/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2015 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef REACTPHYSICS3D_TRIANGLE_SHAPE_H #define REACTPHYSICS3D_TRIANGLE_SHAPE_H // Libraries #include "mathematics/mathematics.h" #include "CollisionShape.h" /// ReactPhysics3D namespace namespace reactphysics3d { // Class TriangleShape /** * This class represents a triangle collision shape that is centered * at the origin and defined three points. */ class TriangleShape : public CollisionShape { protected: // -------------------- Attribute -------------------- // /// Three points of the triangle Vector3 mPoints[3]; // -------------------- Methods -------------------- // /// Private copy-constructor TriangleShape(const TriangleShape& shape); /// Private assignment operator TriangleShape& operator=(const TriangleShape& shape); /// Return a local support point in a given direction with the object margin virtual Vector3 getLocalSupportPointWithMargin(const Vector3& direction, void** cachedCollisionData) const; /// Return a local support point in a given direction without the object margin virtual Vector3 getLocalSupportPointWithoutMargin(const Vector3& direction, void** cachedCollisionData) const; /// Return true if a point is inside the collision shape virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const; /// Raycast method with feedback information virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const; /// Allocate and return a copy of the object virtual TriangleShape* clone(void* allocatedMemory) const; /// Return the number of bytes used by the collision shape virtual size_t getSizeInBytes() const; public: // -------------------- Methods -------------------- // /// Constructor TriangleShape(const Vector3& point1, const Vector3& point2, const Vector3& point3, decimal margin); /// Destructor virtual ~TriangleShape(); /// Return the local bounds of the shape in x, y and z directions. virtual void getLocalBounds(Vector3& min, Vector3& max) const; /// Return the local inertia tensor of the collision shape virtual void computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const; /// Update the AABB of a body using its collision shape virtual void computeAABB(AABB& aabb, const Transform& transform); /// Test equality between two triangle shapes virtual bool isEqualTo(const CollisionShape& otherCollisionShape) const; }; /// Allocate and return a copy of the object inline TriangleShape* TriangleShape::clone(void* allocatedMemory) const { return new (allocatedMemory) TriangleShape(*this); } // Return the number of bytes used by the collision shape inline size_t TriangleShape::getSizeInBytes() const { return sizeof(TriangleShape); } // Return a local support point in a given direction with the object margin inline Vector3 TriangleShape::getLocalSupportPointWithMargin(const Vector3& direction, void** cachedCollisionData) const { // TODO : Do we need to use margin for triangle support point ? return getLocalSupportPointWithoutMargin(direction, cachedCollisionData); } // Return a local support point in a given direction without the object margin inline Vector3 TriangleShape::getLocalSupportPointWithoutMargin(const Vector3& direction, void** cachedCollisionData) const { Vector3 dotProducts(direction.dot(mPoints[0]), direction.dot(mPoints[1], direction.dot(mPoints[2]))); return mPoints[dotProducts.getMaxAxis()]; } // Return the local bounds of the shape in x, y and z directions. // This method is used to compute the AABB of the box /** * @param min The minimum bounds of the shape in local-space coordinates * @param max The maximum bounds of the shape in local-space coordinates */ inline void TriangleShape::getLocalBounds(Vector3& min, Vector3& max) const { // TODO :This code is wrong const Vector3 xAxis(worldPoint1.X, worldPoint2.X, worldPoint3.X); const Vector3 yAxis(worldPoint1.Y, worldPoint2.Y, worldPoint3.Y); const Vector3 zAxis(worldPoint1.Z, worldPoint2.Z, worldPoint3.Z); min.setAllValues(xAxis.getMinAxis(), yAxis.getMinAxis(), zAxis.getMinAxis()); max.setAllValues(xAxis.getMaxAxis(), yAxis.getMaxAxis(), zAxis.getMaxAxis()); } // Return the local inertia tensor of the triangle shape /** * @param[out] tensor The 3x3 inertia tensor matrix of the shape in local-space * coordinates * @param mass Mass to use to compute the inertia tensor of the collision shape */ inline void TriangleShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const { tensor.setToZero(); } // Update the AABB of a body using its collision shape /** * @param[out] aabb The axis-aligned bounding box (AABB) of the collision shape * computed in world-space coordinates * @param transform Transform used to compute the AABB of the collision shape */ inline void TriangleShape::computeAABB(AABB& aabb, const Transform& transform) { // TODO :This code is wrong const Vector3 worldPoint1 = transform * mPoints[0]; const Vector3 worldPoint2 = transform * mPoints[1]; const Vector3 worldPoint3 = transform * mPoints[2]; const Vector3 xAxis(worldPoint1.X, worldPoint2.X, worldPoint3.X); const Vector3 yAxis(worldPoint1.Y, worldPoint2.Y, worldPoint3.Y); const Vector3 zAxis(worldPoint1.Z, worldPoint2.Z, worldPoint3.Z); aabb.setMin(Vector3(xAxis.getMinAxis(), yAxis.getMinAxis(), zAxis.getMinAxis())); aabb.setMax(Vector3(xAxis.getMaxAxis(), yAxis.getMaxAxis(), zAxis.getMaxAxis())); } // Test equality between two triangle shapes inline bool TriangleShape::isEqualTo(const CollisionShape& otherCollisionShape) const { const TriangleShape& otherShape = dynamic_cast(otherCollisionShape); return (mPoints[0] == otherShape.mPoints[0] && mPoints[1] == otherShape.mPoints[1] && mPoints[2] == otherShape.mPoints[2]); } // Return true if a point is inside the collision shape inline bool TriangleShape::testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const { return false; } } #endif