Add the convex mesh collision shape

This commit is contained in:
Daniel Chappuis 2013-07-15 19:10:30 +02:00
parent c3f4355c25
commit ffd79a89e3
3 changed files with 456 additions and 0 deletions

View File

@ -0,0 +1,228 @@
/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include <complex>
#include "../../configuration.h"
#include "ConvexMeshShape.h"
using namespace reactphysics3d;
// Constructor to initialize with a array of 3D vertices.
/// This method creates an internal copy of the input vertices.
ConvexMeshShape::ConvexMeshShape(const decimal* arrayVertices, uint nbVertices, int stride,
decimal margin)
: CollisionShape(CONVEX_MESH, margin), mNbVertices(nbVertices), mMinBounds(0, 0, 0),
mMaxBounds(0, 0, 0), mIsEdgesInformationUsed(false), mCachedSupportVertex(0) {
assert(nbVertices > 0);
assert(stride > 0);
assert(margin > decimal(0.0));
const unsigned char* vertexPointer = (const unsigned char*) arrayVertices;
// Copy all the vertices into the internal array
for (uint i=0; i<mNbVertices; i++) {
const decimal* newPoint = (const decimal*) vertexPointer;
mVertices.push_back(Vector3(newPoint[0], newPoint[1], newPoint[2]));
vertexPointer += stride;
}
// Recalculate the bounds of the mesh
recalculateBounds();
}
// Constructor.
/// If you use this constructor, you will need to set the vertices manually one by one using
/// the addVertex() method.
ConvexMeshShape::ConvexMeshShape(decimal margin)
: CollisionShape(CONVEX_MESH, margin), mNbVertices(0), mMinBounds(0, 0, 0),
mMaxBounds(0, 0, 0), mIsEdgesInformationUsed(false), mCachedSupportVertex(0) {
assert(margin > decimal(0.0));
}
// Private copy-constructor
ConvexMeshShape::ConvexMeshShape(const ConvexMeshShape& shape)
: CollisionShape(shape), mVertices(shape.mVertices), mNbVertices(shape.mNbVertices),
mMinBounds(shape.mMinBounds), mMaxBounds(shape.mMaxBounds),
mIsEdgesInformationUsed(shape.mIsEdgesInformationUsed),
mEdgesAdjacencyList(shape.mEdgesAdjacencyList),
mCachedSupportVertex(shape.mCachedSupportVertex) {
assert(mNbVertices == mVertices.size());
}
// Destructor
ConvexMeshShape::~ConvexMeshShape() {
}
// Return a local support point in a given direction with the object margin
Vector3 ConvexMeshShape::getLocalSupportPointWithMargin(const Vector3& direction) {
// Get the support point without the margin
Vector3 supportPoint = getLocalSupportPointWithoutMargin(direction);
// Get the unit direction vector
Vector3 unitDirection = direction;
if (direction.lengthSquare() < MACHINE_EPSILON * MACHINE_EPSILON) {
unitDirection.setAllValues(1.0, 1.0, 1.0);
}
unitDirection.normalize();
// Add the margin to the support point and return it
return supportPoint + unitDirection * mMargin;
}
// Return a local support point in a given direction without the object margin.
/// If the edges information is not used for collision detection, this method will go through
/// the whole vertices list and pick up the vertex with the largest dot product in the support
/// direction. This is an O(n) process with "n" being the number of vertices in the mesh.
/// However, if the edges information is used, we can cache the previous support vertex and use
/// it as a start in a hill-climbing (local search) process to find the new support vertex which
/// will be in most of the cases very close to the previous one. Using hill-climbing, this method
/// runs in almost constant time.
Vector3 ConvexMeshShape::getLocalSupportPointWithoutMargin(const Vector3& direction) {
assert(mNbVertices == mVertices.size());
// If the edges information is used to speed up the collision detection
if (mIsEdgesInformationUsed) {
assert(mEdgesAdjacencyList.size() == mNbVertices);
uint maxVertex = mCachedSupportVertex;
decimal maxDotProduct = direction.dot(mVertices[maxVertex]);
bool isOptimal;
// Perform hill-climbing (local search)
do {
isOptimal = true;
assert(mEdgesAdjacencyList.at(maxVertex).size() > 0);
// For all neighbors of the current vertex
std::set<uint>::const_iterator it;
std::set<uint>::const_iterator itBegin = mEdgesAdjacencyList.at(maxVertex).begin();
std::set<uint>::const_iterator itEnd = mEdgesAdjacencyList.at(maxVertex).end();
for (it = itBegin; it != itEnd; ++it) {
// Compute the dot product
decimal dotProduct = direction.dot(mVertices[*it]);
// If the current vertex is a better vertex (larger dot product)
if (dotProduct > maxDotProduct) {
maxVertex = *it;
maxDotProduct = dotProduct;
isOptimal = false;
}
}
} while(!isOptimal);
// Cache the support vertex
mCachedSupportVertex = maxVertex;
// Return the support vertex
return mVertices[maxVertex];
}
else { // If the edges information is not used
decimal maxDotProduct = DECIMAL_SMALLEST;
uint indexMaxDotProduct = 0;
// For each vertex of the mesh
for (uint i=0; i<mNbVertices; i++) {
// Compute the dot product of the current vertex
decimal dotProduct = direction.dot(mVertices[i]);
// If the current dot product is larger than the maximum one
if (dotProduct > maxDotProduct) {
indexMaxDotProduct = i;
maxDotProduct = dotProduct;
}
}
assert(maxDotProduct >= decimal(0.0));
// Return the vertex with the largest dot product in the support direction
return mVertices[indexMaxDotProduct];
}
}
// Recompute the bounds of the mesh
void ConvexMeshShape::recalculateBounds() {
mMinBounds.setToZero();
mMaxBounds.setToZero();
// For each vertex of the mesh
for (uint i=0; i<mNbVertices; i++) {
if (mVertices[i].x > mMaxBounds.x) mMaxBounds.x = mVertices[i].x;
if (mVertices[i].x < mMinBounds.x) mMinBounds.x = mVertices[i].x;
if (mVertices[i].y > mMaxBounds.y) mMaxBounds.y = mVertices[i].y;
if (mVertices[i].y < mMinBounds.y) mMinBounds.y = mVertices[i].y;
if (mVertices[i].z > mMaxBounds.z) mMaxBounds.z = mVertices[i].z;
if (mVertices[i].z < mMinBounds.z) mMinBounds.z = mVertices[i].z;
}
// Add the object margin to the bounds
mMaxBounds += Vector3(mMargin, mMargin, mMargin);
mMinBounds -= Vector3(mMargin, mMargin, mMargin);
}
// Test equality between two cone shapes
bool ConvexMeshShape::isEqualTo(const CollisionShape& otherCollisionShape) const {
const ConvexMeshShape& otherShape = dynamic_cast<const ConvexMeshShape&>(otherCollisionShape);
assert(mNbVertices == mVertices.size());
if (mNbVertices != otherShape.mNbVertices) return false;
// If edges information is used, it means that a collison shape object will store
// cached data (previous support vertex) and therefore, we should not reuse the shape
// for another body. Therefore, we consider that all convex mesh shape using edges
// information are different.
if (mIsEdgesInformationUsed) return false;
if (mEdgesAdjacencyList.size() != otherShape.mEdgesAdjacencyList.size()) return false;
// Check that the vertices are the same
for (uint i=0; i<mNbVertices; i++) {
if (mVertices[i] != otherShape.mVertices[i]) return false;
}
// Check that the edges are the same
for (uint i=0; i<mEdgesAdjacencyList.size(); i++) {
assert(otherShape.mEdgesAdjacencyList.count(i) == 1);
if (mEdgesAdjacencyList.at(i) != otherShape.mEdgesAdjacencyList.at(i)) return false;
}
return true;
}

View File

@ -0,0 +1,227 @@
/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_CONVEX_MESH_SHAPE_H
#define REACTPHYSICS3D_CONVEX_MESH_SHAPE_H
// Libraries
#include "CollisionShape.h"
#include "../../mathematics/mathematics.h"
#include <vector>
#include <set>
#include <map>
/// ReactPhysics3D namespace
namespace reactphysics3d {
// Class ConvexMeshShape
/**
* This class represents a convex mesh shape. In order to create a convex mesh shape, you
* need to indicate the local-space position of the mesh vertices. You do it either by
* passing a vertices array to the constructor or using the addVertex() method. Make sure
* that the set of vertices that you use to create the shape are indeed part of a convex
* mesh. The center of mass of the shape will be at the origin of the local-space geometry
* that you use to create the mesh. The method used for collision detection with a convex
* mesh shape has an O(n) running time with "n" beeing the number of vertices in the mesh.
* Therefore, you should try not to use too many vertices. However, it is possible to speed
* up the collision detection by using the edges information of your mesh. The running time
* of the collision detection that uses the edges is almost O(1) constant time at the cost
* of additional memory used to store the vertices. You can indicate edges information
* with the addEdge() method. Then, you must use the setIsEdgesInformationUsed(true) method
* in order to use the edges information for collision detection.
*/
class ConvexMeshShape : public CollisionShape {
private :
// -------------------- Attributes -------------------- //
/// Array with the vertices of the mesh
std::vector<Vector3> mVertices;
/// Number of vertices in the mesh
uint mNbVertices;
/// Mesh minimum bounds in the three local x, y and z directions
Vector3 mMinBounds;
/// Mesh maximum bounds in the three local x, y and z directions
Vector3 mMaxBounds;
/// True if the shape contains the edges of the convex mesh in order to
/// make the collision detection faster
bool mIsEdgesInformationUsed;
/// Adjacency list representing the edges of the mesh
std::map<uint, std::set<uint> > mEdgesAdjacencyList;
/// Cached support vertex index (previous support vertex)
uint mCachedSupportVertex;
// -------------------- Methods -------------------- //
/// Private copy-constructor
ConvexMeshShape(const ConvexMeshShape& shape);
/// Private assignment operator
ConvexMeshShape& operator=(const ConvexMeshShape& shape);
/// Recompute the bounds of the mesh
void recalculateBounds();
public :
// -------------------- Methods -------------------- //
/// Constructor to initialize with a array of 3D vertices.
ConvexMeshShape(const decimal* arrayVertices, uint nbVertices, int stride,
decimal margin = OBJECT_MARGIN);
/// Constructor.
ConvexMeshShape(decimal margin = OBJECT_MARGIN);
/// Destructor
virtual ~ConvexMeshShape();
/// Allocate and return a copy of the object
virtual ConvexMeshShape* clone(void* allocatedMemory) const;
/// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const;
/// Return a local support point in a given direction with the object margin
virtual Vector3 getLocalSupportPointWithMargin(const Vector3& direction);
/// Return a local support point in a given direction without the object margin.
virtual Vector3 getLocalSupportPointWithoutMargin(const Vector3& direction);
/// Return the local bounds of the shape in x, y and z directions
virtual void getLocalBounds(Vector3& min, Vector3& max) const;
/// Return the local inertia tensor of the collision shape.
virtual void computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const;
/// Test equality between two cone shapes
virtual bool isEqualTo(const CollisionShape& otherCollisionShape) const;
/// Add a vertex into the convex mesh
void addVertex(const Vector3& vertex);
/// Add an edge into the convex mesh by specifying the two vertex indices of the edge.
void addEdge(uint v1, uint v2);
/// Return true if the edges information is used to speed up the collision detection
bool isEdgesInformationUsed() const;
/// Set the variable to know if the edges information is used to speed up the
/// collision detection
void setIsEdgesInformationUsed(bool isEdgesUsed);
};
// Allocate and return a copy of the object
inline ConvexMeshShape* ConvexMeshShape::clone(void* allocatedMemory) const {
return new (allocatedMemory) ConvexMeshShape(*this);
}
// Return the number of bytes used by the collision shape
inline size_t ConvexMeshShape::getSizeInBytes() const {
return sizeof(ConvexMeshShape);
}
// Return the local bounds of the shape in x, y and z directions
inline void ConvexMeshShape::getLocalBounds(Vector3& min, Vector3& max) const {
min = mMinBounds;
max = mMaxBounds;
}
// Return the local inertia tensor of the collision shape.
/// The local inertia tensor of the convex mesh is approximated using the inertia tensor
/// of its bounding box.
inline void ConvexMeshShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const {
decimal factor = (decimal(1.0) / decimal(3.0)) * mass;
Vector3 realExtent = decimal(0.5) * (mMaxBounds - mMinBounds);
assert(realExtent.x > 0 && realExtent.y > 0 && realExtent.z > 0);
decimal xSquare = realExtent.x * realExtent.x;
decimal ySquare = realExtent.y * realExtent.y;
decimal zSquare = realExtent.z * realExtent.z;
tensor.setAllValues(factor * (ySquare + zSquare), 0.0, 0.0,
0.0, factor * (xSquare + zSquare), 0.0,
0.0, 0.0, factor * (xSquare + ySquare));
}
// Add a vertex into the convex mesh
inline void ConvexMeshShape::addVertex(const Vector3& vertex) {
// Add the vertex in to vertices array
mVertices.push_back(vertex);
mNbVertices++;
// Update the bounds of the mesh
if (vertex.x > mMaxBounds.x) mMaxBounds.x = vertex.x;
if (vertex.x < mMinBounds.x) mMinBounds.x = vertex.x;
if (vertex.y > mMaxBounds.y) mMaxBounds.y = vertex.y;
if (vertex.y < mMinBounds.y) mMinBounds.y = vertex.y;
if (vertex.z > mMaxBounds.z) mMaxBounds.z = vertex.z;
if (vertex.z < mMinBounds.z) mMinBounds.z = vertex.z;
}
// Add an edge into the convex mesh by specifying the two vertex indices of the edge.
/// Note that the vertex indices start at zero and need to correspond to the order of
/// the vertices in the vertices array in the constructor or the order of the calls
/// of the addVertex() methods that you use to add vertices into the convex mesh.
inline void ConvexMeshShape::addEdge(uint v1, uint v2) {
assert(v1 >= 0);
assert(v2 >= 0);
// If the entry for vertex v1 does not exist in the adjacency list
if (mEdgesAdjacencyList.count(v1) == 0) {
mEdgesAdjacencyList.insert(std::make_pair<uint, std::set<uint> >(v1, std::set<uint>()));
}
// If the entry for vertex v2 does not exist in the adjacency list
if (mEdgesAdjacencyList.count(v2) == 0) {
mEdgesAdjacencyList.insert(std::make_pair<uint, std::set<uint> >(v2, std::set<uint>()));
}
// Add the edge in the adjacency list
mEdgesAdjacencyList[v1].insert(v2);
mEdgesAdjacencyList[v2].insert(v1);
}
// Return true if the edges information is used to speed up the collision detection
inline bool ConvexMeshShape::isEdgesInformationUsed() const {
return mIsEdgesInformationUsed;
}
// Set the variable to know if the edges information is used to speed up the
// collision detection
inline void ConvexMeshShape::setIsEdgesInformationUsed(bool isEdgesUsed) {
mIsEdgesInformationUsed = isEdgesUsed;
}
}
#endif

View File

@ -48,6 +48,7 @@
#include "collision/shapes/ConeShape.h"
#include "collision/shapes/CylinderShape.h"
#include "collision/shapes/CapsuleShape.h"
#include "collision/shapes/ConvexMeshShape.h"
#include "collision/shapes/AABB.h"
#include "constraint/BallAndSocketJoint.h"
#include "constraint/SliderJoint.h"