/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2016 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ #ifndef REACTPHYSICS3D_COLLISION_SHAPE_H #define REACTPHYSICS3D_COLLISION_SHAPE_H // Libraries #include #include #include "mathematics/Vector3.h" #include "mathematics/Matrix3x3.h" #include "mathematics/Ray.h" #include "AABB.h" #include "collision/RaycastInfo.h" #include "memory/PoolAllocator.h" #include "utils/Profiler.h" /// ReactPhysics3D namespace namespace reactphysics3d { /// Type of collision shapes enum class CollisionShapeType {SPHERE, CAPSULE, CONVEX_POLYHEDRON, CONCAVE_SHAPE}; const int NB_COLLISION_SHAPE_TYPES = 4; /// Names of collision shapes enum class CollisionShapeName { TRIANGLE, SPHERE, CAPSULE, BOX, CONVEX_MESH, TRIANGLE_MESH, HEIGHTFIELD }; // Declarations class ProxyShape; class CollisionBody; // Class CollisionShape /** * This abstract class represents the collision shape associated with a * body that is used during the narrow-phase collision detection. */ class CollisionShape { protected : // -------------------- Attributes -------------------- // /// Type of the collision shape CollisionShapeType mType; /// Name of the colision shape CollisionShapeName mName; /// Scaling vector of the collision shape Vector3 mScaling; /// Unique identifier of the shape inside an overlapping pair uint mId; #ifdef IS_PROFILING_ACTIVE /// Pointer to the profiler Profiler* mProfiler; #endif // -------------------- Methods -------------------- // /// Return true if a point is inside the collision shape virtual bool testPointInside(const Vector3& worldPoint, ProxyShape* proxyShape) const=0; /// Raycast method with feedback information virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, MemoryAllocator& allocator) const=0; /// Return the number of bytes used by the collision shape virtual size_t getSizeInBytes() const = 0; public : // -------------------- Methods -------------------- // /// Constructor CollisionShape(CollisionShapeName name, CollisionShapeType type); /// Destructor virtual ~CollisionShape() = default; /// Deleted copy-constructor CollisionShape(const CollisionShape& shape) = delete; /// Deleted assignment operator CollisionShape& operator=(const CollisionShape& shape) = delete; /// Return the name of the collision shape CollisionShapeName getName() const; /// Return the type of the collision shape CollisionShapeType getType() const; /// Return true if the collision shape is convex, false if it is concave virtual bool isConvex() const=0; /// Return true if the collision shape is a polyhedron virtual bool isPolyhedron() const=0; /// Return the local bounds of the shape in x, y and z directions virtual void getLocalBounds(Vector3& min, Vector3& max) const=0; /// Return the scaling vector of the collision shape Vector3 getLocalScaling() const; /// Set the local scaling vector of the collision shape virtual void setLocalScaling(const Vector3& scaling); /// Return the id of the shape uint getId() const; /// Return the local inertia tensor of the collision shapes virtual void computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const=0; /// Compute the world-space AABB of the collision shape given a transform virtual void computeAABB(AABB& aabb, const Transform& transform) const; /// Return the string representation of the shape virtual std::string to_string() const=0; #ifdef IS_PROFILING_ACTIVE /// Set the profiler virtual void setProfiler(Profiler* profiler); #endif // -------------------- Friendship -------------------- // friend class ProxyShape; friend class CollisionWorld; }; // Return the name of the collision shape /** * @return The name of the collision shape (box, sphere, triangle, ...) */ inline CollisionShapeName CollisionShape::getName() const { return mName; } // Return the type of the collision shape /** * @return The type of the collision shape (sphere, capsule, convex polyhedron, concave mesh) */ inline CollisionShapeType CollisionShape::getType() const { return mType; } // Return the scaling vector of the collision shape inline Vector3 CollisionShape::getLocalScaling() const { return mScaling; } // Set the scaling vector of the collision shape inline void CollisionShape::setLocalScaling(const Vector3& scaling) { mScaling = scaling; } // Return the id of the shape inline uint CollisionShape::getId() const { return mId; } #ifdef IS_PROFILING_ACTIVE // Set the profiler inline void CollisionShape::setProfiler(Profiler* profiler) { mProfiler = profiler; } #endif } #endif