/******************************************************************************** * ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ * * Copyright (c) 2010-2013 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef TEST_MATRIX3X3_H #define TEST_MATRIX3X3_H // Libraries #include "../../Test.h" #include "../../../src/mathematics/Matrix3x3.h" /// Reactphysics3D namespace namespace reactphysics3d { // Class TestMatrix3x3 /** * Unit test for the Matrix3x3 class */ class TestMatrix3x3 : public Test { private : // ---------- Atributes ---------- // /// Identity transform Matrix3x3 mIdentity; /// First example matrix Matrix3x3 mMatrix1; public : // ---------- Methods ---------- // /// Constructor TestMatrix3x3() : mIdentity(Matrix3x3::identity()), mMatrix1(2, 24, 4, 5, -6, 234, -15, 11, 66) { } /// Run the tests void run() { testConstructors(); testGetSet(); testIdentity(); testZero(); testOthersMethods(); testOperators(); } /// Test the constructors void testConstructors() { Matrix3x3 test1(5.0); Matrix3x3 test2(2, 3, 4, 5, 6, 7, 8, 9, 10); Matrix3x3 test3(mMatrix1); test(test1[0][0] == 5); test(test1[0][1] == 5); test(test1[0][2] == 5); test(test1[1][0] == 5); test(test1[1][1] == 5); test(test1[1][2] == 5); test(test1[2][0] == 5); test(test1[2][1] == 5); test(test1[2][2] == 5); test(test2[0][0] == 2); test(test2[0][1] == 3); test(test2[0][2] == 4); test(test2[1][0] == 5); test(test2[1][1] == 6); test(test2[1][2] == 7); test(test2[2][0] == 8); test(test2[2][1] == 9); test(test2[2][2] == 10); test(test3 == mMatrix1); } /// Test the getter and setter methods void testGetSet() { // Test method to set all the values Matrix3x3 test2; test2.setAllValues(2, 24, 4, 5, -6, 234, -15, 11, 66); test(test2 == mMatrix1); // Test method to set to zero test2.setToZero(); test(test2 == Matrix3x3(0, 0, 0, 0, 0, 0, 0, 0, 0)); // Test method that returns a column Vector3 column1 = mMatrix1.getColumn(0); Vector3 column2 = mMatrix1.getColumn(1); Vector3 column3 = mMatrix1.getColumn(2); test(column1 == Vector3(2, 5, -15)); test(column2 == Vector3(24, -6, 11)); test(column3 == Vector3(4, 234, 66)); // Test method that returns a row Vector3 row1 = mMatrix1.getRow(0); Vector3 row2 = mMatrix1.getRow(1); Vector3 row3 = mMatrix1.getRow(2); test(row1 == Vector3(2, 24, 4)); test(row2 == Vector3(5, -6, 234)); test(row3 == Vector3(-15, 11, 66)); } /// Test the identity methods void testIdentity() { Matrix3x3 identity = Matrix3x3::identity(); Matrix3x3 test1; test1.setToIdentity(); test(identity[0][0] == 1); test(identity[0][1] == 0); test(identity[0][2] == 0); test(identity[1][0] == 0); test(identity[1][1] == 1); test(identity[1][2] == 0); test(identity[2][0] == 0); test(identity[2][1] == 0); test(identity[2][2] == 1); test(test1 == Matrix3x3::identity()); } /// Test the zero method void testZero() { Matrix3x3 zero = Matrix3x3::zero(); test(zero[0][0] == 0); test(zero[0][1] == 0); test(zero[0][2] == 0); test(zero[1][0] == 0); test(zero[1][1] == 0); test(zero[1][2] == 0); test(zero[2][0] == 0); test(zero[2][1] == 0); test(zero[2][2] == 0); } /// Test others methods void testOthersMethods() { // Test transpose Matrix3x3 transpose = mMatrix1.getTranspose(); test(transpose == Matrix3x3(2, 5, -15, 24, -6, 11, 4, 234, 66)); // Test trace test(mMatrix1.getTrace() == 62); test(Matrix3x3::identity().getTrace() == 3); // Test determinant Matrix3x3 matrix(-24, 64, 253, -35, 52, 72, 21, -35, -363); test(mMatrix1.getDeterminant() == -98240); test(matrix.getDeterminant() == -290159); test(mIdentity.getDeterminant() == 1); // Test inverse Matrix3x3 inverseMatrix = matrix.getInverse(); test(approxEqual(inverseMatrix[0][0], decimal(0.056369), decimal(10e-6))); test(approxEqual(inverseMatrix[0][1], decimal(-0.049549), decimal(10e-6))); test(approxEqual(inverseMatrix[0][2], decimal(0.029460), decimal(10e-6))); test(approxEqual(inverseMatrix[1][0], decimal(0.038575), decimal(10e-6))); test(approxEqual(inverseMatrix[1][1], decimal(-0.011714), decimal(10e-6))); test(approxEqual(inverseMatrix[1][2], decimal(0.024562), decimal(10e-6))); test(approxEqual(inverseMatrix[2][0], decimal(-0.000458), decimal(10e-6))); test(approxEqual(inverseMatrix[2][1], decimal(-0.001737), decimal(10e-6))); test(approxEqual(inverseMatrix[2][2], decimal(-0.003419), decimal(10e-6))); Matrix3x3 inverseMatrix1 = mMatrix1.getInverse(); test(approxEqual(inverseMatrix1[0][0], decimal(0.030232), decimal(10e-6))); test(approxEqual(inverseMatrix1[0][1], decimal(0.015676), decimal(10e-6))); test(approxEqual(inverseMatrix1[0][2], decimal(-0.057410), decimal(10e-6))); test(approxEqual(inverseMatrix1[1][0], decimal(0.039088), decimal(10e-6))); test(approxEqual(inverseMatrix1[1][1], decimal(-0.001954), decimal(10e-6))); test(approxEqual(inverseMatrix1[1][2], decimal(0.004560), decimal(10e-6))); test(approxEqual(inverseMatrix1[2][0], decimal(0.000356), decimal(10e-6))); test(approxEqual(inverseMatrix1[2][1], decimal(0.003888), decimal(10e-6))); test(approxEqual(inverseMatrix1[2][2], decimal(0.001344), decimal(10e-6))); // Test absolute matrix Matrix3x3 matrix2(-2, -3, -4, -5, -6, -7, -8, -9, -10); test(matrix.getAbsoluteMatrix() == Matrix3x3(24, 64, 253, 35, 52, 72, 21, 35, 363)); Matrix3x3 absoluteMatrix = matrix2.getAbsoluteMatrix(); test(absoluteMatrix == Matrix3x3(2, 3, 4, 5, 6, 7, 8, 9, 10)); // Test method that computes skew-symmetric matrix for cross product Vector3 vector1(3, -5, 6); Vector3 vector2(73, 42, 26); Matrix3x3 skewMatrix = Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(vector1); test(skewMatrix == Matrix3x3(0, -6, -5, 6, 0, -3, 5, 3, 0)); Vector3 crossProduct1 = vector1.cross(vector2); Vector3 crossProduct2 = skewMatrix * vector2; test(crossProduct1 == crossProduct2); } /// Test the operators void testOperators() { // Test addition Matrix3x3 matrix1(2, 3, 4, 5, 6, 7, 8, 9, 10); Matrix3x3 matrix2(-2, 3, -5, 10, 4, 7, 2, 5, 8); Matrix3x3 addition1 = matrix1 + matrix2; Matrix3x3 addition2(matrix1); addition2 += matrix2; test(addition1 == Matrix3x3(0, 6, -1, 15, 10, 14, 10, 14, 18)); test(addition2 == Matrix3x3(0, 6, -1, 15, 10, 14, 10, 14, 18)); // Test substraction Matrix3x3 substraction1 = matrix1 - matrix2; Matrix3x3 substraction2(matrix1); substraction2 -= matrix2; test(substraction1 == Matrix3x3(4, 0, 9, -5, 2, 0, 6, 4, 2)); test(substraction2 == Matrix3x3(4, 0, 9, -5, 2, 0, 6, 4, 2)); // Test negative operator Matrix3x3 negative = -matrix1; test(negative == Matrix3x3(-2, -3, -4, -5, -6, -7, -8, -9, -10)); // Test multiplication with a number Matrix3x3 multiplication1 = 3 * matrix1; Matrix3x3 multiplication2 = matrix1 * 3; Matrix3x3 multiplication3(matrix1); multiplication3 *= 3; test(multiplication1 == Matrix3x3(6, 9, 12, 15, 18, 21, 24, 27, 30)); test(multiplication2 == Matrix3x3(6, 9, 12, 15, 18, 21, 24, 27, 30)); test(multiplication3 == Matrix3x3(6, 9, 12, 15, 18, 21, 24, 27, 30)); // Test multiplication with a matrix Matrix3x3 multiplication4 = matrix1 * matrix2; Matrix3x3 multiplication5 = matrix2 * matrix1; test(multiplication4 == Matrix3x3(34, 38, 43, 64, 74, 73, 94, 110, 103)); test(multiplication5 == Matrix3x3(-29, -33, -37, 96, 117, 138, 93, 108, 123)); // Test multiplication with a vector Vector3 vector1(3, -32, 59); Vector3 vector2(-31, -422, 34); Vector3 test1 = matrix1 * vector1; Vector3 test2 = matrix2 * vector2; test(test1 == Vector3(146, 236, 326)); test(test2 == Vector3(-1374, -1760, -1900)); // Test equality operators test(Matrix3x3(34, 38, 43, 64, 74, 73, 94, 110, 103) == Matrix3x3(34, 38, 43, 64, 74, 73, 94, 110, 103)); test(Matrix3x3(34, 64, 43, 7, -1, 73, 94, 110, 103) != Matrix3x3(34, 38, 43, 64, 74, 73, 94, 110, 103)); // Test operator to read a value test(mMatrix1[0][0] == 2); test(mMatrix1[0][1] == 24); test(mMatrix1[0][2] == 4); test(mMatrix1[1][0] == 5); test(mMatrix1[1][1] == -6); test(mMatrix1[1][2] == 234); test(mMatrix1[2][0] == -15); test(mMatrix1[2][1] == 11); test(mMatrix1[2][2] == 66); // Test operator to set a value Matrix3x3 test3; test3[0][0] = 2; test3[0][1] = 24; test3[0][2] = 4; test3[1][0] = 5; test3[1][1] = -6; test3[1][2] = 234; test3[2][0] = -15; test3[2][1] = 11; test3[2][2] = 66; test(test3 == mMatrix1); } }; } #endif