Add the convex mesh collision shape
This commit is contained in:
parent
c3f4355c25
commit
ffd79a89e3
228
src/collision/shapes/ConvexMeshShape.cpp
Normal file
228
src/collision/shapes/ConvexMeshShape.cpp
Normal file
|
@ -0,0 +1,228 @@
|
|||
/********************************************************************************
|
||||
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
|
||||
* Copyright (c) 2010-2013 Daniel Chappuis *
|
||||
*********************************************************************************
|
||||
* *
|
||||
* This software is provided 'as-is', without any express or implied warranty. *
|
||||
* In no event will the authors be held liable for any damages arising from the *
|
||||
* use of this software. *
|
||||
* *
|
||||
* Permission is granted to anyone to use this software for any purpose, *
|
||||
* including commercial applications, and to alter it and redistribute it *
|
||||
* freely, subject to the following restrictions: *
|
||||
* *
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||||
* that you wrote the original software. If you use this software in a *
|
||||
* product, an acknowledgment in the product documentation would be *
|
||||
* appreciated but is not required. *
|
||||
* *
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||||
* misrepresented as being the original software. *
|
||||
* *
|
||||
* 3. This notice may not be removed or altered from any source distribution. *
|
||||
* *
|
||||
********************************************************************************/
|
||||
|
||||
// Libraries
|
||||
#include <complex>
|
||||
#include "../../configuration.h"
|
||||
#include "ConvexMeshShape.h"
|
||||
|
||||
using namespace reactphysics3d;
|
||||
|
||||
// Constructor to initialize with a array of 3D vertices.
|
||||
/// This method creates an internal copy of the input vertices.
|
||||
ConvexMeshShape::ConvexMeshShape(const decimal* arrayVertices, uint nbVertices, int stride,
|
||||
decimal margin)
|
||||
: CollisionShape(CONVEX_MESH, margin), mNbVertices(nbVertices), mMinBounds(0, 0, 0),
|
||||
mMaxBounds(0, 0, 0), mIsEdgesInformationUsed(false), mCachedSupportVertex(0) {
|
||||
assert(nbVertices > 0);
|
||||
assert(stride > 0);
|
||||
assert(margin > decimal(0.0));
|
||||
|
||||
const unsigned char* vertexPointer = (const unsigned char*) arrayVertices;
|
||||
|
||||
// Copy all the vertices into the internal array
|
||||
for (uint i=0; i<mNbVertices; i++) {
|
||||
const decimal* newPoint = (const decimal*) vertexPointer;
|
||||
mVertices.push_back(Vector3(newPoint[0], newPoint[1], newPoint[2]));
|
||||
vertexPointer += stride;
|
||||
}
|
||||
|
||||
// Recalculate the bounds of the mesh
|
||||
recalculateBounds();
|
||||
}
|
||||
|
||||
// Constructor.
|
||||
/// If you use this constructor, you will need to set the vertices manually one by one using
|
||||
/// the addVertex() method.
|
||||
ConvexMeshShape::ConvexMeshShape(decimal margin)
|
||||
: CollisionShape(CONVEX_MESH, margin), mNbVertices(0), mMinBounds(0, 0, 0),
|
||||
mMaxBounds(0, 0, 0), mIsEdgesInformationUsed(false), mCachedSupportVertex(0) {
|
||||
assert(margin > decimal(0.0));
|
||||
}
|
||||
|
||||
// Private copy-constructor
|
||||
ConvexMeshShape::ConvexMeshShape(const ConvexMeshShape& shape)
|
||||
: CollisionShape(shape), mVertices(shape.mVertices), mNbVertices(shape.mNbVertices),
|
||||
mMinBounds(shape.mMinBounds), mMaxBounds(shape.mMaxBounds),
|
||||
mIsEdgesInformationUsed(shape.mIsEdgesInformationUsed),
|
||||
mEdgesAdjacencyList(shape.mEdgesAdjacencyList),
|
||||
mCachedSupportVertex(shape.mCachedSupportVertex) {
|
||||
|
||||
assert(mNbVertices == mVertices.size());
|
||||
}
|
||||
|
||||
// Destructor
|
||||
ConvexMeshShape::~ConvexMeshShape() {
|
||||
|
||||
}
|
||||
|
||||
// Return a local support point in a given direction with the object margin
|
||||
Vector3 ConvexMeshShape::getLocalSupportPointWithMargin(const Vector3& direction) {
|
||||
|
||||
// Get the support point without the margin
|
||||
Vector3 supportPoint = getLocalSupportPointWithoutMargin(direction);
|
||||
|
||||
// Get the unit direction vector
|
||||
Vector3 unitDirection = direction;
|
||||
if (direction.lengthSquare() < MACHINE_EPSILON * MACHINE_EPSILON) {
|
||||
unitDirection.setAllValues(1.0, 1.0, 1.0);
|
||||
}
|
||||
unitDirection.normalize();
|
||||
|
||||
// Add the margin to the support point and return it
|
||||
return supportPoint + unitDirection * mMargin;
|
||||
}
|
||||
|
||||
// Return a local support point in a given direction without the object margin.
|
||||
/// If the edges information is not used for collision detection, this method will go through
|
||||
/// the whole vertices list and pick up the vertex with the largest dot product in the support
|
||||
/// direction. This is an O(n) process with "n" being the number of vertices in the mesh.
|
||||
/// However, if the edges information is used, we can cache the previous support vertex and use
|
||||
/// it as a start in a hill-climbing (local search) process to find the new support vertex which
|
||||
/// will be in most of the cases very close to the previous one. Using hill-climbing, this method
|
||||
/// runs in almost constant time.
|
||||
Vector3 ConvexMeshShape::getLocalSupportPointWithoutMargin(const Vector3& direction) {
|
||||
|
||||
assert(mNbVertices == mVertices.size());
|
||||
|
||||
// If the edges information is used to speed up the collision detection
|
||||
if (mIsEdgesInformationUsed) {
|
||||
|
||||
assert(mEdgesAdjacencyList.size() == mNbVertices);
|
||||
|
||||
uint maxVertex = mCachedSupportVertex;
|
||||
decimal maxDotProduct = direction.dot(mVertices[maxVertex]);
|
||||
bool isOptimal;
|
||||
|
||||
// Perform hill-climbing (local search)
|
||||
do {
|
||||
isOptimal = true;
|
||||
|
||||
assert(mEdgesAdjacencyList.at(maxVertex).size() > 0);
|
||||
|
||||
// For all neighbors of the current vertex
|
||||
std::set<uint>::const_iterator it;
|
||||
std::set<uint>::const_iterator itBegin = mEdgesAdjacencyList.at(maxVertex).begin();
|
||||
std::set<uint>::const_iterator itEnd = mEdgesAdjacencyList.at(maxVertex).end();
|
||||
for (it = itBegin; it != itEnd; ++it) {
|
||||
|
||||
// Compute the dot product
|
||||
decimal dotProduct = direction.dot(mVertices[*it]);
|
||||
|
||||
// If the current vertex is a better vertex (larger dot product)
|
||||
if (dotProduct > maxDotProduct) {
|
||||
maxVertex = *it;
|
||||
maxDotProduct = dotProduct;
|
||||
isOptimal = false;
|
||||
}
|
||||
}
|
||||
|
||||
} while(!isOptimal);
|
||||
|
||||
// Cache the support vertex
|
||||
mCachedSupportVertex = maxVertex;
|
||||
|
||||
// Return the support vertex
|
||||
return mVertices[maxVertex];
|
||||
}
|
||||
else { // If the edges information is not used
|
||||
|
||||
decimal maxDotProduct = DECIMAL_SMALLEST;
|
||||
uint indexMaxDotProduct = 0;
|
||||
|
||||
// For each vertex of the mesh
|
||||
for (uint i=0; i<mNbVertices; i++) {
|
||||
|
||||
// Compute the dot product of the current vertex
|
||||
decimal dotProduct = direction.dot(mVertices[i]);
|
||||
|
||||
// If the current dot product is larger than the maximum one
|
||||
if (dotProduct > maxDotProduct) {
|
||||
indexMaxDotProduct = i;
|
||||
maxDotProduct = dotProduct;
|
||||
}
|
||||
}
|
||||
|
||||
assert(maxDotProduct >= decimal(0.0));
|
||||
|
||||
// Return the vertex with the largest dot product in the support direction
|
||||
return mVertices[indexMaxDotProduct];
|
||||
}
|
||||
}
|
||||
|
||||
// Recompute the bounds of the mesh
|
||||
void ConvexMeshShape::recalculateBounds() {
|
||||
|
||||
mMinBounds.setToZero();
|
||||
mMaxBounds.setToZero();
|
||||
|
||||
// For each vertex of the mesh
|
||||
for (uint i=0; i<mNbVertices; i++) {
|
||||
|
||||
if (mVertices[i].x > mMaxBounds.x) mMaxBounds.x = mVertices[i].x;
|
||||
if (mVertices[i].x < mMinBounds.x) mMinBounds.x = mVertices[i].x;
|
||||
|
||||
if (mVertices[i].y > mMaxBounds.y) mMaxBounds.y = mVertices[i].y;
|
||||
if (mVertices[i].y < mMinBounds.y) mMinBounds.y = mVertices[i].y;
|
||||
|
||||
if (mVertices[i].z > mMaxBounds.z) mMaxBounds.z = mVertices[i].z;
|
||||
if (mVertices[i].z < mMinBounds.z) mMinBounds.z = mVertices[i].z;
|
||||
}
|
||||
|
||||
// Add the object margin to the bounds
|
||||
mMaxBounds += Vector3(mMargin, mMargin, mMargin);
|
||||
mMinBounds -= Vector3(mMargin, mMargin, mMargin);
|
||||
}
|
||||
|
||||
// Test equality between two cone shapes
|
||||
bool ConvexMeshShape::isEqualTo(const CollisionShape& otherCollisionShape) const {
|
||||
const ConvexMeshShape& otherShape = dynamic_cast<const ConvexMeshShape&>(otherCollisionShape);
|
||||
|
||||
assert(mNbVertices == mVertices.size());
|
||||
|
||||
if (mNbVertices != otherShape.mNbVertices) return false;
|
||||
|
||||
// If edges information is used, it means that a collison shape object will store
|
||||
// cached data (previous support vertex) and therefore, we should not reuse the shape
|
||||
// for another body. Therefore, we consider that all convex mesh shape using edges
|
||||
// information are different.
|
||||
if (mIsEdgesInformationUsed) return false;
|
||||
|
||||
if (mEdgesAdjacencyList.size() != otherShape.mEdgesAdjacencyList.size()) return false;
|
||||
|
||||
// Check that the vertices are the same
|
||||
for (uint i=0; i<mNbVertices; i++) {
|
||||
if (mVertices[i] != otherShape.mVertices[i]) return false;
|
||||
}
|
||||
|
||||
// Check that the edges are the same
|
||||
for (uint i=0; i<mEdgesAdjacencyList.size(); i++) {
|
||||
|
||||
assert(otherShape.mEdgesAdjacencyList.count(i) == 1);
|
||||
if (mEdgesAdjacencyList.at(i) != otherShape.mEdgesAdjacencyList.at(i)) return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
227
src/collision/shapes/ConvexMeshShape.h
Normal file
227
src/collision/shapes/ConvexMeshShape.h
Normal file
|
@ -0,0 +1,227 @@
|
|||
/********************************************************************************
|
||||
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
|
||||
* Copyright (c) 2010-2013 Daniel Chappuis *
|
||||
*********************************************************************************
|
||||
* *
|
||||
* This software is provided 'as-is', without any express or implied warranty. *
|
||||
* In no event will the authors be held liable for any damages arising from the *
|
||||
* use of this software. *
|
||||
* *
|
||||
* Permission is granted to anyone to use this software for any purpose, *
|
||||
* including commercial applications, and to alter it and redistribute it *
|
||||
* freely, subject to the following restrictions: *
|
||||
* *
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||||
* that you wrote the original software. If you use this software in a *
|
||||
* product, an acknowledgment in the product documentation would be *
|
||||
* appreciated but is not required. *
|
||||
* *
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||||
* misrepresented as being the original software. *
|
||||
* *
|
||||
* 3. This notice may not be removed or altered from any source distribution. *
|
||||
* *
|
||||
********************************************************************************/
|
||||
|
||||
#ifndef REACTPHYSICS3D_CONVEX_MESH_SHAPE_H
|
||||
#define REACTPHYSICS3D_CONVEX_MESH_SHAPE_H
|
||||
|
||||
// Libraries
|
||||
#include "CollisionShape.h"
|
||||
#include "../../mathematics/mathematics.h"
|
||||
#include <vector>
|
||||
#include <set>
|
||||
#include <map>
|
||||
|
||||
/// ReactPhysics3D namespace
|
||||
namespace reactphysics3d {
|
||||
|
||||
// Class ConvexMeshShape
|
||||
/**
|
||||
* This class represents a convex mesh shape. In order to create a convex mesh shape, you
|
||||
* need to indicate the local-space position of the mesh vertices. You do it either by
|
||||
* passing a vertices array to the constructor or using the addVertex() method. Make sure
|
||||
* that the set of vertices that you use to create the shape are indeed part of a convex
|
||||
* mesh. The center of mass of the shape will be at the origin of the local-space geometry
|
||||
* that you use to create the mesh. The method used for collision detection with a convex
|
||||
* mesh shape has an O(n) running time with "n" beeing the number of vertices in the mesh.
|
||||
* Therefore, you should try not to use too many vertices. However, it is possible to speed
|
||||
* up the collision detection by using the edges information of your mesh. The running time
|
||||
* of the collision detection that uses the edges is almost O(1) constant time at the cost
|
||||
* of additional memory used to store the vertices. You can indicate edges information
|
||||
* with the addEdge() method. Then, you must use the setIsEdgesInformationUsed(true) method
|
||||
* in order to use the edges information for collision detection.
|
||||
*/
|
||||
class ConvexMeshShape : public CollisionShape {
|
||||
|
||||
private :
|
||||
|
||||
// -------------------- Attributes -------------------- //
|
||||
|
||||
/// Array with the vertices of the mesh
|
||||
std::vector<Vector3> mVertices;
|
||||
|
||||
/// Number of vertices in the mesh
|
||||
uint mNbVertices;
|
||||
|
||||
/// Mesh minimum bounds in the three local x, y and z directions
|
||||
Vector3 mMinBounds;
|
||||
|
||||
/// Mesh maximum bounds in the three local x, y and z directions
|
||||
Vector3 mMaxBounds;
|
||||
|
||||
/// True if the shape contains the edges of the convex mesh in order to
|
||||
/// make the collision detection faster
|
||||
bool mIsEdgesInformationUsed;
|
||||
|
||||
/// Adjacency list representing the edges of the mesh
|
||||
std::map<uint, std::set<uint> > mEdgesAdjacencyList;
|
||||
|
||||
/// Cached support vertex index (previous support vertex)
|
||||
uint mCachedSupportVertex;
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Private copy-constructor
|
||||
ConvexMeshShape(const ConvexMeshShape& shape);
|
||||
|
||||
/// Private assignment operator
|
||||
ConvexMeshShape& operator=(const ConvexMeshShape& shape);
|
||||
|
||||
/// Recompute the bounds of the mesh
|
||||
void recalculateBounds();
|
||||
|
||||
public :
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Constructor to initialize with a array of 3D vertices.
|
||||
ConvexMeshShape(const decimal* arrayVertices, uint nbVertices, int stride,
|
||||
decimal margin = OBJECT_MARGIN);
|
||||
|
||||
/// Constructor.
|
||||
ConvexMeshShape(decimal margin = OBJECT_MARGIN);
|
||||
|
||||
/// Destructor
|
||||
virtual ~ConvexMeshShape();
|
||||
|
||||
/// Allocate and return a copy of the object
|
||||
virtual ConvexMeshShape* clone(void* allocatedMemory) const;
|
||||
|
||||
/// Return the number of bytes used by the collision shape
|
||||
virtual size_t getSizeInBytes() const;
|
||||
|
||||
/// Return a local support point in a given direction with the object margin
|
||||
virtual Vector3 getLocalSupportPointWithMargin(const Vector3& direction);
|
||||
|
||||
/// Return a local support point in a given direction without the object margin.
|
||||
virtual Vector3 getLocalSupportPointWithoutMargin(const Vector3& direction);
|
||||
|
||||
/// Return the local bounds of the shape in x, y and z directions
|
||||
virtual void getLocalBounds(Vector3& min, Vector3& max) const;
|
||||
|
||||
/// Return the local inertia tensor of the collision shape.
|
||||
virtual void computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const;
|
||||
|
||||
/// Test equality between two cone shapes
|
||||
virtual bool isEqualTo(const CollisionShape& otherCollisionShape) const;
|
||||
|
||||
/// Add a vertex into the convex mesh
|
||||
void addVertex(const Vector3& vertex);
|
||||
|
||||
/// Add an edge into the convex mesh by specifying the two vertex indices of the edge.
|
||||
void addEdge(uint v1, uint v2);
|
||||
|
||||
/// Return true if the edges information is used to speed up the collision detection
|
||||
bool isEdgesInformationUsed() const;
|
||||
|
||||
/// Set the variable to know if the edges information is used to speed up the
|
||||
/// collision detection
|
||||
void setIsEdgesInformationUsed(bool isEdgesUsed);
|
||||
};
|
||||
|
||||
// Allocate and return a copy of the object
|
||||
inline ConvexMeshShape* ConvexMeshShape::clone(void* allocatedMemory) const {
|
||||
return new (allocatedMemory) ConvexMeshShape(*this);
|
||||
}
|
||||
|
||||
// Return the number of bytes used by the collision shape
|
||||
inline size_t ConvexMeshShape::getSizeInBytes() const {
|
||||
return sizeof(ConvexMeshShape);
|
||||
}
|
||||
|
||||
// Return the local bounds of the shape in x, y and z directions
|
||||
inline void ConvexMeshShape::getLocalBounds(Vector3& min, Vector3& max) const {
|
||||
min = mMinBounds;
|
||||
max = mMaxBounds;
|
||||
}
|
||||
|
||||
// Return the local inertia tensor of the collision shape.
|
||||
/// The local inertia tensor of the convex mesh is approximated using the inertia tensor
|
||||
/// of its bounding box.
|
||||
inline void ConvexMeshShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const {
|
||||
decimal factor = (decimal(1.0) / decimal(3.0)) * mass;
|
||||
Vector3 realExtent = decimal(0.5) * (mMaxBounds - mMinBounds);
|
||||
assert(realExtent.x > 0 && realExtent.y > 0 && realExtent.z > 0);
|
||||
decimal xSquare = realExtent.x * realExtent.x;
|
||||
decimal ySquare = realExtent.y * realExtent.y;
|
||||
decimal zSquare = realExtent.z * realExtent.z;
|
||||
tensor.setAllValues(factor * (ySquare + zSquare), 0.0, 0.0,
|
||||
0.0, factor * (xSquare + zSquare), 0.0,
|
||||
0.0, 0.0, factor * (xSquare + ySquare));
|
||||
}
|
||||
|
||||
// Add a vertex into the convex mesh
|
||||
inline void ConvexMeshShape::addVertex(const Vector3& vertex) {
|
||||
|
||||
// Add the vertex in to vertices array
|
||||
mVertices.push_back(vertex);
|
||||
mNbVertices++;
|
||||
|
||||
// Update the bounds of the mesh
|
||||
if (vertex.x > mMaxBounds.x) mMaxBounds.x = vertex.x;
|
||||
if (vertex.x < mMinBounds.x) mMinBounds.x = vertex.x;
|
||||
if (vertex.y > mMaxBounds.y) mMaxBounds.y = vertex.y;
|
||||
if (vertex.y < mMinBounds.y) mMinBounds.y = vertex.y;
|
||||
if (vertex.z > mMaxBounds.z) mMaxBounds.z = vertex.z;
|
||||
if (vertex.z < mMinBounds.z) mMinBounds.z = vertex.z;
|
||||
}
|
||||
|
||||
// Add an edge into the convex mesh by specifying the two vertex indices of the edge.
|
||||
/// Note that the vertex indices start at zero and need to correspond to the order of
|
||||
/// the vertices in the vertices array in the constructor or the order of the calls
|
||||
/// of the addVertex() methods that you use to add vertices into the convex mesh.
|
||||
inline void ConvexMeshShape::addEdge(uint v1, uint v2) {
|
||||
|
||||
assert(v1 >= 0);
|
||||
assert(v2 >= 0);
|
||||
|
||||
// If the entry for vertex v1 does not exist in the adjacency list
|
||||
if (mEdgesAdjacencyList.count(v1) == 0) {
|
||||
mEdgesAdjacencyList.insert(std::make_pair<uint, std::set<uint> >(v1, std::set<uint>()));
|
||||
}
|
||||
|
||||
// If the entry for vertex v2 does not exist in the adjacency list
|
||||
if (mEdgesAdjacencyList.count(v2) == 0) {
|
||||
mEdgesAdjacencyList.insert(std::make_pair<uint, std::set<uint> >(v2, std::set<uint>()));
|
||||
}
|
||||
|
||||
// Add the edge in the adjacency list
|
||||
mEdgesAdjacencyList[v1].insert(v2);
|
||||
mEdgesAdjacencyList[v2].insert(v1);
|
||||
}
|
||||
|
||||
// Return true if the edges information is used to speed up the collision detection
|
||||
inline bool ConvexMeshShape::isEdgesInformationUsed() const {
|
||||
return mIsEdgesInformationUsed;
|
||||
}
|
||||
|
||||
// Set the variable to know if the edges information is used to speed up the
|
||||
// collision detection
|
||||
inline void ConvexMeshShape::setIsEdgesInformationUsed(bool isEdgesUsed) {
|
||||
mIsEdgesInformationUsed = isEdgesUsed;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
|
@ -48,6 +48,7 @@
|
|||
#include "collision/shapes/ConeShape.h"
|
||||
#include "collision/shapes/CylinderShape.h"
|
||||
#include "collision/shapes/CapsuleShape.h"
|
||||
#include "collision/shapes/ConvexMeshShape.h"
|
||||
#include "collision/shapes/AABB.h"
|
||||
#include "constraint/BallAndSocketJoint.h"
|
||||
#include "constraint/SliderJoint.h"
|
||||
|
|
Loading…
Reference in New Issue
Block a user