/******************************************************************************** * ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ * * Copyright (c) 2010-2013 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef RIGID_BODY_H #define RIGID_BODY_H // Libraries #include #include "CollisionBody.h" #include "../mathematics/mathematics.h" // Namespace reactphysics3d namespace reactphysics3d { /* ------------------------------------------------------------------- Class RigidBody : This class represents a rigid body of the physics engine. A rigid body is a non-deformable body that has a constant mass. This class inherits from the CollisionBody class. ------------------------------------------------------------------- */ class RigidBody : public CollisionBody { protected : // TODO : Remove the mass variable (duplicate with inverseMass) // -------------------- Attributes -------------------- // // Mass of the body decimal mMass; // Linear velocity of the body Vector3 mLinearVelocity; // Angular velocity of the body Vector3 mAngularVelocity; // Current external force on the body Vector3 mExternalForce; // Current external torque on the body Vector3 mExternalTorque; // Local inertia tensor of the body (in local-space) Matrix3x3 mInertiaTensorLocal; // Inverse of the inertia tensor of the body Matrix3x3 mInertiaTensorLocalInverse; // Inverse of the mass of the body decimal mMassInverse; // Coefficient of restitution (between 0 and 1) where 1 is for a very bouncy body decimal mRestitution; // Friction coefficient decimal mFrictionCoefficient; // -------------------- Methods -------------------- // // Private copy-constructor RigidBody(const RigidBody& body); // Private assignment operator RigidBody& operator=(const RigidBody& body); public : // -------------------- Methods -------------------- // // Constructor RigidBody(const Transform& transform, decimal mass, const Matrix3x3& inertiaTensorLocal, CollisionShape* collisionShape, bodyindex id); // Destructor virtual ~RigidBody(); // Return the mass of the body decimal getMass() const; // Set the mass of the body void setMass(decimal mass); // Return the linear velocity Vector3 getLinearVelocity() const; // Set the linear velocity of the body void setLinearVelocity(const Vector3& linearVelocity); // Return the angular velocity Vector3 getAngularVelocity() const; // Set the angular velocity void setAngularVelocity(const Vector3& angularVelocity); // Set the inverse of the mass void setMassInverse(decimal massInverse); // Return the current external force of the body Vector3 getExternalForce() const; // Set the current external force on the body void setExternalForce(const Vector3& force); // Return the current external torque of the body Vector3 getExternalTorque() const; // Set the current external torque of the body void setExternalTorque(const Vector3& torque); // Return the inverse of the mass of the body decimal getMassInverse() const; // Return the local inertia tensor of the body (in body coordinates) Matrix3x3 getInertiaTensorLocal() const; // Set the local inertia tensor of the body (in body coordinates) void setInertiaTensorLocal(const Matrix3x3& inertiaTensorLocal); // Get the inverse of the inertia tensor Matrix3x3 getInertiaTensorLocalInverse() const; // Return the inertia tensor in world coordinates Matrix3x3 getInertiaTensorWorld() const; // Return the inverse of the inertia tensor in world coordinates Matrix3x3 getInertiaTensorInverseWorld() const; // Get the restitution coefficient decimal getRestitution() const; // Set the restitution coefficient void setRestitution(decimal restitution) throw(std::invalid_argument); // Get the friction coefficient decimal getFrictionCoefficient() const; // Set the friction coefficient void setFrictionCoefficient(decimal frictionCoefficient); }; // Method that return the mass of the body inline decimal RigidBody::getMass() const { return mMass; }; // Method that set the mass of the body inline void RigidBody::setMass(decimal mass) { mMass = mass; } // Return the linear velocity inline Vector3 RigidBody::getLinearVelocity() const { return mLinearVelocity; } // Return the angular velocity of the body inline Vector3 RigidBody::getAngularVelocity() const { return mAngularVelocity; } inline void RigidBody::setAngularVelocity(const Vector3& angularVelocity) { mAngularVelocity = angularVelocity; } // Set the inverse of the mass inline void RigidBody::setMassInverse(decimal massInverse) { mMassInverse = massInverse; } // Get the inverse of the inertia tensor inline Matrix3x3 RigidBody::getInertiaTensorLocalInverse() const { return mInertiaTensorLocalInverse; } // Return the external force on the body inline Vector3 RigidBody::getExternalForce() const { return mExternalForce; } // Set the external force on the body inline void RigidBody::setExternalForce(const Vector3& force) { mExternalForce = force; } // Return the current external torque on the body inline Vector3 RigidBody::getExternalTorque() const { return mExternalTorque; } // Set the current external torque on the body inline void RigidBody::setExternalTorque(const Vector3& torque) { mExternalTorque = torque; } // Return the inverse of the mass of the body inline decimal RigidBody::getMassInverse() const { return mMassInverse; } // Return the local inertia tensor of the body (in body coordinates) inline Matrix3x3 RigidBody::getInertiaTensorLocal() const { return mInertiaTensorLocal; } // Set the local inertia tensor of the body (in body coordinates) inline void RigidBody::setInertiaTensorLocal(const Matrix3x3& inertiaTensorLocal) { mInertiaTensorLocal = inertiaTensorLocal; } // Return the inertia tensor in world coordinates // The inertia tensor I_w in world coordinates is computed // with the local inertia tensor I_b in body coordinates // by I_w = R * I_b * R^T // where R is the rotation matrix (and R^T its transpose) of // the current orientation quaternion of the body inline Matrix3x3 RigidBody::getInertiaTensorWorld() const { // Compute and return the inertia tensor in world coordinates return mTransform.getOrientation().getMatrix() * mInertiaTensorLocal * mTransform.getOrientation().getMatrix().getTranspose(); } // Return the inverse of the inertia tensor in world coordinates // The inertia tensor I_w in world coordinates is computed with the // local inverse inertia tensor I_b^-1 in body coordinates // by I_w = R * I_b^-1 * R^T // where R is the rotation matrix (and R^T its transpose) of the // current orientation quaternion of the body inline Matrix3x3 RigidBody::getInertiaTensorInverseWorld() const { // Compute and return the inertia tensor in world coordinates return mTransform.getOrientation().getMatrix() * mInertiaTensorLocalInverse * mTransform.getOrientation().getMatrix().getTranspose(); } // Set the linear velocity of the rigid body inline void RigidBody::setLinearVelocity(const Vector3& linearVelocity) { // If the body is able to move if (mIsMotionEnabled) { // Update the linear velocity of the current body state mLinearVelocity = linearVelocity; } } // Get the restitution coeffficient of the rigid body inline decimal RigidBody::getRestitution() const { return mRestitution; } // Set the restitution coefficient inline void RigidBody::setRestitution(decimal restitution) throw(std::invalid_argument) { // Check if the restitution coefficient is between 0 and 1 if (restitution >= 0.0 && restitution <= 1.0) { mRestitution = restitution; } else { throw std::invalid_argument("Error : the restitution coefficent must be between 0 and 1"); } } // Get the friction coefficient inline decimal RigidBody::getFrictionCoefficient() const { return mFrictionCoefficient; } // Set the friction coefficient inline void RigidBody::setFrictionCoefficient(decimal frictionCoefficient) { mFrictionCoefficient = frictionCoefficient; } } #endif