintBodies.count(body) == 1;
|
||||
}
|
||||
|
||||
// Return the constrained linear velocity of a body after solving the constraints
|
||||
inline Vector3 ContactSolver::getConstrainedLinearVelocityOfBody(RigidBody* body) {
|
||||
assert(isConstrainedBody(body));
|
||||
uint indexBody = mMapBodyToIndex[body];
|
||||
return mLinearVelocities[indexBody];
|
||||
}
|
||||
|
||||
// Return the split linear velocity
|
||||
inline Vector3 ContactSolver::getSplitLinearVelocityOfBody(RigidBody* body) {
|
||||
assert(isConstrainedBody(body));
|
||||
uint indexBody = mMapBodyToIndex[body];
|
||||
return mSplitLinearVelocities[indexBody];
|
||||
}
|
||||
|
||||
// Return the constrained angular velocity of a body after solving the constraints
|
||||
inline Vector3 ContactSolver::getConstrainedAngularVelocityOfBody(RigidBody *body) {
|
||||
assert(isConstrainedBody(body));
|
||||
uint indexBody = mMapBodyToIndex[body];
|
||||
return mAngularVelocities[indexBody];
|
||||
}
|
||||
|
||||
// Return the split angular velocity
|
||||
inline Vector3 ContactSolver::getSplitAngularVelocityOfBody(RigidBody* body) {
|
||||
assert(isConstrainedBody(body));
|
||||
uint indexBody = mMapBodyToIndex[body];
|
||||
return mSplitAngularVelocities[indexBody];
|
||||
}
|
||||
|
||||
// Set the number of iterations of the constraint solver
|
||||
inline void ContactSolver::setNbIterationsSolver(uint nbIterations) {
|
||||
mNbIterations = nbIterations;
|
||||
}
|
||||
|
||||
// Activate or Deactivate the split impulses for contacts
|
||||
inline void ContactSolver::setIsSplitImpulseActive(bool isActive) {
|
||||
mIsSplitImpulseActive = isActive;
|
||||
}
|
||||
|
||||
// Activate or deactivate the solving of friction constraints at the center of
|
||||
// the contact manifold instead of solving them at each contact point
|
||||
inline void ContactSolver::setIsSolveFrictionAtContactManifoldCenterActive(bool isActive) {
|
||||
mIsSolveFrictionAtContactManifoldCenterActive = isActive;
|
||||
}
|
||||
|
||||
// Compute the collision restitution factor from the restitution factor of each body
|
||||
inline decimal ContactSolver::computeMixedRestitutionFactor(const RigidBody* body1,
|
||||
const RigidBody* body2) const {
|
||||
decimal restitution1 = body1->getRestitution();
|
||||
decimal restitution2 = body2->getRestitution();
|
||||
|
||||
// Return the largest restitution factor
|
||||
return (restitution1 > restitution2) ? restitution1 : restitution2;
|
||||
}
|
||||
|
||||
// Compute the mixed friction coefficient from the friction coefficient of each body
|
||||
inline decimal ContactSolver::computeMixedFrictionCoefficient(const RigidBody* body1,
|
||||
const RigidBody* body2) const {
|
||||
// Use the geometric mean to compute the mixed friction coefficient
|
||||
return sqrt(body1->getFrictionCoefficient() * body2->getFrictionCoefficient());
|
||||
}
|
||||
|
||||
// Compute a penetration constraint impulse
|
||||
inline const Impulse ContactSolver::computePenetrationImpulse(decimal deltaLambda,
|
||||
const ContactPointSolver& contactPoint)
|
||||
const {
|
||||
return Impulse(-contactPoint.normal * deltaLambda, -contactPoint.r1CrossN * deltaLambda,
|
||||
contactPoint.normal * deltaLambda, contactPoint.r2CrossN * deltaLambda);
|
||||
}
|
||||
|
||||
// Compute the first friction constraint impulse
|
||||
inline const Impulse ContactSolver::computeFriction1Impulse(decimal deltaLambda,
|
||||
const ContactPointSolver& contactPoint)
|
||||
const {
|
||||
return Impulse(-contactPoint.frictionVector1 * deltaLambda, -contactPoint.r1CrossT1 * deltaLambda,
|
||||
contactPoint.frictionVector1 * deltaLambda, contactPoint.r2CrossT1 * deltaLambda);
|
||||
}
|
||||
|
||||
// Compute the second friction constraint impulse
|
||||
inline const Impulse ContactSolver::computeFriction2Impulse(decimal deltaLambda,
|
||||
const ContactPointSolver& contactPoint)
|
||||
const {
|
||||
return Impulse(-contactPoint.frictionVector2 * deltaLambda, -contactPoint.r1CrossT2 * deltaLambda,
|
||||
contactPoint.frictionVector2 * deltaLambda, contactPoint.r2CrossT2 * deltaLambda);
|
||||
}
|
||||
|
||||
} // End of ReactPhysics3D namespace
|
||||
|
||||
#endif
|
|
@ -32,7 +32,7 @@ using namespace std;
|
|||
|
||||
// Constructor
|
||||
DynamicsWorld::DynamicsWorld(const Vector3 &gravity, decimal timeStep = DEFAULT_TIMESTEP)
|
||||
: CollisionWorld(), mTimer(timeStep), mGravity(gravity), mIsGravityOn(true), mConstraintSolver(this),
|
||||
: CollisionWorld(), mTimer(timeStep), mGravity(gravity), mIsGravityOn(true), mContactSolver(*this),
|
||||
mIsDeactivationActive(DEACTIVATION_ENABLED) {
|
||||
|
||||
}
|
||||
|
@ -68,11 +68,11 @@ void DynamicsWorld::update() {
|
|||
// Compute the collision detection
|
||||
mCollisionDetection.computeCollisionDetection();
|
||||
|
||||
// If there are constraints or contacts
|
||||
if (!mConstraints.empty() || !mContactManifolds.empty()) {
|
||||
// If there are contacts
|
||||
if (!mContactManifolds.empty()) {
|
||||
|
||||
// Solve the constraints and contacts
|
||||
mConstraintSolver.solve(mTimer.getTimeStep());
|
||||
// Solve the contacts
|
||||
mContactSolver.solve(mTimer.getTimeStep());
|
||||
}
|
||||
|
||||
// Update the timer
|
||||
|
@ -84,8 +84,8 @@ void DynamicsWorld::update() {
|
|||
// Update the position and orientation of each body
|
||||
updateAllBodiesMotion();
|
||||
|
||||
// Cleanup of the constraint solver
|
||||
mConstraintSolver.cleanup();
|
||||
// Cleanup of the contact solver
|
||||
mContactSolver.cleanup();
|
||||
}
|
||||
|
||||
// Compute and set the interpolation factor to all the bodies
|
||||
|
@ -118,10 +118,10 @@ void DynamicsWorld::updateAllBodiesMotion() {
|
|||
newAngularVelocity.setAllValues(0.0, 0.0, 0.0);
|
||||
|
||||
// If it's a constrained body
|
||||
if (mConstraintSolver.isConstrainedBody(*it)) {
|
||||
if (mContactSolver.isConstrainedBody(*it)) {
|
||||
// Get the constrained linear and angular velocities from the constraint solver
|
||||
newLinearVelocity = mConstraintSolver.getConstrainedLinearVelocityOfBody(rigidBody);
|
||||
newAngularVelocity = mConstraintSolver.getConstrainedAngularVelocityOfBody(rigidBody);
|
||||
newLinearVelocity = mContactSolver.getConstrainedLinearVelocityOfBody(rigidBody);
|
||||
newAngularVelocity = mContactSolver.getConstrainedAngularVelocityOfBody(rigidBody);
|
||||
}
|
||||
else {
|
||||
// Compute V_forces = dt * (M^-1 * F_ext) which is the velocity of the body due to the
|
||||
|
@ -161,9 +161,9 @@ void DynamicsWorld::updatePositionAndOrientationOfBody(RigidBody* rigidBody,
|
|||
rigidBody->setAngularVelocity(newAngVelocity);
|
||||
|
||||
// Split velocity (only used to update the position)
|
||||
if (mConstraintSolver.isConstrainedBody(rigidBody)) {
|
||||
newLinVelocity += mConstraintSolver.getSplitLinearVelocityOfBody(rigidBody);
|
||||
newAngVelocity += mConstraintSolver.getSplitAngularVelocityOfBody(rigidBody);
|
||||
if (mContactSolver.isConstrainedBody(rigidBody)) {
|
||||
newLinVelocity += mContactSolver.getSplitLinearVelocityOfBody(rigidBody);
|
||||
newAngVelocity += mContactSolver.getSplitAngularVelocityOfBody(rigidBody);
|
||||
}
|
||||
|
||||
// Get current position and orientation of the body
|
||||
|
|
|
@ -30,7 +30,7 @@
|
|||
#include "CollisionWorld.h"
|
||||
#include "ContactManifold.h"
|
||||
#include "../collision/CollisionDetection.h"
|
||||
#include "ConstraintSolver.h"
|
||||
#include "ContactSolver.h"
|
||||
#include "../body/RigidBody.h"
|
||||
#include "Timer.h"
|
||||
#include "../configuration.h"
|
||||
|
@ -54,8 +54,8 @@ class DynamicsWorld : public CollisionWorld {
|
|||
// Timer of the physics engine
|
||||
Timer mTimer;
|
||||
|
||||
// Constraint solver
|
||||
ConstraintSolver mConstraintSolver;
|
||||
// Contact solver
|
||||
ContactSolver mContactSolver;
|
||||
|
||||
// True if the deactivation (sleeping) of inactive bodies is enabled
|
||||
bool mIsDeactivationActive;
|
||||
|
@ -214,18 +214,18 @@ inline void DynamicsWorld::stop() {
|
|||
|
||||
// Set the number of iterations of the constraint solver
|
||||
inline void DynamicsWorld::setNbIterationsSolver(uint nbIterations) {
|
||||
mConstraintSolver.setNbIterationsSolver(nbIterations);
|
||||
mContactSolver.setNbIterationsSolver(nbIterations);
|
||||
}
|
||||
|
||||
// Activate or Deactivate the split impulses for contacts
|
||||
inline void DynamicsWorld::setIsSplitImpulseActive(bool isActive) {
|
||||
mConstraintSolver.setIsSplitImpulseActive(isActive);
|
||||
mContactSolver.setIsSplitImpulseActive(isActive);
|
||||
}
|
||||
|
||||
// Activate or deactivate the solving of friction constraints at the center of
|
||||
// the contact manifold instead of solving them at each contact point
|
||||
inline void DynamicsWorld::setIsSolveFrictionAtContactManifoldCenterActive(bool isActive) {
|
||||
mConstraintSolver.setIsSolveFrictionAtContactManifoldCenterActive(isActive);
|
||||
mContactSolver.setIsSolveFrictionAtContactManifoldCenterActive(isActive);
|
||||
}
|
||||
|
||||
// Reset the boolean movement variable of each body
|
||||
|
|
|
@ -136,7 +136,7 @@ inline Contact* PersistentContactCache::getContact(uint index) const {
|
|||
// Return true if two vectors are approximatively equal
|
||||
inline bool PersistentContactCache::isApproxEqual(const Vector3& vector1,
|
||||
const Vector3& vector2) const {
|
||||
const decimal epsilon = 0.1;
|
||||
const decimal epsilon = decimal(0.1);
|
||||
return (approxEqual(vector1.getX(), vector2.getX(), epsilon) &&
|
||||
approxEqual(vector1.getY(), vector2.getY(), epsilon) &&
|
||||
approxEqual(vector1.getZ(), vector2.getZ(), epsilon));
|
||||
|
|
|
@ -176,7 +176,7 @@ inline Transform Transform::interpolateTransforms(const Transform& oldTransform,
|
|||
const Transform& newTransform,
|
||||
decimal interpolationFactor) {
|
||||
|
||||
Vector3 interPosition = oldTransform.mPosition * (1.0 - interpolationFactor) +
|
||||
Vector3 interPosition = oldTransform.mPosition * (decimal(1.0) - interpolationFactor) +
|
||||
newTransform.mPosition * interpolationFactor;
|
||||
|
||||
Quaternion interOrientation = Quaternion::slerp(oldTransform.mOrientation,
|
||||
|
|
Loading…
Reference in New Issue
Block a user