/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2016 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "Capsule.h" openglframework::VertexBufferObject Capsule::mVBOVertices(GL_ARRAY_BUFFER); openglframework::VertexBufferObject Capsule::mVBONormals(GL_ARRAY_BUFFER); openglframework::VertexBufferObject Capsule::mVBOTextureCoords(GL_ARRAY_BUFFER); openglframework::VertexBufferObject Capsule::mVBOIndices(GL_ELEMENT_ARRAY_BUFFER); openglframework::VertexArrayObject Capsule::mVAO; int Capsule::totalNbCapsules = 0; // Constructor Capsule::Capsule(float radius, float height, rp3d::CollisionWorld* world, const std::string& meshFolderPath) : PhysicsObject(meshFolderPath + "capsule.obj"), mRadius(radius), mHeight(height) { // Compute the scaling matrix mScalingMatrix = openglframework::Matrix4(mRadius, 0, 0, 0, 0, (mHeight + 2.0f * mRadius) / 3, 0,0, 0, 0, mRadius, 0, 0, 0, 0, 1.0f); // Create the collision shape for the rigid body (sphere shape) // ReactPhysics3D will clone this object to create an internal one. Therefore, // it is OK if this object is destroyed right after calling RigidBody::addCollisionShape() mCapsuleShape = new rp3d::CapsuleShape(mRadius, mHeight); //mCapsuleShape->setLocalScaling(rp3d::Vector3(2, 2, 2)); mPreviousTransform = rp3d::Transform::identity(); // Create a rigid body corresponding in the dynamics world mBody = world->createCollisionBody(mPreviousTransform); // Add a collision shape to the body and specify the mass of the shape mProxyShape = mBody->addCollisionShape(mCapsuleShape, rp3d::Transform::identity()); mTransformMatrix = mTransformMatrix * mScalingMatrix; // Create the VBOs and VAO if (totalNbCapsules == 0) { createVBOAndVAO(); } totalNbCapsules++; } // Constructor Capsule::Capsule(float radius, float height, float mass, rp3d::DynamicsWorld* dynamicsWorld, const std::string& meshFolderPath) : PhysicsObject(meshFolderPath + "capsule.obj"), mRadius(radius), mHeight(height) { // Compute the scaling matrix mScalingMatrix = openglframework::Matrix4(mRadius, 0, 0, 0, 0, (mHeight + 2.0f * mRadius) / 3.0f, 0,0, 0, 0, mRadius, 0, 0, 0, 0, 1.0f); mPreviousTransform = rp3d::Transform::identity(); // Create the collision shape for the rigid body (sphere shape) // ReactPhysics3D will clone this object to create an internal one. Therefore, // it is OK if this object is destroyed right after calling RigidBody::addCollisionShape() mCapsuleShape = new rp3d::CapsuleShape(mRadius, mHeight); // Create a rigid body corresponding in the dynamics world rp3d::RigidBody* body = dynamicsWorld->createRigidBody(mPreviousTransform); // Add a collision shape to the body and specify the mass of the shape mProxyShape = body->addCollisionShape(mCapsuleShape, rp3d::Transform::identity(), mass); mBody = body; mTransformMatrix = mTransformMatrix * mScalingMatrix; // Create the VBOs and VAO if (totalNbCapsules == 0) { createVBOAndVAO(); } totalNbCapsules++; } // Destructor Capsule::~Capsule() { if (totalNbCapsules == 1) { // Destroy the mesh destroy(); // Destroy the VBOs and VAO mVBOIndices.destroy(); mVBOVertices.destroy(); mVBONormals.destroy(); mVBOTextureCoords.destroy(); mVAO.destroy(); } delete mCapsuleShape; totalNbCapsules--; } // Render the sphere at the correct position and with the correct orientation void Capsule::render(openglframework::Shader& shader, const openglframework::Matrix4& worldToCameraMatrix) { // Bind the shader shader.bind(); // Set the model to camera matrix shader.setMatrix4x4Uniform("localToWorldMatrix", mTransformMatrix); shader.setMatrix4x4Uniform("worldToCameraMatrix", worldToCameraMatrix); // Set the normal matrix (inverse transpose of the 3x3 upper-left sub matrix of the // model-view matrix) const openglframework::Matrix4 localToCameraMatrix = worldToCameraMatrix * mTransformMatrix; const openglframework::Matrix3 normalMatrix = localToCameraMatrix.getUpperLeft3x3Matrix().getInverse().getTranspose(); shader.setMatrix3x3Uniform("normalMatrix", normalMatrix, false); // Set the vertex color openglframework::Color currentColor = mBody->isSleeping() ? mSleepingColor : mColor; openglframework::Vector4 color(currentColor.r, currentColor.g, currentColor.b, currentColor.a); shader.setVector4Uniform("vertexColor", color, false); // Bind the VAO mVAO.bind(); mVBOVertices.bind(); // Get the location of shader attribute variables GLint vertexPositionLoc = shader.getAttribLocation("vertexPosition"); GLint vertexNormalLoc = shader.getAttribLocation("vertexNormal", false); glEnableVertexAttribArray(vertexPositionLoc); glVertexAttribPointer(vertexPositionLoc, 3, GL_FLOAT, GL_FALSE, 0, (char*)nullptr); mVBONormals.bind(); if (vertexNormalLoc != -1) glVertexAttribPointer(vertexNormalLoc, 3, GL_FLOAT, GL_FALSE, 0, (char*)nullptr); if (vertexNormalLoc != -1) glEnableVertexAttribArray(vertexNormalLoc); // For each part of the mesh for (unsigned int i=0; i