/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2018 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef REACTPHYSICS3D_HEIGHTFIELD_SHAPE_H #define REACTPHYSICS3D_HEIGHTFIELD_SHAPE_H // Libraries #include "ConcaveShape.h" #include "collision/shapes/AABB.h" namespace reactphysics3d { class HeightFieldShape; class Profiler; class TriangleShape; // Class TriangleOverlapCallback /** * This class is used for testing AABB and triangle overlap for raycasting */ class TriangleOverlapCallback : public TriangleCallback { protected: const Ray& mRay; ProxyShape* mProxyShape; RaycastInfo& mRaycastInfo; bool mIsHit; decimal mSmallestHitFraction; const HeightFieldShape& mHeightFieldShape; MemoryAllocator& mAllocator; #ifdef IS_PROFILING_ACTIVE /// Pointer to the profiler Profiler* mProfiler; #endif public: // Constructor TriangleOverlapCallback(const Ray& ray, ProxyShape* proxyShape, RaycastInfo& raycastInfo, const HeightFieldShape& heightFieldShape, MemoryAllocator& allocator) : mRay(ray), mProxyShape(proxyShape), mRaycastInfo(raycastInfo), mHeightFieldShape (heightFieldShape), mAllocator(allocator) { mIsHit = false; mSmallestHitFraction = mRay.maxFraction; } bool getIsHit() const {return mIsHit;} /// Raycast test between a ray and a triangle of the heightfield virtual void testTriangle(const Vector3* trianglePoints, const Vector3* verticesNormals, uint shapeId) override; #ifdef IS_PROFILING_ACTIVE /// Set the profiler void setProfiler(Profiler* profiler) { mProfiler = profiler; } #endif }; // Class HeightFieldShape /** * This class represents a static height field that can be used to represent * a terrain. The height field is made of a grid with rows and columns with a * height value at each grid point. Note that the height values are not copied into the shape * but are shared instead. The height values can be of type integer, float or double. * When creating a HeightFieldShape, you need to specify the minimum and maximum height value of * your height field. Note that the HeightFieldShape will be re-centered based on its AABB. It means * that for instance, if the minimum height value is -200 and the maximum value is 400, the final * minimum height of the field in the simulation will be -300 and the maximum height will be 300. */ class HeightFieldShape : public ConcaveShape { public: /// Data type for the height data of the height field enum class HeightDataType {HEIGHT_FLOAT_TYPE, HEIGHT_DOUBLE_TYPE, HEIGHT_INT_TYPE}; protected: // -------------------- Attributes -------------------- // /// Number of columns in the grid of the height field int mNbColumns; /// Number of rows in the grid of the height field int mNbRows; /// Height field width decimal mWidth; /// Height field length decimal mLength; /// Minimum height of the height field decimal mMinHeight; /// Maximum height of the height field decimal mMaxHeight; /// Up axis direction (0 => x, 1 => y, 2 => z) int mUpAxis; /// Height values scale for height field with integer height values decimal mIntegerHeightScale; /// Data type of the height values HeightDataType mHeightDataType; /// Array of data with all the height values of the height field const void* mHeightFieldData; /// Local AABB of the height field (without scaling) AABB mAABB; /// Scaling vector const Vector3 mScaling; // -------------------- Methods -------------------- // /// Raycast method with feedback information virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, MemoryAllocator& allocator) const override; /// Return the number of bytes used by the collision shape virtual size_t getSizeInBytes() const override; /// Insert all the triangles into the dynamic AABB tree void initBVHTree(); /// Return the three vertices coordinates (in the array outTriangleVertices) of a triangle /// given the start vertex index pointer of the triangle. void getTriangleVerticesWithIndexPointer(int32 subPart, int32 triangleIndex, Vector3* outTriangleVertices) const; /// Return the closest inside integer grid value of a given floating grid value int computeIntegerGridValue(decimal value) const; /// Compute the min/max grid coords corresponding to the intersection of the AABB of the height field and the AABB to collide void computeMinMaxGridCoordinates(int* minCoords, int* maxCoords, const AABB& aabbToCollide) const; /// Compute the shape Id for a given triangle uint computeTriangleShapeId(uint iIndex, uint jIndex, uint secondTriangleIncrement) const; public: /// Constructor HeightFieldShape(int nbGridColumns, int nbGridRows, decimal minHeight, decimal maxHeight, const void* heightFieldData, HeightDataType dataType, int upAxis = 1, decimal integerHeightScale = 1.0f, const Vector3& scaling = Vector3(1,1,1)); /// Destructor virtual ~HeightFieldShape() override = default; /// Deleted copy-constructor HeightFieldShape(const HeightFieldShape& shape) = delete; /// Deleted assignment operator HeightFieldShape& operator=(const HeightFieldShape& shape) = delete; /// Return the scaling factor const Vector3& getScaling() const; /// Return the number of rows in the height field int getNbRows() const; /// Return the number of columns in the height field int getNbColumns() const; /// Return the vertex (local-coordinates) of the height field at a given (x,y) position Vector3 getVertexAt(int x, int y) const; /// Return the height of a given (x,y) point in the height field decimal getHeightAt(int x, int y) const; /// Return the type of height value in the height field HeightDataType getHeightDataType() const; /// Return the local bounds of the shape in x, y and z directions. virtual void getLocalBounds(Vector3& min, Vector3& max) const override; /// Return the local inertia tensor of the collision shape virtual void computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const override; /// Use a callback method on all triangles of the concave shape inside a given AABB virtual void testAllTriangles(TriangleCallback& callback, const AABB& localAABB) const override; /// Return the string representation of the shape virtual std::string to_string() const override; // ---------- Friendship ----------- // friend class ConvexTriangleAABBOverlapCallback; friend class ConcaveMeshRaycastCallback; }; // Return the scaling factor inline const Vector3& HeightFieldShape::getScaling() const { return mScaling; } // Return the number of rows in the height field inline int HeightFieldShape::getNbRows() const { return mNbRows; } // Return the number of columns in the height field inline int HeightFieldShape::getNbColumns() const { return mNbColumns; } // Return the type of height value in the height field inline HeightFieldShape::HeightDataType HeightFieldShape::getHeightDataType() const { return mHeightDataType; } // Return the number of bytes used by the collision shape inline size_t HeightFieldShape::getSizeInBytes() const { return sizeof(HeightFieldShape); } // Return the height of a given (x,y) point in the height field inline decimal HeightFieldShape::getHeightAt(int x, int y) const { switch(mHeightDataType) { case HeightDataType::HEIGHT_FLOAT_TYPE : return ((float*)mHeightFieldData)[y * mNbColumns + x]; case HeightDataType::HEIGHT_DOUBLE_TYPE : return ((double*)mHeightFieldData)[y * mNbColumns + x]; case HeightDataType::HEIGHT_INT_TYPE : return ((int*)mHeightFieldData)[y * mNbColumns + x] * mIntegerHeightScale; default: assert(false); return 0; } } // Return the closest inside integer grid value of a given floating grid value inline int HeightFieldShape::computeIntegerGridValue(decimal value) const { return (value < decimal(0.0)) ? value - decimal(0.5) : value + decimal(0.5); } // Return the local inertia tensor /** * @param[out] tensor The 3x3 inertia tensor matrix of the shape in local-space * coordinates * @param mass Mass to use to compute the inertia tensor of the collision shape */ inline void HeightFieldShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const { // Default inertia tensor // Note that this is not very realistic for a concave triangle mesh. // However, in most cases, it will only be used static bodies and therefore, // the inertia tensor is not used. tensor.setAllValues(mass, 0, 0, 0, mass, 0, 0, 0, mass); } // Compute the shape Id for a given triangle inline uint HeightFieldShape::computeTriangleShapeId(uint iIndex, uint jIndex, uint secondTriangleIncrement) const { return (jIndex * (mNbColumns - 1) + iIndex) * 2 + secondTriangleIncrement; } } #endif