/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2020 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include #include #include #include #include #include #include using namespace reactphysics3d; // Constructor /** * @param halfExtents The vector with the three half-extents of the box */ BoxShape::BoxShape(const Vector3& halfExtents, MemoryAllocator& allocator, PhysicsCommon& physicsCommon) : ConvexPolyhedronShape(CollisionShapeName::BOX, allocator), mHalfExtents(halfExtents), mPhysicsCommon(physicsCommon) { assert(halfExtents.x > decimal(0.0)); assert(halfExtents.y > decimal(0.0)); assert(halfExtents.z > decimal(0.0)); } // Return the local inertia tensor of the collision shape /** * @param mass Mass to use to compute the inertia tensor of the collision shape */ Vector3 BoxShape::getLocalInertiaTensor(decimal mass) const { const decimal factor = (decimal(1.0) / decimal(3.0)) * mass; const decimal xSquare = mHalfExtents.x * mHalfExtents.x; const decimal ySquare = mHalfExtents.y * mHalfExtents.y; const decimal zSquare = mHalfExtents.z * mHalfExtents.z; return Vector3(factor * (ySquare + zSquare), factor * (xSquare + zSquare), factor * (xSquare + ySquare)); } // Raycast method with feedback information bool BoxShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, Collider* collider, MemoryAllocator& allocator) const { Vector3 rayDirection = ray.point2 - ray.point1; decimal tMin = DECIMAL_SMALLEST; decimal tMax = DECIMAL_LARGEST; Vector3 normalDirection(decimal(0), decimal(0), decimal(0)); Vector3 currentNormal; // For each of the three slabs for (int i=0; i<3; i++) { // If ray is parallel to the slab if (std::abs(rayDirection[i]) < MACHINE_EPSILON) { // If the ray's origin is not inside the slab, there is no hit if (ray.point1[i] > mHalfExtents[i] || ray.point1[i] < -mHalfExtents[i]) return false; } else { // Compute the intersection of the ray with the near and far plane of the slab decimal oneOverD = decimal(1.0) / rayDirection[i]; decimal t1 = (-mHalfExtents[i] - ray.point1[i]) * oneOverD; decimal t2 = (mHalfExtents[i] - ray.point1[i]) * oneOverD; currentNormal[0] = (i == 0) ? -mHalfExtents[i] : decimal(0.0); currentNormal[1] = (i == 1) ? -mHalfExtents[i] : decimal(0.0); currentNormal[2] = (i == 2) ? -mHalfExtents[i] : decimal(0.0); // Swap t1 and t2 if need so that t1 is intersection with near plane and // t2 with far plane if (t1 > t2) { std::swap(t1, t2); currentNormal = -currentNormal; } // Compute the intersection of the of slab intersection interval with previous slabs if (t1 > tMin) { tMin = t1; normalDirection = currentNormal; } tMax = std::min(tMax, t2); // If tMin is larger than the maximum raycasting fraction, we return no hit if (tMin > ray.maxFraction) return false; // If the slabs intersection is empty, there is no hit if (tMin > tMax) return false; } } // If tMin is negative, we return no hit if (tMin < decimal(0.0) || tMin > ray.maxFraction) return false; // The ray intersects the three slabs, we compute the hit point Vector3 localHitPoint = ray.point1 + tMin * rayDirection; raycastInfo.body = collider->getBody(); raycastInfo.collider = collider; raycastInfo.hitFraction = tMin; raycastInfo.worldPoint = localHitPoint; raycastInfo.worldNormal = normalDirection; return true; } // Return a given face of the polyhedron const HalfEdgeStructure::Face& BoxShape::getFace(uint faceIndex) const { assert(faceIndex < mPhysicsCommon.mBoxShapeHalfEdgeStructure.getNbFaces()); return mPhysicsCommon.mBoxShapeHalfEdgeStructure.getFace(faceIndex); } // Return a given vertex of the polyhedron HalfEdgeStructure::Vertex BoxShape::getVertex(uint vertexIndex) const { assert(vertexIndex < getNbVertices()); return mPhysicsCommon.mBoxShapeHalfEdgeStructure.getVertex(vertexIndex); } // Return a given half-edge of the polyhedron const HalfEdgeStructure::Edge& BoxShape::getHalfEdge(uint edgeIndex) const { assert(edgeIndex < getNbHalfEdges()); return mPhysicsCommon.mBoxShapeHalfEdgeStructure.getHalfEdge(edgeIndex); }