/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2016 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef REACTPHYSICS3D_OVERLAPPING_PAIR_H #define REACTPHYSICS3D_OVERLAPPING_PAIR_H // Libraries #include "collision/ContactManifoldSet.h" #include "collision/ProxyShape.h" #include "collision/shapes/CollisionShape.h" #include "containers/Map.h" #include "containers/Pair.h" #include "containers/containers_common.h" /// ReactPhysics3D namespace namespace reactphysics3d { // Structure LastFrameCollisionInfo /** * This structure contains collision info about the last frame. * This is used for temporal coherence between frames. */ struct LastFrameCollisionInfo { /// True if we have information about the previous frame bool isValid; /// True if the frame info is obsolete (the collision shape are not overlapping in middle phase) bool isObsolete; /// True if the two shapes were colliding in the previous frame bool wasColliding; /// True if we were using GJK algorithm to check for collision in the previous frame bool wasUsingGJK; /// True if we were using SAT algorithm to check for collision in the previous frame bool wasUsingSAT; // ----- GJK Algorithm ----- /// Previous separating axis Vector3 gjkSeparatingAxis; // SAT Algorithm bool satIsAxisFacePolyhedron1; bool satIsAxisFacePolyhedron2; uint satMinAxisFaceIndex; uint satMinEdge1Index; uint satMinEdge2Index; /// Constructor LastFrameCollisionInfo() { isValid = false; isObsolete = false; wasColliding = false; wasUsingSAT = false; wasUsingGJK = false; gjkSeparatingAxis = Vector3(0, 1, 0); } }; // Class OverlappingPair /** * This class represents a pair of two proxy collision shapes that are overlapping * during the broad-phase collision detection. It is created when * the two proxy collision shapes start to overlap and is destroyed when they do not * overlap anymore. This class contains a contact manifold that * store all the contact points between the two bodies. */ class OverlappingPair { public: using OverlappingPairId = Pair; using ShapeIdPair = Pair; private: // -------------------- Attributes -------------------- // /// Set of persistent contact manifolds ContactManifoldSet mContactManifoldSet; /// Linked-list of potential contact manifold ContactManifoldInfo* mPotentialContactManifolds; /// Persistent memory allocator MemoryAllocator& mPersistentAllocator; /// Memory allocator used to allocated memory for the ContactManifoldInfo and ContactPointInfo MemoryAllocator& mTempMemoryAllocator; /// Temporal coherence collision data for each overlapping collision shapes of this pair. /// Temporal coherence data store collision information about the last frame. /// If two convex shapes overlap, we have a single collision data but if one shape is concave, /// we might have collision data for several overlapping triangles. The key in the map is the /// shape Ids of the two collision shapes. Map mLastFrameCollisionInfos; public: // -------------------- Methods -------------------- // /// Constructor OverlappingPair(ProxyShape* shape1, ProxyShape* shape2, MemoryAllocator& persistentMemoryAllocator, MemoryAllocator& temporaryMemoryAllocator); /// Destructor ~OverlappingPair(); /// Deleted copy-constructor OverlappingPair(const OverlappingPair& pair) = delete; /// Deleted assignment operator OverlappingPair& operator=(const OverlappingPair& pair) = delete; /// Return the pointer to first proxy collision shape ProxyShape* getShape1() const; /// Return the pointer to second body ProxyShape* getShape2() const; /// Return the last frame collision info LastFrameCollisionInfo* getLastFrameCollisionInfo(ShapeIdPair& shapeIds); /// Return the a reference to the contact manifold set const ContactManifoldSet& getContactManifoldSet(); /// Clear all the potential contact manifolds void clearPotentialContactManifolds(); /// Add potential contact-points from narrow-phase into potential contact manifolds void addPotentialContactPoints(NarrowPhaseInfo* narrowPhaseInfo); /// Add a contact to the contact manifold void addContactManifold(const ContactManifoldInfo* contactManifoldInfo); /// Return a reference to the temporary memory allocator MemoryAllocator& getTemporaryAllocator(); /// Return true if one of the shapes of the pair is a concave shape bool hasConcaveShape() const; /// Return true if the overlapping pair has contact manifolds with contacts bool hasContacts() const; /// Return a pointer to the first potential contact manifold in the linked-list ContactManifoldInfo* getPotentialContactManifolds(); /// Reduce the number of contact points of all the potential contact manifolds void reducePotentialContactManifolds(); /// Make the contact manifolds and contact points obsolete void makeContactsObsolete(); /// Clear the obsolete contact manifold and contact points void clearObsoleteManifoldsAndContactPoints(); /// Reduce the contact manifolds that have too many contact points void reduceContactManifolds(); /// Add a new last frame collision info if it does not exist for the given shapes already void addLastFrameInfoIfNecessary(uint shapeId1, uint shapeId2); /// Return the last frame collision info for a given pair of shape ids LastFrameCollisionInfo* getLastFrameCollisionInfo(uint shapeId1, uint shapeId2) const; /// Delete all the obsolete last frame collision info void clearObsoleteLastFrameCollisionInfos(); /// Make all the last frame collision infos obsolete void makeLastFrameCollisionInfosObsolete(); /// Return the pair of bodies index static OverlappingPairId computeID(ProxyShape* shape1, ProxyShape* shape2); /// Return the pair of bodies index of the pair static bodyindexpair computeBodiesIndexPair(CollisionBody* body1, CollisionBody* body2); // -------------------- Friendship -------------------- // friend class DynamicsWorld; }; // Return the pointer to first body inline ProxyShape* OverlappingPair::getShape1() const { return mContactManifoldSet.getShape1(); } // Return the pointer to second body inline ProxyShape* OverlappingPair::getShape2() const { return mContactManifoldSet.getShape2(); } // Add a contact to the contact manifold inline void OverlappingPair::addContactManifold(const ContactManifoldInfo* contactManifoldInfo) { mContactManifoldSet.addContactManifold(contactManifoldInfo); } // Return the last frame collision info for a given shape id or nullptr if none is found inline LastFrameCollisionInfo* OverlappingPair::getLastFrameCollisionInfo(ShapeIdPair& shapeIds) { Map::Iterator it = mLastFrameCollisionInfos.find(shapeIds); if (it != mLastFrameCollisionInfos.end()) { return it->second; } return nullptr; } // Return the contact manifold inline const ContactManifoldSet& OverlappingPair::getContactManifoldSet() { return mContactManifoldSet; } // Make the contact manifolds and contact points obsolete inline void OverlappingPair::makeContactsObsolete() { mContactManifoldSet.makeContactsObsolete(); } // Return the pair of bodies index inline OverlappingPair::OverlappingPairId OverlappingPair::computeID(ProxyShape* shape1, ProxyShape* shape2) { assert(shape1->mBroadPhaseID >= 0 && shape2->mBroadPhaseID >= 0); // Construct the pair of body index OverlappingPairId pairID = shape1->mBroadPhaseID < shape2->mBroadPhaseID ? OverlappingPairId(shape1->mBroadPhaseID, shape2->mBroadPhaseID) : OverlappingPairId(shape2->mBroadPhaseID, shape1->mBroadPhaseID); assert(pairID.first != pairID.second); return pairID; } // Return the pair of bodies index inline bodyindexpair OverlappingPair::computeBodiesIndexPair(CollisionBody* body1, CollisionBody* body2) { // Construct the pair of body index bodyindexpair indexPair = body1->getID() < body2->getID() ? bodyindexpair(body1->getID(), body2->getID()) : bodyindexpair(body2->getID(), body1->getID()); assert(indexPair.first != indexPair.second); return indexPair; } // Return a reference to the temporary memory allocator inline MemoryAllocator& OverlappingPair::getTemporaryAllocator() { return mTempMemoryAllocator; } // Return true if one of the shapes of the pair is a concave shape inline bool OverlappingPair::hasConcaveShape() const { return !getShape1()->getCollisionShape()->isConvex() || !getShape2()->getCollisionShape()->isConvex(); } // Return true if the overlapping pair has contact manifolds with contacts inline bool OverlappingPair::hasContacts() const { return mContactManifoldSet.getContactManifolds() != nullptr; } // Return a pointer to the first potential contact manifold in the linked-list inline ContactManifoldInfo* OverlappingPair::getPotentialContactManifolds() { return mPotentialContactManifolds; } // Clear the obsolete contact manifold and contact points inline void OverlappingPair::clearObsoleteManifoldsAndContactPoints() { mContactManifoldSet.clearObsoleteManifoldsAndContactPoints(); } // Reduce the contact manifolds that have too many contact points inline void OverlappingPair::reduceContactManifolds() { mContactManifoldSet.reduce(); } // Return the last frame collision info for a given pair of shape ids inline LastFrameCollisionInfo* OverlappingPair::getLastFrameCollisionInfo(uint shapeId1, uint shapeId2) const { return mLastFrameCollisionInfos[ShapeIdPair(shapeId1, shapeId2)]; } } #endif