/******************************************************************************** * ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ * * Copyright (c) 2010-2013 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef REACTPHYSICS3D_RIGID_BODY_H #define REACTPHYSICS3D_RIGID_BODY_H // Libraries #include #include "CollisionBody.h" #include "../engine/Material.h" #include "../mathematics/mathematics.h" #include "../memory/MemoryAllocator.h" /// Namespace reactphysics3d namespace reactphysics3d { // Class declarations struct JointListElement; class Joint; // Class RigidBody /** * This class represents a rigid body of the physics * engine. A rigid body is a non-deformable body that * has a constant mass. This class inherits from the * CollisionBody class. */ class RigidBody : public CollisionBody { protected : // -------------------- Attributes -------------------- // /// Intial mass of the body decimal mInitMass; /// Linear velocity of the body Vector3 mLinearVelocity; /// Angular velocity of the body Vector3 mAngularVelocity; /// Current external force on the body Vector3 mExternalForce; /// Current external torque on the body Vector3 mExternalTorque; /// Local inertia tensor of the body (in local-space) Matrix3x3 mInertiaTensorLocal; /// Inverse of the inertia tensor of the body Matrix3x3 mInertiaTensorLocalInverse; /// Inverse of the mass of the body decimal mMassInverse; /// True if the gravity needs to be applied to this rigid body bool mIsGravityEnabled; /// Material properties of the rigid body Material mMaterial; /// Linear velocity damping factor decimal mLinearDamping; /// Angular velocity damping factor decimal mAngularDamping; /// First element of the linked list of joints involving this body JointListElement* mJointsList; // -------------------- Methods -------------------- // /// Private copy-constructor RigidBody(const RigidBody& body); /// Private assignment operator RigidBody& operator=(const RigidBody& body); /// Remove a joint from the joints list void removeJointFromJointsList(MemoryAllocator& memoryAllocator, const Joint* joint); public : // -------------------- Methods -------------------- // /// Constructor RigidBody(const Transform& transform, decimal mass, CollisionShape* collisionShape, bodyindex id); /// Destructor virtual ~RigidBody(); /// Set the type of the body (static, kinematic or dynamic) void setType(BodyType type); /// Return the mass of the body decimal getMass() const; /// Set the mass of the body void setMass(decimal mass); /// Return the linear velocity Vector3 getLinearVelocity() const; /// Set the linear velocity of the body. void setLinearVelocity(const Vector3& linearVelocity); /// Return the angular velocity Vector3 getAngularVelocity() const; /// Set the angular velocity. void setAngularVelocity(const Vector3& angularVelocity); /// Return the local inertia tensor of the body (in body coordinates) const Matrix3x3& getInertiaTensorLocal() const; /// Set the local inertia tensor of the body (in body coordinates) void setInertiaTensorLocal(const Matrix3x3& inertiaTensorLocal); /// Return the inertia tensor in world coordinates. Matrix3x3 getInertiaTensorWorld() const; /// Return the inverse of the inertia tensor in world coordinates. Matrix3x3 getInertiaTensorInverseWorld() const; /// Return true if the gravity needs to be applied to this rigid body bool isGravityEnabled() const; /// Set the variable to know if the gravity is applied to this rigid body void enableGravity(bool isEnabled); /// Return a reference to the material properties of the rigid body Material& getMaterial(); /// Set a new material for this rigid body void setMaterial(const Material& material); /// Return the linear velocity damping factor decimal getLinearDamping() const; /// Set the linear damping factor void setLinearDamping(decimal linearDamping); /// Return the angular velocity damping factor decimal getAngularDamping() const; /// Set the angular damping factor void setAngularDamping(decimal angularDamping); /// Return the first element of the linked list of joints involving this body const JointListElement* getJointsList() const; /// Set the variable to know whether or not the body is sleeping virtual void setIsSleeping(bool isSleeping); /// Apply an external force to the body at its gravity center. void applyForceToCenter(const Vector3& force); /// Apply an external force to the body at a given point (in world-space coordinates). void applyForce(const Vector3& force, const Vector3& point); /// Apply an external torque to the body. void applyTorque(const Vector3& torque); // -------------------- Friendship -------------------- // friend class DynamicsWorld; friend class ContactSolver; friend class BallAndSocketJoint; friend class SliderJoint; friend class HingeJoint; friend class FixedJoint; }; // Method that return the mass of the body inline decimal RigidBody::getMass() const { return mInitMass; } // Return the linear velocity inline Vector3 RigidBody::getLinearVelocity() const { return mLinearVelocity; } // Return the angular velocity of the body inline Vector3 RigidBody::getAngularVelocity() const { return mAngularVelocity; } // Set the angular velocity. /// You should only call this method for a kinematic body. Otherwise, it /// will do nothing. inline void RigidBody::setAngularVelocity(const Vector3& angularVelocity) { // If it is a kinematic body if (mType == KINEMATIC) { mAngularVelocity = angularVelocity; } } // Return the local inertia tensor of the body (in body coordinates) inline const Matrix3x3& RigidBody::getInertiaTensorLocal() const { return mInertiaTensorLocal; } // Return the inertia tensor in world coordinates. /// The inertia tensor I_w in world coordinates is computed /// with the local inertia tensor I_b in body coordinates /// by I_w = R * I_b * R^T /// where R is the rotation matrix (and R^T its transpose) of /// the current orientation quaternion of the body inline Matrix3x3 RigidBody::getInertiaTensorWorld() const { // Compute and return the inertia tensor in world coordinates return mTransform.getOrientation().getMatrix() * mInertiaTensorLocal * mTransform.getOrientation().getMatrix().getTranspose(); } // Return the inverse of the inertia tensor in world coordinates. /// The inertia tensor I_w in world coordinates is computed with the /// local inverse inertia tensor I_b^-1 in body coordinates /// by I_w = R * I_b^-1 * R^T /// where R is the rotation matrix (and R^T its transpose) of the /// current orientation quaternion of the body // TODO : DO NOT RECOMPUTE THE MATRIX MULTIPLICATION EVERY TIME. WE NEED TO STORE THE // INVERSE WORLD TENSOR IN THE CLASS AND UPLDATE IT WHEN THE ORIENTATION OF THE BODY CHANGES inline Matrix3x3 RigidBody::getInertiaTensorInverseWorld() const { // Compute and return the inertia tensor in world coordinates return mTransform.getOrientation().getMatrix() * mInertiaTensorLocalInverse * mTransform.getOrientation().getMatrix().getTranspose(); } // Set the linear velocity of the rigid body. /// You should only call this method for a kinematic body. Otherwise, it /// will do nothing. inline void RigidBody::setLinearVelocity(const Vector3& linearVelocity) { // If it is a kinematic body if (mType == KINEMATIC) { // Update the linear velocity of the current body state mLinearVelocity = linearVelocity; } } // Return true if the gravity needs to be applied to this rigid body inline bool RigidBody::isGravityEnabled() const { return mIsGravityEnabled; } // Set the variable to know if the gravity is applied to this rigid body inline void RigidBody::enableGravity(bool isEnabled) { mIsGravityEnabled = isEnabled; } // Return a reference to the material properties of the rigid body inline Material& RigidBody::getMaterial() { return mMaterial; } // Set a new material for this rigid body inline void RigidBody::setMaterial(const Material& material) { mMaterial = material; } // Return the linear velocity damping factor inline decimal RigidBody::getLinearDamping() const { return mLinearDamping; } // Set the linear damping factor inline void RigidBody::setLinearDamping(decimal linearDamping) { assert(linearDamping >= decimal(0.0)); mLinearDamping = linearDamping; } // Return the angular velocity damping factor inline decimal RigidBody::getAngularDamping() const { return mAngularDamping; } // Set the angular damping factor inline void RigidBody::setAngularDamping(decimal angularDamping) { assert(angularDamping >= decimal(0.0)); mAngularDamping = angularDamping; } // Return the first element of the linked list of joints involving this body inline const JointListElement* RigidBody::getJointsList() const { return mJointsList; } // Set the variable to know whether or not the body is sleeping inline void RigidBody::setIsSleeping(bool isSleeping) { if (isSleeping) { mLinearVelocity.setToZero(); mAngularVelocity.setToZero(); mExternalForce.setToZero(); mExternalTorque.setToZero(); } Body::setIsSleeping(isSleeping); } // Apply an external force to the body at its gravity center. /// If the body is sleeping, calling this method will wake it up. Note that the /// force will we added to the sum of the applied forces and that this sum will be /// reset to zero at the end of each call of the DynamicsWorld::update() method. /// You can only apply a force to a dynamic body otherwise, this method will do nothing. inline void RigidBody::applyForceToCenter(const Vector3& force) { // If it is not a dynamic body, we do nothing if (mType != DYNAMIC) return; // Awake the body if it was sleeping if (mIsSleeping) { setIsSleeping(false); } // Add the force mExternalForce += force; } // Apply an external force to the body at a given point (in world-space coordinates). /// If the point is not at the center of gravity of the body, it will also /// generate some torque and therefore, change the angular velocity of the body. /// If the body is sleeping, calling this method will wake it up. Note that the /// force will we added to the sum of the applied forces and that this sum will be /// reset to zero at the end of each call of the DynamicsWorld::update() method. /// You can only apply a force to a dynamic body otherwise, this method will do nothing. inline void RigidBody::applyForce(const Vector3& force, const Vector3& point) { // If it is not a dynamic body, we do nothing if (mType != DYNAMIC) return; // Awake the body if it was sleeping if (mIsSleeping) { setIsSleeping(false); } // Add the force and torque mExternalForce += force; mExternalTorque += (point - mTransform.getPosition()).cross(force); } // Apply an external torque to the body. /// If the body is sleeping, calling this method will wake it up. Note that the /// force will we added to the sum of the applied torques and that this sum will be /// reset to zero at the end of each call of the DynamicsWorld::update() method. /// You can only apply a force to a dynamic body otherwise, this method will do nothing. inline void RigidBody::applyTorque(const Vector3& torque) { // If it is not a dynamic body, we do nothing if (mType != DYNAMIC) return; // Awake the body if it was sleeping if (mIsSleeping) { setIsSleeping(false); } // Add the torque mExternalTorque += torque; } } #endif