/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2018 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include "TriangleShape.h" #include "collision/ProxyShape.h" #include "mathematics/mathematics_functions.h" #include "collision/RaycastInfo.h" #include "utils/Profiler.h" #include "configuration.h" #include using namespace reactphysics3d; // Constructor /** * Do not use this constructor. It is supposed to be used internally only. * Use a ConcaveMeshShape instead. * @param point1 First point of the triangle * @param point2 Second point of the triangle * @param point3 Third point of the triangle * @param verticesNormals The three vertices normals for smooth mesh collision * @param margin The collision margin (in meters) around the collision shape */ TriangleShape::TriangleShape(const Vector3* vertices, const Vector3* verticesNormals, uint shapeId, MemoryAllocator& allocator) : ConvexPolyhedronShape(CollisionShapeName::TRIANGLE), mFaces{HalfEdgeStructure::Face(allocator), HalfEdgeStructure::Face(allocator)} { mPoints[0] = vertices[0]; mPoints[1] = vertices[1]; mPoints[2] = vertices[2]; // Compute the triangle normal mNormal = (vertices[1] - vertices[0]).cross(vertices[2] - vertices[0]); mNormal.normalize(); mVerticesNormals[0] = verticesNormals[0]; mVerticesNormals[1] = verticesNormals[1]; mVerticesNormals[2] = verticesNormals[2]; // Faces mFaces[0].faceVertices.reserve(3); mFaces[0].faceVertices.add(0); mFaces[0].faceVertices.add(1); mFaces[0].faceVertices.add(2); mFaces[0].edgeIndex = 0; mFaces[1].faceVertices.reserve(3); mFaces[1].faceVertices.add(0); mFaces[1].faceVertices.add(2); mFaces[1].faceVertices.add(1); mFaces[1].edgeIndex = 1; // Edges for (uint i=0; i<6; i++) { switch(i) { case 0: mEdges[0].vertexIndex = 0; mEdges[0].twinEdgeIndex = 1; mEdges[0].faceIndex = 0; mEdges[0].nextEdgeIndex = 2; break; case 1: mEdges[1].vertexIndex = 1; mEdges[1].twinEdgeIndex = 0; mEdges[1].faceIndex = 1; mEdges[1].nextEdgeIndex = 5; break; case 2: mEdges[2].vertexIndex = 1; mEdges[2].twinEdgeIndex = 3; mEdges[2].faceIndex = 0; mEdges[2].nextEdgeIndex = 4; break; case 3: mEdges[3].vertexIndex = 2; mEdges[3].twinEdgeIndex = 2; mEdges[3].faceIndex = 1; mEdges[3].nextEdgeIndex = 1; break; case 4: mEdges[4].vertexIndex = 2; mEdges[4].twinEdgeIndex = 5; mEdges[4].faceIndex = 0; mEdges[4].nextEdgeIndex = 0; break; case 5: mEdges[5].vertexIndex = 0; mEdges[5].twinEdgeIndex = 4; mEdges[5].faceIndex = 1; mEdges[5].nextEdgeIndex = 3; break; } } mRaycastTestType = TriangleRaycastSide::FRONT; mId = shapeId; } // This method compute the smooth mesh contact with a triangle in case one of the two collision // shapes is a triangle. The idea in this case is to use a smooth vertex normal of the triangle mesh // at the contact point instead of the triangle normal to avoid the internal edge collision issue. // This method will return the new smooth world contact // normal of the triangle and the the local contact point on the other shape. void TriangleShape::computeSmoothTriangleMeshContact(const CollisionShape* shape1, const CollisionShape* shape2, Vector3& localContactPointShape1, Vector3& localContactPointShape2, const Transform& shape1ToWorld, const Transform& shape2ToWorld, decimal penetrationDepth, Vector3& outSmoothVertexNormal) { assert(shape1->getName() != CollisionShapeName::TRIANGLE || shape2->getName() != CollisionShapeName::TRIANGLE); // If one the shape is a triangle bool isShape1Triangle = shape1->getName() == CollisionShapeName::TRIANGLE; if (isShape1Triangle || shape2->getName() == CollisionShapeName::TRIANGLE) { const TriangleShape* triangleShape = isShape1Triangle ? static_cast(shape1): static_cast(shape2); // Compute the smooth triangle mesh contact normal and recompute the local contact point on the other shape triangleShape->computeSmoothMeshContact(isShape1Triangle ? localContactPointShape1 : localContactPointShape2, isShape1Triangle ? shape1ToWorld : shape2ToWorld, isShape1Triangle ? shape2ToWorld.getInverse() : shape1ToWorld.getInverse(), penetrationDepth, isShape1Triangle, isShape1Triangle ? localContactPointShape2 : localContactPointShape1, outSmoothVertexNormal); } } // This method implements the technique described in Game Physics Pearl book // by Gino van der Bergen and Dirk Gregorius to get smooth triangle mesh collision. The idea is // to replace the contact normal of the triangle shape with the precomputed normal of the triangle // mesh at this point. Then, we need to recompute the contact point on the other shape in order to // stay aligned with the new contact normal. This method will return the new smooth world contact // normal of the triangle and the the local contact point on the other shape. void TriangleShape::computeSmoothMeshContact(Vector3 localContactPointTriangle, const Transform& triangleShapeToWorldTransform, const Transform& worldToOtherShapeTransform, decimal penetrationDepth, bool isTriangleShape1, Vector3& outNewLocalContactPointOtherShape, Vector3& outSmoothWorldContactTriangleNormal) const { // Get the smooth contact normal of the mesh at the contact point on the triangle Vector3 triangleLocalNormal = computeSmoothLocalContactNormalForTriangle(localContactPointTriangle); // Convert the local contact normal into world-space Vector3 triangleWorldNormal = triangleShapeToWorldTransform.getOrientation() * triangleLocalNormal; // Penetration axis with direction from triangle to other shape Vector3 triangleToOtherShapePenAxis = isTriangleShape1 ? outSmoothWorldContactTriangleNormal : -outSmoothWorldContactTriangleNormal; // The triangle normal should be the one in the direction out of the current colliding face of the triangle if (triangleWorldNormal.dot(triangleToOtherShapePenAxis) < decimal(0.0)) { triangleWorldNormal = -triangleWorldNormal; triangleLocalNormal = -triangleLocalNormal; } // Compute the final contact normal from shape 1 to shape 2 outSmoothWorldContactTriangleNormal = isTriangleShape1 ? triangleWorldNormal : -triangleWorldNormal; // Re-align the local contact point on the other shape such that it is aligned along the new contact normal Vector3 otherShapePointTriangleSpace = localContactPointTriangle - triangleLocalNormal * penetrationDepth; Vector3 otherShapePoint = worldToOtherShapeTransform * triangleShapeToWorldTransform * otherShapePointTriangleSpace; outNewLocalContactPointOtherShape.setAllValues(otherShapePoint.x, otherShapePoint.y, otherShapePoint.z); } // Get a smooth contact normal for collision for a triangle of the mesh /// This is used to avoid the internal edges issue that occurs when a shape is colliding with /// several triangles of a concave mesh. If the shape collide with an edge of the triangle for instance, /// the computed contact normal from this triangle edge is not necessarily in the direction of the surface /// normal of the mesh at this point. The idea to solve this problem is to use the real (smooth) surface /// normal of the mesh at this point as the contact normal. This technique is described in the chapter 5 /// of the Game Physics Pearl book by Gino van der Bergen and Dirk Gregorius. The vertices normals of the /// mesh are either provided by the user or precomputed if the user did not provide them. Note that we only /// use the interpolated normal if the contact point is on an edge of the triangle. If the contact is in the /// middle of the triangle, we return the true triangle normal. Vector3 TriangleShape::computeSmoothLocalContactNormalForTriangle(const Vector3& localContactPoint) const { // Compute the barycentric coordinates of the point in the triangle decimal u, v, w; computeBarycentricCoordinatesInTriangle(mPoints[0], mPoints[1], mPoints[2], localContactPoint, u, v, w); // If the contact is in the middle of the triangle face (not on the edges) if (u > MACHINE_EPSILON && v > MACHINE_EPSILON && w > MACHINE_EPSILON) { // We return the true triangle face normal (not the interpolated one) return mNormal; } // We compute the contact normal as the barycentric interpolation of the three vertices normals return (u * mVerticesNormals[0] + v * mVerticesNormals[1] + w * mVerticesNormals[2]).getUnit(); } // Update the AABB of a body using its collision shape /** * @param[out] aabb The axis-aligned bounding box (AABB) of the collision shape * computed in world-space coordinates * @param transform Transform used to compute the AABB of the collision shape */ void TriangleShape::computeAABB(AABB& aabb, const Transform& transform) const { const Vector3 worldPoint1 = transform * mPoints[0]; const Vector3 worldPoint2 = transform * mPoints[1]; const Vector3 worldPoint3 = transform * mPoints[2]; const Vector3 xAxis(worldPoint1.x, worldPoint2.x, worldPoint3.x); const Vector3 yAxis(worldPoint1.y, worldPoint2.y, worldPoint3.y); const Vector3 zAxis(worldPoint1.z, worldPoint2.z, worldPoint3.z); aabb.setMin(Vector3(xAxis.getMinValue(), yAxis.getMinValue(), zAxis.getMinValue())); aabb.setMax(Vector3(xAxis.getMaxValue(), yAxis.getMaxValue(), zAxis.getMaxValue())); } // Raycast method with feedback information /// This method use the line vs triangle raycasting technique described in /// Real-time Collision Detection by Christer Ericson. bool TriangleShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, MemoryAllocator& allocator) const { RP3D_PROFILE("TriangleShape::raycast()", mProfiler); const Vector3 pq = ray.point2 - ray.point1; const Vector3 pa = mPoints[0] - ray.point1; const Vector3 pb = mPoints[1] - ray.point1; const Vector3 pc = mPoints[2] - ray.point1; // Test if the line PQ is inside the eges BC, CA and AB. We use the triple // product for this test. const Vector3 m = pq.cross(pc); decimal u = pb.dot(m); if (mRaycastTestType == TriangleRaycastSide::FRONT) { if (u < decimal(0.0)) return false; } else if (mRaycastTestType == TriangleRaycastSide::BACK) { if (u > decimal(0.0)) return false; } decimal v = -pa.dot(m); if (mRaycastTestType == TriangleRaycastSide::FRONT) { if (v < decimal(0.0)) return false; } else if (mRaycastTestType == TriangleRaycastSide::BACK) { if (v > decimal(0.0)) return false; } else if (mRaycastTestType == TriangleRaycastSide::FRONT_AND_BACK) { if (!sameSign(u, v)) return false; } decimal w = pa.dot(pq.cross(pb)); if (mRaycastTestType == TriangleRaycastSide::FRONT) { if (w < decimal(0.0)) return false; } else if (mRaycastTestType == TriangleRaycastSide::BACK) { if (w > decimal(0.0)) return false; } else if (mRaycastTestType == TriangleRaycastSide::FRONT_AND_BACK) { if (!sameSign(u, w)) return false; } // If the line PQ is in the triangle plane (case where u=v=w=0) if (approxEqual(u, 0) && approxEqual(v, 0) && approxEqual(w, 0)) return false; // Compute the barycentric coordinates (u, v, w) to determine the // intersection point R, R = u * a + v * b + w * c decimal denom = decimal(1.0) / (u + v + w); u *= denom; v *= denom; w *= denom; // Compute the local hit point using the barycentric coordinates const Vector3 localHitPoint = u * mPoints[0] + v * mPoints[1] + w * mPoints[2]; const decimal hitFraction = (localHitPoint - ray.point1).length() / pq.length(); if (hitFraction < decimal(0.0) || hitFraction > ray.maxFraction) return false; Vector3 localHitNormal = (mPoints[1] - mPoints[0]).cross(mPoints[2] - mPoints[0]); if (localHitNormal.dot(pq) > decimal(0.0)) localHitNormal = -localHitNormal; raycastInfo.body = proxyShape->getBody(); raycastInfo.proxyShape = proxyShape; raycastInfo.worldPoint = localHitPoint; raycastInfo.hitFraction = hitFraction; raycastInfo.worldNormal = localHitNormal; return true; }