/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2016 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef REACTPHYSICS3D_SAT_ALGORITHM_H #define REACTPHYSICS3D_SAT_ALGORITHM_H // Libraries #include "collision/ContactManifoldInfo.h" #include "collision/NarrowPhaseInfo.h" #include "collision/shapes/ConvexPolyhedronShape.h" /// ReactPhysics3D namespace namespace reactphysics3d { // Class SATAlgorithm class SATAlgorithm { private : // -------------------- Attributes -------------------- // // -------------------- Methods -------------------- // /// Return true if two edges of two polyhedrons build a minkowski face (and can therefore be a separating axis) bool testEdgesBuildMinkowskiFace(const ConvexPolyhedronShape* polyhedron1, const HalfEdgeStructure::Edge& edge1, const ConvexPolyhedronShape* polyhedron2, const HalfEdgeStructure::Edge& edge2, const Transform& polyhedron1ToPolyhedron2) const; /// Return true if the arcs AB and CD on the Gauss Map intersect bool testGaussMapArcsIntersect(const Vector3& a, const Vector3& b, const Vector3& c, const Vector3& d, const Vector3& bCrossA, const Vector3& dCrossC) const; // Find and return the index of the polyhedron face with the most anti-parallel face normal given a direction vector uint findMostAntiParallelFaceOnPolyhedron(const ConvexPolyhedronShape* polyhedron, const Vector3& direction) const; /// Compute and return the distance between the two edges in the direction of the candidate separating axis decimal computeDistanceBetweenEdges(const Vector3& edge1A, const Vector3& edge2A, const Vector3& polyhedron2Centroid, const Vector3& edge1Direction, const Vector3& edge2Direction, Vector3& outSeparatingAxis) const; public : // -------------------- Methods -------------------- // /// Constructor SATAlgorithm() = default; /// Destructor ~SATAlgorithm() = default; /// Deleted copy-constructor SATAlgorithm(const SATAlgorithm& algorithm) = delete; /// Deleted assignment operator SATAlgorithm& operator=(const SATAlgorithm& algorithm) = delete; /// Test collision between a sphere and a convex mesh bool testCollisionSphereVsConvexPolyhedron(const NarrowPhaseInfo* narrowPhaseInfo, ContactManifoldInfo& contactManifoldInfo) const; /// Test collision between a capsule and a convex mesh bool testCollisionCapsuleVsConvexPolyhedron(const NarrowPhaseInfo* narrowPhaseInfo, ContactManifoldInfo& contactManifoldInfo) const; /// Compute the two contact points between a polyhedron and a capsule when the separating axis is a face normal of the polyhedron void computeCapsulePolyhedronFaceContactPoints(uint referenceFaceIndex, decimal capsuleRadius, const ConvexPolyhedronShape* polyhedron, decimal penetrationDepth, const Transform& polyhedronToCapsuleTransform, const Vector3& normalWorld, const Vector3& separatingAxisCapsuleSpace, const Vector3& capsuleSegAPolyhedronSpace, const Vector3& capsuleSegBPolyhedronSpace, ContactManifoldInfo& contactManifoldInfo, bool isCapsuleShape1) const; // This method returns true if an edge of a polyhedron and a capsule forms a face of the Minkowski Difference bool isMinkowskiFaceCapsuleVsEdge(const Vector3& capsuleSegment, const Vector3& edgeAdjacentFace1Normal, const Vector3& edgeAdjacentFace2Normal) const; /// Test collision between two convex meshes bool testCollisionConvexPolyhedronVsConvexPolyhedron(const NarrowPhaseInfo* narrowPhaseInfo, ContactManifoldInfo& contactManifoldInfo) const; /// Test all the normals of a polyhedron for separating axis in the polyhedron vs polyhedron case decimal testFaceDirectionPolyhedronVsPolyhedron(const ConvexPolyhedronShape* polyhedron1, const ConvexPolyhedronShape* polyhedron2, const Transform& polyhedron1ToPolyhedron2, uint& minFaceIndex) const; }; } #endif