/******************************************************************************** * ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ * * Copyright (c) 2010 Daniel Chappuis * ********************************************************************************* * * * Permission is hereby granted, free of charge, to any person obtaining a copy * * of this software and associated documentation files (the "Software"), to deal * * in the Software without restriction, including without limitation the rights * * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * * copies of the Software, and to permit persons to whom the Software is * * furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * * THE SOFTWARE. * ********************************************************************************/ #ifndef RIGIDBODY_H #define RIGIDBODY_H // Libraries #include #include "Body.h" #include "Shape.h" #include "../mathematics/mathematics.h" // Namespace reactphysics3d namespace reactphysics3d { /* ------------------------------------------------------------------- Class RigidBody : This class represents a rigid body of the physics engine. A rigid body is a non-deformable body that has a constant mass. ------------------------------------------------------------------- */ class RigidBody : public Body { protected : Vector3D linearVelocity; // Linear velocity of the body Vector3D angularVelocity; // Angular velocity of the body Vector3D externalForce; // Current external force on the body Vector3D externalTorque; // Current external torque on the body Matrix3x3 inertiaTensorLocal; // Local inertia tensor of the body (in body coordinates) Matrix3x3 inertiaTensorLocalInverse; // Inverse of the inertia tensor of the body (in body coordinates) double massInverse; // Inverse of the mass of the body double restitution; // Coefficient of restitution (between 0 and 1), 1 for a very boucing body public : RigidBody(const Transform& transform, double mass, const Matrix3x3& inertiaTensorLocal, Shape* shape); // Constructor // Copy-constructor virtual ~RigidBody(); // Destructor Vector3D getLinearVelocity() const; // Return the linear velocity void setLinearVelocity(const Vector3D& linearVelocity); // Set the linear velocity of the body Vector3D getAngularVelocity() const; // Return the angular velocity void setAngularVelocity(const Vector3D& angularVelocity); // Set the angular velocity void setMassInverse(double massInverse); // Set the inverse of the mass Vector3D getExternalForce() const; // Return the current external force of the body void setExternalForce(const Vector3D& force); // Set the current external force on the body Vector3D getExternalTorque() const; // Return the current external torque of the body void setExternalTorque(const Vector3D& torque); // Set the current external torque of the body double getMassInverse() const; // Return the inverse of the mass of the body Matrix3x3 getInertiaTensorLocal() const; // Return the local inertia tensor of the body (in body coordinates) void setInertiaTensorLocal(const Matrix3x3& inertiaTensorLocal); // Set the local inertia tensor of the body (in body coordinates) Matrix3x3 getInertiaTensorLocalInverse() const; // Get the inverse of the inertia tensor Matrix3x3 getInertiaTensorWorld() const; // Return the inertia tensor in world coordinates Matrix3x3 getInertiaTensorInverseWorld() const; // Return the inverse of the inertia tensor in world coordinates double getRestitution() const; // Get the restitution coefficient void setRestitution(double restitution) throw(std::invalid_argument); // Set the restitution coefficient }; // Return the linear velocity inline Vector3D RigidBody::getLinearVelocity() const { return linearVelocity; } // Return the angular velocity of the body inline Vector3D RigidBody::getAngularVelocity() const { return angularVelocity; } inline void RigidBody::setAngularVelocity(const Vector3D& angularVelocity) { this->angularVelocity = angularVelocity; } // Set the inverse of the mass inline void RigidBody::setMassInverse(double massInverse) { this->massInverse = massInverse; } // Get the inverse of the inertia tensor inline Matrix3x3 RigidBody::getInertiaTensorLocalInverse() const { return inertiaTensorLocalInverse; } // Return the external force on the body inline Vector3D RigidBody::getExternalForce() const { return externalForce; } // Set the external force on the body inline void RigidBody::setExternalForce(const Vector3D& force) { this->externalForce = force; } // Return the current external torque on the body inline Vector3D RigidBody::getExternalTorque() const { return externalTorque; } // Set the current external torque on the body inline void RigidBody::setExternalTorque(const Vector3D& torque) { this->externalTorque = torque; } // Return the inverse of the mass of the body inline double RigidBody::getMassInverse() const { return massInverse; } // Return the local inertia tensor of the body (in body coordinates) inline Matrix3x3 RigidBody::getInertiaTensorLocal() const { return inertiaTensorLocal; } // Set the local inertia tensor of the body (in body coordinates) inline void RigidBody::setInertiaTensorLocal(const Matrix3x3& inertiaTensorLocal) { this->inertiaTensorLocal = inertiaTensorLocal; } // Return the inertia tensor in world coordinates // The inertia tensor I_w in world coordinates in computed with the local inertia tensor I_b in body coordinates // by I_w = R * I_b * R^T // where R is the rotation matrix (and R^T its transpose) of the current orientation quaternion of the body inline Matrix3x3 RigidBody::getInertiaTensorWorld() const { // Compute and return the inertia tensor in world coordinates return transform.getOrientation() * inertiaTensorLocal * transform.getOrientation().getTranspose(); } // Return the inverse of the inertia tensor in world coordinates // The inertia tensor I_w in world coordinates in computed with the local inverse inertia tensor I_b^-1 in body coordinates // by I_w = R * I_b^-1 * R^T // where R is the rotation matrix (and R^T its transpose) of the current orientation quaternion of the body inline Matrix3x3 RigidBody::getInertiaTensorInverseWorld() const { // Compute and return the inertia tensor in world coordinates return transform.getOrientation() * inertiaTensorLocalInverse * transform.getOrientation().getTranspose(); } // Set the linear velocity of the rigid body inline void RigidBody::setLinearVelocity(const Vector3D& linearVelocity) { // If the body is able to move if (isMotionEnabled) { // Update the linear velocity of the current body state this->linearVelocity = linearVelocity; } } // Get the restitution coeffficient of the rigid body inline double RigidBody::getRestitution() const { return restitution; } // Set the restitution coefficient inline void RigidBody::setRestitution(double restitution) throw(std::invalid_argument) { // Check if the restitution coefficient is between 0 and 1 if (restitution >= 0.0 && restitution <= 1.0) { this->restitution = restitution; } else { throw std::invalid_argument("Error : the restitution coefficent must be between 0 and 1"); } } } // End of the ReactPhyscis3D namespace #endif