Make AABB methods inline

This commit is contained in:
Daniel Chappuis 2020-10-20 22:46:20 +02:00
parent 860bc8b091
commit ec5350bb5f
2 changed files with 96 additions and 96 deletions

View File

@ -217,6 +217,102 @@ RP3D_FORCE_INLINE AABB& AABB::operator=(const AABB& aabb) {
return *this; return *this;
} }
// Merge the AABB in parameter with the current one
RP3D_FORCE_INLINE void AABB::mergeWithAABB(const AABB& aabb) {
mMinCoordinates.x = std::min(mMinCoordinates.x, aabb.mMinCoordinates.x);
mMinCoordinates.y = std::min(mMinCoordinates.y, aabb.mMinCoordinates.y);
mMinCoordinates.z = std::min(mMinCoordinates.z, aabb.mMinCoordinates.z);
mMaxCoordinates.x = std::max(mMaxCoordinates.x, aabb.mMaxCoordinates.x);
mMaxCoordinates.y = std::max(mMaxCoordinates.y, aabb.mMaxCoordinates.y);
mMaxCoordinates.z = std::max(mMaxCoordinates.z, aabb.mMaxCoordinates.z);
}
// Replace the current AABB with a new AABB that is the union of two AABBs in parameters
RP3D_FORCE_INLINE void AABB::mergeTwoAABBs(const AABB& aabb1, const AABB& aabb2) {
mMinCoordinates.x = std::min(aabb1.mMinCoordinates.x, aabb2.mMinCoordinates.x);
mMinCoordinates.y = std::min(aabb1.mMinCoordinates.y, aabb2.mMinCoordinates.y);
mMinCoordinates.z = std::min(aabb1.mMinCoordinates.z, aabb2.mMinCoordinates.z);
mMaxCoordinates.x = std::max(aabb1.mMaxCoordinates.x, aabb2.mMaxCoordinates.x);
mMaxCoordinates.y = std::max(aabb1.mMaxCoordinates.y, aabb2.mMaxCoordinates.y);
mMaxCoordinates.z = std::max(aabb1.mMaxCoordinates.z, aabb2.mMaxCoordinates.z);
}
// Return true if the current AABB contains the AABB given in parameter
RP3D_FORCE_INLINE bool AABB::contains(const AABB& aabb) const {
bool isInside = true;
isInside = isInside && mMinCoordinates.x <= aabb.mMinCoordinates.x;
isInside = isInside && mMinCoordinates.y <= aabb.mMinCoordinates.y;
isInside = isInside && mMinCoordinates.z <= aabb.mMinCoordinates.z;
isInside = isInside && mMaxCoordinates.x >= aabb.mMaxCoordinates.x;
isInside = isInside && mMaxCoordinates.y >= aabb.mMaxCoordinates.y;
isInside = isInside && mMaxCoordinates.z >= aabb.mMaxCoordinates.z;
return isInside;
}
// Create and return an AABB for a triangle
RP3D_FORCE_INLINE AABB AABB::createAABBForTriangle(const Vector3* trianglePoints) {
Vector3 minCoords(trianglePoints[0].x, trianglePoints[0].y, trianglePoints[0].z);
Vector3 maxCoords(trianglePoints[0].x, trianglePoints[0].y, trianglePoints[0].z);
if (trianglePoints[1].x < minCoords.x) minCoords.x = trianglePoints[1].x;
if (trianglePoints[1].y < minCoords.y) minCoords.y = trianglePoints[1].y;
if (trianglePoints[1].z < minCoords.z) minCoords.z = trianglePoints[1].z;
if (trianglePoints[2].x < minCoords.x) minCoords.x = trianglePoints[2].x;
if (trianglePoints[2].y < minCoords.y) minCoords.y = trianglePoints[2].y;
if (trianglePoints[2].z < minCoords.z) minCoords.z = trianglePoints[2].z;
if (trianglePoints[1].x > maxCoords.x) maxCoords.x = trianglePoints[1].x;
if (trianglePoints[1].y > maxCoords.y) maxCoords.y = trianglePoints[1].y;
if (trianglePoints[1].z > maxCoords.z) maxCoords.z = trianglePoints[1].z;
if (trianglePoints[2].x > maxCoords.x) maxCoords.x = trianglePoints[2].x;
if (trianglePoints[2].y > maxCoords.y) maxCoords.y = trianglePoints[2].y;
if (trianglePoints[2].z > maxCoords.z) maxCoords.z = trianglePoints[2].z;
return AABB(minCoords, maxCoords);
}
// Return true if the ray intersects the AABB
/// This method use the line vs AABB raycasting technique (SAT algorithm) described in
/// Real-time Collision Detection by Christer Ericson.
RP3D_FORCE_INLINE bool AABB::testRayIntersect(const Ray& ray) const {
const Vector3 point2 = ray.point1 + ray.maxFraction * (ray.point2 - ray.point1);
const Vector3 e = mMaxCoordinates - mMinCoordinates;
const Vector3 d = point2 - ray.point1;
const Vector3 m = ray.point1 + point2 - mMinCoordinates - mMaxCoordinates;
// Test if the AABB face normals are separating axis
decimal adx = std::abs(d.x);
if (std::abs(m.x) > e.x + adx) return false;
decimal ady = std::abs(d.y);
if (std::abs(m.y) > e.y + ady) return false;
decimal adz = std::abs(d.z);
if (std::abs(m.z) > e.z + adz) return false;
// Add in an epsilon term to counteract arithmetic errors when segment is
// (near) parallel to a coordinate axis
const decimal epsilon = 0.00001;
adx += epsilon;
ady += epsilon;
adz += epsilon;
// Test if the cross products between face normals and ray direction are
// separating axis
if (std::abs(m.y * d.z - m.z * d.y) > e.y * adz + e.z * ady) return false;
if (std::abs(m.z * d.x - m.x * d.z) > e.x * adz + e.z * adx) return false;
if (std::abs(m.x * d.y - m.y * d.x) > e.x * ady + e.y * adx) return false;
// No separating axis has been found
return true;
}
} }
#endif #endif

View File

@ -42,99 +42,3 @@ AABB::AABB(const AABB& aabb)
: mMinCoordinates(aabb.mMinCoordinates), mMaxCoordinates(aabb.mMaxCoordinates) { : mMinCoordinates(aabb.mMinCoordinates), mMaxCoordinates(aabb.mMaxCoordinates) {
} }
// Merge the AABB in parameter with the current one
void AABB::mergeWithAABB(const AABB& aabb) {
mMinCoordinates.x = std::min(mMinCoordinates.x, aabb.mMinCoordinates.x);
mMinCoordinates.y = std::min(mMinCoordinates.y, aabb.mMinCoordinates.y);
mMinCoordinates.z = std::min(mMinCoordinates.z, aabb.mMinCoordinates.z);
mMaxCoordinates.x = std::max(mMaxCoordinates.x, aabb.mMaxCoordinates.x);
mMaxCoordinates.y = std::max(mMaxCoordinates.y, aabb.mMaxCoordinates.y);
mMaxCoordinates.z = std::max(mMaxCoordinates.z, aabb.mMaxCoordinates.z);
}
// Replace the current AABB with a new AABB that is the union of two AABBs in parameters
void AABB::mergeTwoAABBs(const AABB& aabb1, const AABB& aabb2) {
mMinCoordinates.x = std::min(aabb1.mMinCoordinates.x, aabb2.mMinCoordinates.x);
mMinCoordinates.y = std::min(aabb1.mMinCoordinates.y, aabb2.mMinCoordinates.y);
mMinCoordinates.z = std::min(aabb1.mMinCoordinates.z, aabb2.mMinCoordinates.z);
mMaxCoordinates.x = std::max(aabb1.mMaxCoordinates.x, aabb2.mMaxCoordinates.x);
mMaxCoordinates.y = std::max(aabb1.mMaxCoordinates.y, aabb2.mMaxCoordinates.y);
mMaxCoordinates.z = std::max(aabb1.mMaxCoordinates.z, aabb2.mMaxCoordinates.z);
}
// Return true if the current AABB contains the AABB given in parameter
bool AABB::contains(const AABB& aabb) const {
bool isInside = true;
isInside = isInside && mMinCoordinates.x <= aabb.mMinCoordinates.x;
isInside = isInside && mMinCoordinates.y <= aabb.mMinCoordinates.y;
isInside = isInside && mMinCoordinates.z <= aabb.mMinCoordinates.z;
isInside = isInside && mMaxCoordinates.x >= aabb.mMaxCoordinates.x;
isInside = isInside && mMaxCoordinates.y >= aabb.mMaxCoordinates.y;
isInside = isInside && mMaxCoordinates.z >= aabb.mMaxCoordinates.z;
return isInside;
}
// Create and return an AABB for a triangle
AABB AABB::createAABBForTriangle(const Vector3* trianglePoints) {
Vector3 minCoords(trianglePoints[0].x, trianglePoints[0].y, trianglePoints[0].z);
Vector3 maxCoords(trianglePoints[0].x, trianglePoints[0].y, trianglePoints[0].z);
if (trianglePoints[1].x < minCoords.x) minCoords.x = trianglePoints[1].x;
if (trianglePoints[1].y < minCoords.y) minCoords.y = trianglePoints[1].y;
if (trianglePoints[1].z < minCoords.z) minCoords.z = trianglePoints[1].z;
if (trianglePoints[2].x < minCoords.x) minCoords.x = trianglePoints[2].x;
if (trianglePoints[2].y < minCoords.y) minCoords.y = trianglePoints[2].y;
if (trianglePoints[2].z < minCoords.z) minCoords.z = trianglePoints[2].z;
if (trianglePoints[1].x > maxCoords.x) maxCoords.x = trianglePoints[1].x;
if (trianglePoints[1].y > maxCoords.y) maxCoords.y = trianglePoints[1].y;
if (trianglePoints[1].z > maxCoords.z) maxCoords.z = trianglePoints[1].z;
if (trianglePoints[2].x > maxCoords.x) maxCoords.x = trianglePoints[2].x;
if (trianglePoints[2].y > maxCoords.y) maxCoords.y = trianglePoints[2].y;
if (trianglePoints[2].z > maxCoords.z) maxCoords.z = trianglePoints[2].z;
return AABB(minCoords, maxCoords);
}
// Return true if the ray intersects the AABB
/// This method use the line vs AABB raycasting technique described in
/// Real-time Collision Detection by Christer Ericson.
bool AABB::testRayIntersect(const Ray& ray) const {
const Vector3 point2 = ray.point1 + ray.maxFraction * (ray.point2 - ray.point1);
const Vector3 e = mMaxCoordinates - mMinCoordinates;
const Vector3 d = point2 - ray.point1;
const Vector3 m = ray.point1 + point2 - mMinCoordinates - mMaxCoordinates;
// Test if the AABB face normals are separating axis
decimal adx = std::abs(d.x);
if (std::abs(m.x) > e.x + adx) return false;
decimal ady = std::abs(d.y);
if (std::abs(m.y) > e.y + ady) return false;
decimal adz = std::abs(d.z);
if (std::abs(m.z) > e.z + adz) return false;
// Add in an epsilon term to counteract arithmetic errors when segment is
// (near) parallel to a coordinate axis (see text for detail)
const decimal epsilon = 0.00001;
adx += epsilon;
ady += epsilon;
adz += epsilon;
// Test if the cross products between face normals and ray direction are
// separating axis
if (std::abs(m.y * d.z - m.z * d.y) > e.y * adz + e.z * ady) return false;
if (std::abs(m.z * d.x - m.x * d.z) > e.x * adz + e.z * adx) return false;
if (std::abs(m.x * d.y - m.y * d.x) > e.x * ady + e.y * adx) return false;
// No separating axis has been found
return true;
}