/******************************************************************************** * ReactPhysics3D physics library, http://www.reactphysics3d.com * * Copyright (c) 2010-2020 Daniel Chappuis * ********************************************************************************* * * * This software is provided 'as-is', without any express or implied warranty. * * In no event will the authors be held liable for any damages arising from the * * use of this software. * * * * Permission is granted to anyone to use this software for any purpose, * * including commercial applications, and to alter it and redistribute it * * freely, subject to the following restrictions: * * * * 1. The origin of this software must not be misrepresented; you must not claim * * that you wrote the original software. If you use this software in a * * product, an acknowledgment in the product documentation would be * * appreciated but is not required. * * * * 2. Altered source versions must be plainly marked as such, and must not be * * misrepresented as being the original software. * * * * 3. This notice may not be removed or altered from any source distribution. * * * ********************************************************************************/ // Libraries #include #include #include using namespace reactphysics3d; // Static variables definition const decimal SolveBallAndSocketJointSystem::BETA = decimal(0.2); // Constructor SolveBallAndSocketJointSystem::SolveBallAndSocketJointSystem(PhysicsWorld& world, RigidBodyComponents& rigidBodyComponents, TransformComponents& transformComponents, JointComponents& jointComponents, BallAndSocketJointComponents& ballAndSocketJointComponents) :mWorld(world), mRigidBodyComponents(rigidBodyComponents), mTransformComponents(transformComponents), mJointComponents(jointComponents), mBallAndSocketJointComponents(ballAndSocketJointComponents), mTimeStep(0), mIsWarmStartingActive(true) { } // Initialize before solving the constraint void SolveBallAndSocketJointSystem::initBeforeSolve() { const decimal biasFactor = (BETA / mTimeStep); // For each joint const uint32 nbJoints = mBallAndSocketJointComponents.getNbEnabledComponents(); for (uint32 i=0; i < nbJoints; i++) { const Entity jointEntity = mBallAndSocketJointComponents.mJointEntities[i]; const uint32 jointIndex = mJointComponents.getEntityIndex(jointEntity); // Get the bodies entities const Entity body1Entity = mJointComponents.mBody1Entities[jointIndex]; const Entity body2Entity = mJointComponents.mBody2Entities[jointIndex]; const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity); const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity); assert(!mRigidBodyComponents.getIsEntityDisabled(body1Entity)); assert(!mRigidBodyComponents.getIsEntityDisabled(body2Entity)); // Get the inertia tensor of bodies mBallAndSocketJointComponents.mI1[i] = mRigidBodyComponents.mInverseInertiaTensorsWorld[componentIndexBody1]; mBallAndSocketJointComponents.mI2[i] = mRigidBodyComponents.mInverseInertiaTensorsWorld[componentIndexBody2]; const Quaternion& orientationBody1 = mTransformComponents.getTransform(body1Entity).getOrientation(); const Quaternion& orientationBody2 = mTransformComponents.getTransform(body2Entity).getOrientation(); // Compute the vector from body center to the anchor point in world-space mBallAndSocketJointComponents.mR1World[i] = orientationBody1 * mBallAndSocketJointComponents.mLocalAnchorPointBody1[i]; mBallAndSocketJointComponents.mR2World[i] = orientationBody2 * mBallAndSocketJointComponents.mLocalAnchorPointBody2[i]; // Compute the corresponding skew-symmetric matrices const Vector3& r1World = mBallAndSocketJointComponents.mR1World[i]; const Vector3& r2World = mBallAndSocketJointComponents.mR2World[i]; Matrix3x3 skewSymmetricMatrixU1 = Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(r1World); Matrix3x3 skewSymmetricMatrixU2 = Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(r2World); // Compute the matrix K=JM^-1J^t (3x3 matrix) const decimal body1MassInverse = mRigidBodyComponents.mInverseMasses[componentIndexBody1]; const decimal body2MassInverse = mRigidBodyComponents.mInverseMasses[componentIndexBody2]; const decimal inverseMassBodies = body1MassInverse + body2MassInverse; const Matrix3x3& i1 = mBallAndSocketJointComponents.mI1[i]; const Matrix3x3& i2 = mBallAndSocketJointComponents.mI2[i]; Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0, 0, inverseMassBodies, 0, 0, 0, inverseMassBodies) + skewSymmetricMatrixU1 * i1 * skewSymmetricMatrixU1.getTranspose() + skewSymmetricMatrixU2 * i2 * skewSymmetricMatrixU2.getTranspose(); // Compute the inverse mass matrix K^-1 mBallAndSocketJointComponents.mInverseMassMatrix[i].setToZero(); decimal massMatrixDeterminant = massMatrix.getDeterminant(); if (std::abs(massMatrixDeterminant) > MACHINE_EPSILON) { if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC || mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) { mBallAndSocketJointComponents.mInverseMassMatrix[i] = massMatrix.getInverse(massMatrixDeterminant); } } const Vector3& x1 = mRigidBodyComponents.mCentersOfMassWorld[componentIndexBody1]; const Vector3& x2 = mRigidBodyComponents.mCentersOfMassWorld[componentIndexBody2]; // Compute the bias "b" of the constraint mBallAndSocketJointComponents.mBiasVector[i].setToZero(); if (mJointComponents.mPositionCorrectionTechniques[jointIndex] == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) { mBallAndSocketJointComponents.mBiasVector[i] = biasFactor * (x2 + r2World - x1 - r1World); } // If warm-starting is not enabled if (!mIsWarmStartingActive) { // Reset the accumulated impulse mBallAndSocketJointComponents.mImpulse[i].setToZero(); } } } // Warm start the constraint (apply the previous impulse at the beginning of the step) void SolveBallAndSocketJointSystem::warmstart() { // For each joint component const uint32 nbJoints = mBallAndSocketJointComponents.getNbEnabledComponents(); for (uint32 i=0; i < nbJoints; i++) { const Entity jointEntity = mBallAndSocketJointComponents.mJointEntities[i]; const uint32 jointIndex = mJointComponents.getEntityIndex(jointEntity); const Entity body1Entity = mJointComponents.mBody1Entities[jointIndex]; const Entity body2Entity = mJointComponents.mBody2Entities[jointIndex]; const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity); const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity); // Get the velocities Vector3& v1 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody1]; Vector3& v2 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody2]; Vector3& w1 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody1]; Vector3& w2 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody2]; const Vector3& r1World = mBallAndSocketJointComponents.mR1World[i]; const Vector3& r2World = mBallAndSocketJointComponents.mR2World[i]; const Matrix3x3& i1 = mBallAndSocketJointComponents.mI1[i]; const Matrix3x3& i2 = mBallAndSocketJointComponents.mI2[i]; // Compute the impulse P=J^T * lambda for the body 1 const Vector3 linearImpulseBody1 = -mBallAndSocketJointComponents.mImpulse[i]; const Vector3 angularImpulseBody1 = mBallAndSocketJointComponents.mImpulse[i].cross(r1World); // Apply the impulse to the body 1 v1 += mRigidBodyComponents.mInverseMasses[componentIndexBody1] * mRigidBodyComponents.mLinearLockAxisFactors[componentIndexBody1] * linearImpulseBody1; w1 += mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody1] * (i1 * angularImpulseBody1); // Compute the impulse P=J^T * lambda for the body 2 const Vector3 angularImpulseBody2 = -mBallAndSocketJointComponents.mImpulse[i].cross(r2World); // Apply the impulse to the body to the body 2 v2 += mRigidBodyComponents.mInverseMasses[componentIndexBody2] * mRigidBodyComponents.mLinearLockAxisFactors[componentIndexBody2] * mBallAndSocketJointComponents.mImpulse[i]; w2 += mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody2] * (i2 * angularImpulseBody2); } } // Solve the velocity constraint void SolveBallAndSocketJointSystem::solveVelocityConstraint() { // For each joint component const uint32 nbJoints = mBallAndSocketJointComponents.getNbEnabledComponents(); for (uint32 i=0; i < nbJoints; i++) { const Entity jointEntity = mBallAndSocketJointComponents.mJointEntities[i]; const uint32 jointIndex = mJointComponents.getEntityIndex(jointEntity); const Entity body1Entity = mJointComponents.mBody1Entities[jointIndex]; const Entity body2Entity = mJointComponents.mBody2Entities[jointIndex]; const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity); const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity); // Get the velocities Vector3& v1 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody1]; Vector3& v2 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody2]; Vector3& w1 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody1]; Vector3& w2 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody2]; const Matrix3x3& i1 = mBallAndSocketJointComponents.mI1[i]; const Matrix3x3& i2 = mBallAndSocketJointComponents.mI2[i]; // Compute J*v const Vector3 Jv = v2 + w2.cross(mBallAndSocketJointComponents.mR2World[i]) - v1 - w1.cross(mBallAndSocketJointComponents.mR1World[i]); // Compute the Lagrange multiplier lambda const Vector3 deltaLambda = mBallAndSocketJointComponents.mInverseMassMatrix[i] * (-Jv - mBallAndSocketJointComponents.mBiasVector[i]); mBallAndSocketJointComponents.mImpulse[i] += deltaLambda; // Compute the impulse P=J^T * lambda for the body 1 const Vector3 linearImpulseBody1 = -deltaLambda; const Vector3 angularImpulseBody1 = deltaLambda.cross(mBallAndSocketJointComponents.mR1World[i]); // Apply the impulse to the body 1 v1 += mRigidBodyComponents.mInverseMasses[componentIndexBody1] * mRigidBodyComponents.mLinearLockAxisFactors[componentIndexBody1] * linearImpulseBody1; w1 += mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody1] * (i1 * angularImpulseBody1); // Compute the impulse P=J^T * lambda for the body 2 const Vector3 angularImpulseBody2 = -deltaLambda.cross(mBallAndSocketJointComponents.mR2World[i]); // Apply the impulse to the body 2 v2 += mRigidBodyComponents.mInverseMasses[componentIndexBody2] * mRigidBodyComponents.mLinearLockAxisFactors[componentIndexBody2] * deltaLambda; w2 += mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody2] * (i2 * angularImpulseBody2); } } // Solve the position constraint (for position error correction) void SolveBallAndSocketJointSystem::solvePositionConstraint() { // For each joint component const uint32 nbEnabledJoints = mBallAndSocketJointComponents.getNbEnabledComponents(); for (uint32 i=0; i < nbEnabledJoints; i++) { const Entity jointEntity = mBallAndSocketJointComponents.mJointEntities[i]; const uint32 jointIndex = mJointComponents.getEntityIndex(jointEntity); // If the error position correction technique is not the non-linear-gauss-seidel, we do // do not execute this method if (mJointComponents.mPositionCorrectionTechniques[jointIndex] != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) continue; const Entity body1Entity = mJointComponents.mBody1Entities[jointIndex]; const Entity body2Entity = mJointComponents.mBody2Entities[jointIndex]; const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity); const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity); Quaternion& q1 = mRigidBodyComponents.mConstrainedOrientations[componentIndexBody1]; Quaternion& q2 = mRigidBodyComponents.mConstrainedOrientations[componentIndexBody2]; // Recompute the world inverse inertia tensors RigidBody::computeWorldInertiaTensorInverse(q1.getMatrix(), mRigidBodyComponents.mInverseInertiaTensorsLocal[componentIndexBody1], mBallAndSocketJointComponents.mI1[i]); RigidBody::computeWorldInertiaTensorInverse(q2.getMatrix(), mRigidBodyComponents.mInverseInertiaTensorsLocal[componentIndexBody2], mBallAndSocketJointComponents.mI2[i]); // Compute the vector from body center to the anchor point in world-space mBallAndSocketJointComponents.mR1World[i] = mRigidBodyComponents.mConstrainedOrientations[componentIndexBody1] * mBallAndSocketJointComponents.mLocalAnchorPointBody1[i]; mBallAndSocketJointComponents.mR2World[i] = mRigidBodyComponents.mConstrainedOrientations[componentIndexBody2] * mBallAndSocketJointComponents.mLocalAnchorPointBody2[i]; const Vector3& r1World = mBallAndSocketJointComponents.mR1World[i]; const Vector3& r2World = mBallAndSocketJointComponents.mR2World[i]; // Compute the corresponding skew-symmetric matrices Matrix3x3 skewSymmetricMatrixU1 = Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(r1World); Matrix3x3 skewSymmetricMatrixU2 = Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(r2World); // Get the inverse mass and inverse inertia tensors of the bodies const decimal inverseMassBody1 = mRigidBodyComponents.mInverseMasses[componentIndexBody1]; const decimal inverseMassBody2 = mRigidBodyComponents.mInverseMasses[componentIndexBody2]; // Recompute the inverse mass matrix K=J^TM^-1J of of the 3 translation constraints decimal inverseMassBodies = inverseMassBody1 + inverseMassBody2; Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0, 0, inverseMassBodies, 0, 0, 0, inverseMassBodies) + skewSymmetricMatrixU1 * mBallAndSocketJointComponents.mI1[i] * skewSymmetricMatrixU1.getTranspose() + skewSymmetricMatrixU2 * mBallAndSocketJointComponents.mI2[i] * skewSymmetricMatrixU2.getTranspose(); mBallAndSocketJointComponents.mInverseMassMatrix[i].setToZero(); decimal massMatrixDeterminant = massMatrix.getDeterminant(); if (std::abs(massMatrixDeterminant) > MACHINE_EPSILON) { if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC || mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) { mBallAndSocketJointComponents.mInverseMassMatrix[i] = massMatrix.getInverse(massMatrixDeterminant); } Vector3& x1 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody1]; Vector3& x2 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody2]; // Compute the constraint error (value of the C(x) function) const Vector3 constraintError = (x2 + r2World - x1 - r1World); // Compute the Lagrange multiplier lambda // TODO : Do not solve the system by computing the inverse each time and multiplying with the // right-hand side vector but instead use a method to directly solve the linear system. const Vector3 lambda = mBallAndSocketJointComponents.mInverseMassMatrix[i] * (-constraintError); // Compute the impulse of body 1 const Vector3 linearImpulseBody1 = -lambda; const Vector3 angularImpulseBody1 = lambda.cross(r1World); // Compute the pseudo velocity of body 1 const Vector3 v1 = inverseMassBody1 * mRigidBodyComponents.mLinearLockAxisFactors[componentIndexBody1] * linearImpulseBody1; const Vector3 w1 = mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody1] * (mBallAndSocketJointComponents.mI1[i] * angularImpulseBody1); // Update the body center of mass and orientation of body 1 x1 += v1; q1 += Quaternion(0, w1) * q1 * decimal(0.5); q1.normalize(); // Compute the impulse of body 2 const Vector3 angularImpulseBody2 = -lambda.cross(r2World); // Compute the pseudo velocity of body 2 const Vector3 v2 = inverseMassBody2 * mRigidBodyComponents.mLinearLockAxisFactors[componentIndexBody2] * lambda; const Vector3 w2 = mRigidBodyComponents.mAngularLockAxisFactors[componentIndexBody2] * (mBallAndSocketJointComponents.mI2[i] * angularImpulseBody2); // Update the body position/orientation of body 2 x2 += v2; q2 += Quaternion(0, w2) * q2 * decimal(0.5); q2.normalize(); } } }